1
|
Li XL, Zhang JQ, Shen XJ, Zhang Y, Guo DA. Overview and limitations of database in global traditional medicines: A narrative review. Acta Pharmacol Sin 2025; 46:235-263. [PMID: 39095509 PMCID: PMC11747326 DOI: 10.1038/s41401-024-01353-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 07/02/2024] [Indexed: 08/04/2024]
Abstract
The study of traditional medicine has garnered significant interest, resulting in various research areas including chemical composition analysis, pharmacological research, clinical application, and quality control. The abundance of available data has made databases increasingly essential for researchers to manage the vast amount of information and explore new drugs. In this article we provide a comprehensive overview and summary of 182 databases that are relevant to traditional medicine research, including 73 databases for chemical component analysis, 70 for pharmacology research, and 39 for clinical application and quality control from published literature (2000-2023). The review categorizes the databases by functionality, offering detailed information on websites and capacities to facilitate easier access. Moreover, this article outlines the primary function of each database, supplemented by case studies to aid in database selection. A practical test was conducted on 68 frequently used databases using keywords and functionalities, resulting in the identification of highlighted databases. This review serves as a reference for traditional medicine researchers to choose appropriate databases and also provides insights and considerations for the function and content design of future databases.
Collapse
Affiliation(s)
- Xiao-Lan Li
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian-Qing Zhang
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xuan-Jing Shen
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Zhang
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - De-An Guo
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Guan Y, Liang Z, Li R, Guo Y, Dang L, Gong F, Xu S, Wang T, Bo N, Yang S, Jiang W, Zhang G, Zhao M, Chen J. Chemical composition and antioxidant activity of Polygonatum kingianum processed by the traditional method of "Nine Cycles of Steaming and Sun-Drying". Food Chem X 2024; 22:101292. [PMID: 38559439 PMCID: PMC10978476 DOI: 10.1016/j.fochx.2024.101292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 04/04/2024] Open
Abstract
Polygonatum kingianum Coll. et (Hemsl) is a famous Chinese traditional food and medicine analogous plant. The rhizome of P. kingianum showed a decrease in levels of alkaloids, amino acids and derivatives, terpenoids, and an increase in organic acid and saccharides when it was processed by the traditional method of "Nine Cycles of Steaming and Sun-Drying". The relative content of 341 metabolites were increased (fold change, FC > 2; variable importance in projection, VIP > 1 and P-value, P < 0.05); while 456 metabolites were decreased (FC < 0.5, VIP > 1, and P < 0.05). The changes in chemical components result in a decrease in numb taste and an increase in sweetness. The increased antioxidant activity was observed in the processed samples. Together, this work has advanced the mechanism of reducing numb taste and enhancing antioxidant activity in the resource plants, such as P. kingianum, processed by the traditional method.
Collapse
Affiliation(s)
- Yanhui Guan
- College of Agronomy and Biotechnology & The Key Laboratory of Medicinal Plant Biology of Yunnan Province & National Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming 650201, People's Republic of China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming 650201, People's Republic of China
| | - Zhengwei Liang
- College of Agronomy and Biotechnology & The Key Laboratory of Medicinal Plant Biology of Yunnan Province & National Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming 650201, People's Republic of China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming 650201, People's Republic of China
| | - Ruoyu Li
- College of Agronomy and Biotechnology & The Key Laboratory of Medicinal Plant Biology of Yunnan Province & National Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming 650201, People's Republic of China
- College of Tea Science, Yunnan Agricultural University, Kunming 650201, People's Republic of China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming 650201, People's Republic of China
| | - Yunjiao Guo
- Yunnan Characteristic Plant Extraction Laboratory, Kunming 650201, People's Republic of China
- DeHong Teachers’ College, Mangshi 678400, People's Republic of China
| | - Lingjing Dang
- Yunnan Characteristic Plant Extraction Laboratory, Kunming 650201, People's Republic of China
- DeHong Vocational College, Mangshi 678400, People's Republic of China
| | - Fuming Gong
- Yunnan Characteristic Plant Extraction Laboratory, Kunming 650201, People's Republic of China
- DeHong Vocational College, Mangshi 678400, People's Republic of China
| | - Susu Xu
- College of Agronomy and Biotechnology & The Key Laboratory of Medicinal Plant Biology of Yunnan Province & National Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming 650201, People's Republic of China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming 650201, People's Republic of China
| | - Teng Wang
- College of Agronomy and Biotechnology & The Key Laboratory of Medicinal Plant Biology of Yunnan Province & National Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming 650201, People's Republic of China
- College of Tea Science, Yunnan Agricultural University, Kunming 650201, People's Republic of China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming 650201, People's Republic of China
| | - Nianguo Bo
- College of Agronomy and Biotechnology & The Key Laboratory of Medicinal Plant Biology of Yunnan Province & National Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming 650201, People's Republic of China
- College of Tea Science, Yunnan Agricultural University, Kunming 650201, People's Republic of China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming 650201, People's Republic of China
| | - Shengchao Yang
- College of Agronomy and Biotechnology & The Key Laboratory of Medicinal Plant Biology of Yunnan Province & National Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming 650201, People's Republic of China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming 650201, People's Republic of China
| | - Weiwei Jiang
- College of Agronomy and Biotechnology & The Key Laboratory of Medicinal Plant Biology of Yunnan Province & National Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming 650201, People's Republic of China
- College of Science, Yunnan Agricultural University, Kunming 650201, People's Republic of China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming 650201, People's Republic of China
| | - Guanghui Zhang
- College of Agronomy and Biotechnology & The Key Laboratory of Medicinal Plant Biology of Yunnan Province & National Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming 650201, People's Republic of China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming 650201, People's Republic of China
| | - Ming Zhao
- College of Agronomy and Biotechnology & The Key Laboratory of Medicinal Plant Biology of Yunnan Province & National Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming 650201, People's Republic of China
- College of Tea Science, Yunnan Agricultural University, Kunming 650201, People's Republic of China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming 650201, People's Republic of China
| | - Junwen Chen
- College of Agronomy and Biotechnology & The Key Laboratory of Medicinal Plant Biology of Yunnan Province & National Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming 650201, People's Republic of China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming 650201, People's Republic of China
| |
Collapse
|
3
|
Mo X, Wang L, Yu C, Kou C. Combined Metabolomics and Transcriptomics Analysis of the Distribution of Flavonoids in the Fibrous Root and Taproot of Polygonatum kingianum Coll.et Hemsl. Genes (Basel) 2024; 15:828. [PMID: 39062607 PMCID: PMC11275391 DOI: 10.3390/genes15070828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Polygonati rhizoma, known for its distinct yellow rhizomes, is a common therapeutic and culinary plant in Far East Asia. The hue of medicinal plants is closely tied to the flavonoid biosynthesis and content levels. In this research, the fibrous root and taproot of Polygonatum kingianum Coll.et Hemsl. were studied to explore the secondary metabolite expression and flavonoid biosynthesis mechanisms using transcriptomics and metabolomics. Metabolic analysis identified that the differentially accumulated metabolites (DAMs) in the fibrous root and taproot were predominantly flavonoids, steroids, alkaloids, and phenolic acids. Overall, 200 flavonoids were identified in P. kingianum Coll.et Hemsl., with 170 exhibiting variances between the fibrous root and taproot. The transcriptome analysis revealed that a total of 289 unigenes encoding 32 enzymes were annotated into four flavonoid biosynthesis pathways, which include phenylpropanoid biosynthesis pathway, flavonoid biosynthesis pathway, isoflavonoid biosynthesis pathway, and flavone and flavonol biosynthesis pathway. The integration of transcriptomic and metabolomic data elucidated that the 76 differentially expressed genes (DEGs) encoding 13 enzyme genes (HCT, CCOMT, C4H, C3'H, CHI, PGT1, FLS, F3'H, CHS, ANR, DFR, F3'5'H, and LAR) and 15 DAMs preferred to be regulated in the flavonoid biosynthesis pathway. The expression of 10 DEGs was validated by qRT-PCR, agreeing with the same results by RNA-Seq. These findings shed light into the biosynthesis of secondary metabolites in P. kingianum Coll.et Hemsl., offering valuable information for the sustainable utilization and enhancement of this plant species.
Collapse
Affiliation(s)
- Xinchun Mo
- Department of Applied Technology, Lijiang Teachers College, Lijiang 674199, China; (L.W.); (C.Y.); (C.K.)
| | | | | | | |
Collapse
|
4
|
Ma QD, Zhang HJ, Qi YR, Yin ZY, Yi DY, Yi SR. The complete chloroplast genomes of Polygonatum hunanense, P. verticillatum, and P. caulialatum and their phylogenetic positions. Mitochondrial DNA B Resour 2024; 9:720-724. [PMID: 38859915 PMCID: PMC11164183 DOI: 10.1080/23802359.2024.2357681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 05/15/2024] [Indexed: 06/12/2024] Open
Abstract
Polygonatum hunanense H.H. Liu & B.Z. Wang (2021) and P. verticillatum (L.) All. (1875) have been widely used as foods and as folk medicines in China and India, and P. caulialatum S. R. Yi (2021) has recently been described as a new medical plant in China. There is at present a lack of genome information regarding the species. Hence, this study reports the complete chloroplast genomes of the three species. The genomes of P. hunanense, P. verticillatum, and P. caulialatum were 155,583 bp, 155,650 bp, and 155,352 bp in length, respectively. They contained large single-copy (LSC) regions of 84,412 bp, 84,404 bp, and 84,285 bp, small single-copy (SSC) regions of 18,427 bp, 18,416 bp, and 18,463 bp, and a pair of inverted repeats of 26,372 bp, 26,415 bp, and 26,302 bp, respectively. The chloroplast genomes of P. hunanense, P. verticillatum, and P. caulialatum had 133 (103 unique) genes, consisting of 87 protein-coding genes, 38 ribosomal ribonucleic acid (RNA) genes, and eight transfer RNA genes, respectively. A maximum-likelihood phylogenetic tree showed that P. kingianum Coll. et Hemsl. var. grandifolium D.M. Liu & W.Z. Zeng (1991) was closer to P. cyrtonema Hua (1892) rather than to P. kingianum Coll. et Hemsl. (1890), further supporting its status as a unique species of the genus. Moreover, P. verticillatum was separated from the easily confused herb P. cirrhifolium (Wall.) Royle (1839), while P. caulialatum was closest to P. humile Fisch. ex Maxim. (1859). This research provides a foundation for further study of these herbs.
Collapse
Affiliation(s)
- Qing-Dong Ma
- School of Pharmacy, Chongqing Three Gorges Medical College, Chongqing, PR China
- Chongqing Key Laboratory of Development and Utilization of DaoDi Medicinal Materials in Three Gorges Reservoir Area, Chongqing, PR China
- Chongqing Engineering Research Centre of Antitumor Natural Drugs, Chongqing, PR China
| | - Hong-Jing Zhang
- School of Pharmacy, Chongqing Three Gorges Medical College, Chongqing, PR China
- Chongqing Key Laboratory of Development and Utilization of DaoDi Medicinal Materials in Three Gorges Reservoir Area, Chongqing, PR China
| | - Yan-Ran Qi
- School of Pharmacy, Chongqing Three Gorges Medical College, Chongqing, PR China
- Chongqing Key Laboratory of Development and Utilization of DaoDi Medicinal Materials in Three Gorges Reservoir Area, Chongqing, PR China
| | - Zheng-You Yin
- School of Pharmacy, Chongqing Three Gorges Medical College, Chongqing, PR China
| | - Dong-Yang Yi
- School of Pharmacy, Chongqing Three Gorges Medical College, Chongqing, PR China
- Chongqing Key Laboratory of Development and Utilization of DaoDi Medicinal Materials in Three Gorges Reservoir Area, Chongqing, PR China
- Chongqing Engineering Research Centre of Antitumor Natural Drugs, Chongqing, PR China
| | - Si-Rong Yi
- School of Pharmacy, Chongqing Three Gorges Medical College, Chongqing, PR China
- Chongqing Key Laboratory of Development and Utilization of DaoDi Medicinal Materials in Three Gorges Reservoir Area, Chongqing, PR China
- Chongqing Engineering Research Centre of Antitumor Natural Drugs, Chongqing, PR China
| |
Collapse
|
5
|
Yang L, Yang Q, Zhang L, Ren F, Zhang Z, Jia Q. Integrated Metabolomics and Transcriptomics Analysis of Flavonoid Biosynthesis Pathway in Polygonatum cyrtonema Hua. Molecules 2024; 29:2248. [PMID: 38792110 PMCID: PMC11124200 DOI: 10.3390/molecules29102248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Flavonoids, a class of phenolic compounds, are one of the main functional components and have a wide range of molecular structures and biological activities in Polygonatum. A few of them, including homoisoflavonoids, chalcones, isoflavones, and flavones, were identified in Polygonatum and displayed a wide range of powerful biological activities, such as anti-cancer, anti-viral, and blood sugar regulation. However, few studies have systematically been published on the flavonoid biosynthesis pathway in Polygonatum cyrtonema Hua. Therefore, in the present study, a combined transcriptome and metabolome analysis was performed on the leaf, stem, rhizome, and root tissues of P. cyrtonema to uncover the synthesis pathway of flavonoids and to identify key regulatory genes. Flavonoid-targeted metabolomics detected a total of 65 active substances from four different tissues, among which 49 substances were first study to identify in Polygonatum, and 38 substances were flavonoids. A total of 19 differentially accumulated metabolites (DAMs) (five flavonols, three flavones, two dihydrochalcones, two flavanones, one flavanol, five phenylpropanoids, and one coumarin) were finally screened by KEGG enrichment analysis. Transcriptome analysis indicated that a total of 222 unigenes encoding 28 enzymes were annotated into three flavonoid biosynthesis pathways, which were "phenylpropanoid biosynthesis", "flavonoid biosynthesis", and "flavone and flavonol biosynthesis". The combined analysis of the metabolome and transcriptome revealed that 37 differentially expressed genes (DEGs) encoding 11 enzymes (C4H, PAL, 4CL, CHS, CHI, F3H, DFR, LAR, ANR, FNS, FLS) and 19 DAMs were more likely to be regulated in the flavonoid biosynthesis pathway. The expression of 11 DEGs was validated by qRT-PCR, resulting in good agreement with the RNA-Seq. Our studies provide a theoretical basis for further elucidating the flavonoid biosynthesis pathway in Polygonatum.
Collapse
Affiliation(s)
- Luyun Yang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.Y.); (Q.Y.); (L.Z.); (F.R.); (Z.Z.)
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Qingwen Yang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.Y.); (Q.Y.); (L.Z.); (F.R.); (Z.Z.)
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Luping Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.Y.); (Q.Y.); (L.Z.); (F.R.); (Z.Z.)
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Fengxiao Ren
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.Y.); (Q.Y.); (L.Z.); (F.R.); (Z.Z.)
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhouyao Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.Y.); (Q.Y.); (L.Z.); (F.R.); (Z.Z.)
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Qiaojun Jia
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.Y.); (Q.Y.); (L.Z.); (F.R.); (Z.Z.)
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
6
|
Xu Y, Yang M, Yang T, Yang W, Wang Y, Zhang J. Untargeted GC-MS and FT-NIR study of the effect of 14 processing methods on the volatile components of Polygonatum kingianum. FRONTIERS IN PLANT SCIENCE 2023; 14:1140691. [PMID: 37223798 PMCID: PMC10200983 DOI: 10.3389/fpls.2023.1140691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/11/2023] [Indexed: 05/25/2023]
Abstract
Introduction Polygonatum kingianum is a traditional medicinal plant, and processing has significantly impacts its quality. Methods Therefore, untargeted gas chromatography-mass spectrometry (GC-MS) and Fourier transform-near-infrared spectroscopy (FT-NIR) were used to analyze the 14 processing methods commonly used in the Chinese market.It is dedicated to analyzing the causes of major volatile metabolite changes and identifying signature volatile components for each processing method. Results The untargeted GC-MS technique identified a total of 333 metabolites. The relative content accounted for sugars (43%), acids (20%), amino acids (18%), nucleotides (6%), and esters (3%). The multiple steaming and roasting samples contained more sugars, nucleotides, esters and flavonoids but fewer amino acids. The sugars are predominantly monosaccharides or small molecular sugars, mainly due to polysaccharides depolymerization. The heat treatment reduces the amino acid content significantly, and the multiple steaming and roasting methods are not conducive to accumulating amino acids. The multiple steaming and roasting samples showed significant differences, as seen from principal component analysis (PCA) and hierarchical cluster analysis (HCA) based on GC-MS and FT-NIR. The partial least squares discriminant analysis (PLS-DA) based on FT-NIR can achieve 96.43% identification rate for the processed samples. Discussion This study can provide some references and options for consumers, producers, and researchers.
Collapse
Affiliation(s)
- Yulin Xu
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- School of Agriculture, Yunnan University, Kunming, China
| | - Meiquan Yang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Tianmei Yang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Weize Yang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Yuanzhong Wang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Jinyu Zhang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| |
Collapse
|
7
|
Kumar R, Kumar D. Comprehensive metabolomics and antioxidant activity of Allium species viz. Allium semenovii, A. sativum and A. cepa: An important spice. Food Res Int 2023; 166:112584. [PMID: 36914316 DOI: 10.1016/j.foodres.2023.112584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/02/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023]
Abstract
Allium is one of the most extensively consumed spices in most parts of the world. While Allium cepa and A. sativum have wide spread cultivation, A. semenovii is only found in high altitude areas. Increasing utilization of A. semenovii needs a comprehensive understanding of its chemo-information, and health benefits in comparison to well explored Allium species. The present study compared metabolome and antioxidant activity in tissues extracts (Ethanol, 50% ethanol and water) of leaves, roots, bulbs, and peels of the three Allium species. All samples showed significant polyphenols (TPC: 167.58-0.22 mg GAE/g and TFC: 164.86-2.2 mg QE/g) content with higher antioxidant activity in A. cepa and A. semenovii than A. sativum. UPLC-PDA based targeted polyphenol also showed highest content in A. cepa (peels, roots, and bulbs) and A. semenovii (leaves). Further, 43 diversified metabolites including polyphenols and sulphur containing compounds were identified using GC-MS and UHPLC-QTOF-MS/MS. The statistical analysis (Venn-diagram, Heatmap, stacked charts, PCA, PCoA) of identified metabolites in different samples revealed the similarities and discriminations among different species of Allium. The current finding illustrated potential of A. semenovii for utilisation in food and nutraceuticals.
Collapse
Affiliation(s)
- Rajender Kumar
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Dinesh Kumar
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
8
|
Ali V, Rashid A, Kumar D, Vyas D. Stage-specific metabolomics suggests a trade-off between primary and secondary metabolites for nutritional advantage in Lepidium latifolium L. Food Chem 2023; 419:136035. [PMID: 37027970 DOI: 10.1016/j.foodchem.2023.136035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/31/2023]
Abstract
Lepidium latifolium L. is an established phytofood of the Ladakh Himalayas that contains differential content of important glucosinolates (GLS) in specific stages of sprouts. Therefore, in order to harness its nutraceutical potential, a comprehensive mass spectrometry-based stage-specific untargeted metabolomic analysis was performed. A total of 318 metabolites were detected, out of which 229 were significantly (p ≤ 0.05) changed during different stages. The Principal Component Analysis plot clearly differentiated different growth stages into three clusters. The nutritionally important metabolites, including amino acids, sugars, organic acids, and fatty acids, were found significantly (p ≤ 0.05) higher in the first cluster consisting of 1st, 2nd and 3rd week sprouts. The higher energy requirements during the early growth stages were observed with the higher metabolites of glycolysis and the TCA cycle. Further, the trade-off between primary and secondary sulfur-containing metabolites was observed, which may explain the differential GLS content in different growth stages.
Collapse
|
9
|
Dadwal V, Joshi R, Gupta M. Comparative metabolomics of Himalayan crab apple (Malus baccata) with commercially utilized apple (Malus domestica) using UHPLC-QTOF-IMS coupled with multivariate analysis. Food Chem 2023; 402:134529. [DOI: 10.1016/j.foodchem.2022.134529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/11/2022] [Accepted: 10/03/2022] [Indexed: 01/30/2023]
|
10
|
Metabolome analysis, nutrient and antioxidant potential of aerial and underground parts ofAjuga parviflora Benth. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
11
|
Sun Y, Zhou L, Shan X, Zhao T, Cui M, Hao W, Wei B. Untargeted components and in vivo metabolites analyses of Polygonatum under different processing times. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2022.114334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
12
|
Chen Z, Luo J, Jia M, Chai Y, Bao Y. Polygonatum sibiricum saponin Exerts Beneficial Hypoglycemic Effects in Type 2 Diabetes Mice by Improving Hepatic Insulin Resistance and Glycogen Synthesis-Related Proteins. Nutrients 2022; 14:5222. [PMID: 36558381 PMCID: PMC9786127 DOI: 10.3390/nu14245222] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a systemic metabolic disorder characterized by insulin deficiency and insulin resistance. Recently, it has become a significant threat to public health. Polygonatum sibiricum saponin (PSS) has potential hypoglycemic effects, but its specific mechanism needs further study. In this study, PSS significantly decreased the level of blood glucose, water intake, and the organ index in diabetic mice. Meanwhile, PSS effectively reduced the content of total triglyceride (TG), total cholesterol (TCHO), low-density lipoprotein cholesterol (LDL-C), alanine aminotransferase (ALT), and aspartate aminotransferase (AST) in the blood, and increased the content of high-density lipoprotein cholesterol (HDL-C). This suggests that PSS could reduce the content of blood lipids and initially improve the damage of hepatocytes. We found that PSS alleviated hepatic insulin resistance, repaired islet beta cells, and enabled insulin to play its biological role normally. It also improved oral glucose tolerance and abated serum lipopolysaccharide (LPS) and glycosylated hemoglobin (HbA1c) levels in T2DM mice. Furthermore, studies have found that PSS increased the content of phosphorylated protein kinase B (AKT), thereby promoting the effect of glucose transporter 4 (GLUT-4), and activating glycogen synthase kinase 3beta (GSK-3β) and glycogen synthase (GS) proteins to promote hepatic glycogen synthesis. Finally, we found that PSS could promote the growth of beneficial bacteria such as Bifidobacterium and Lactobacillus, reduce the growth of harmful bacteria such as Enterococcus and Enterobacter, and preliminarily improve the composition of important bacteria in the intestine. These studies indicate that PSS has an excellent hypoglycemic effect, which provides a potential new treatment for T2DM and guidance for more in-depth research.
Collapse
Affiliation(s)
- Zefu Chen
- School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Jiayuan Luo
- School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Mingjie Jia
- School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Yangyang Chai
- School of Forestry, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Forest Food Resources Utilization of Heilongjiang Province, Harbin 150040, China
| | - Yihong Bao
- School of Forestry, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Forest Food Resources Utilization of Heilongjiang Province, Harbin 150040, China
| |
Collapse
|
13
|
Ahmad M, Ali A, Ullah Z, Sher H, Dai DQ, Ali M, Iqbal J, Zahoor M, Ali I. Biosynthesized silver nanoparticles using Polygonatum geminiflorum efficiently control fusarium wilt disease of tomato. Front Bioeng Biotechnol 2022; 10:988607. [PMID: 36159677 PMCID: PMC9493356 DOI: 10.3389/fbioe.2022.988607] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Nanomaterials are gaining tremendous potential as emerging antimicrobials in the quest to find resistance-free alternatives of chemical pesticides. In this study, stable silver nanoparticles were synthesized using the aqueous extract of medicinal plant species Polygonatum geminiflorum , and their morphological features were evaluated by transmission electron microscopy, X-ray diffraction spectroscopy and energy dispersive X-ray analysis. In vitro Antifungal activity of the synthesized silver nanoparticles (AgNPs) and P. geminiflorum extract (PE) either alone or in combination (PE-AgNPs) against Fusarium oxysporum was evaluated using disc-diffusion and well-diffusion methods. In planta assay of the same treatments against Fusarium wilt diseases of tomato was evaluated by foliar spray method. Moreover, plant extract was evaluated for the quantitative investigation of antioxidant activity, phenolics and flavonoids by spectroscopic and HPLC techniques. Phytochemical analysis indicated the presence of total phenolic and flavonoid contents as 48.32 mg ± 1.54 mg GAE/g and 57.08 mg ± 1.36 mg QE/g, respectively. The DPPH radical scavenging of leaf extract was found to be 88.23% ± 0.87%. Besides, the HPLC phenolic profile showed the presence of 15 bioactive phenolic compounds. Characterization of nanoparticles revealed the size ranging from 8 nm to 34 nm with average crystallite size of 27 nm. The FTIR analysis revealed important functional groups that were responsible for the reduction and stabilization of AgNPs. In the in vitro assays, 100 μg/ml of AgNPs and AgNPs-PE strongly inhibited Fusarium oxysporum. The same treatments tested against Fusarium sprayed on tomato plants in controlled environment exhibited nearly 100% plant survival with no observable phytotoxicity. These finding provide a simple baseline to control Fusarium wilt using silver nano bio-control agents without affecting the crop health.
Collapse
Affiliation(s)
- Maaz Ahmad
- Center for Yunnan Plateau Biological Resources Protection and Utilization, Yunnan Engineering Research Center of Fruit Wine, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, China
- Centre for Plant Sciences and Biodiversity, University of Swat, Charbagh, Swat, Pakistan
| | - Ahmad Ali
- Centre for Plant Sciences and Biodiversity, University of Swat, Charbagh, Swat, Pakistan
| | - Zahid Ullah
- Centre for Plant Sciences and Biodiversity, University of Swat, Charbagh, Swat, Pakistan
| | - Hassan Sher
- Centre for Plant Sciences and Biodiversity, University of Swat, Charbagh, Swat, Pakistan
| | - Dong-Qin Dai
- Center for Yunnan Plateau Biological Resources Protection and Utilization, Yunnan Engineering Research Center of Fruit Wine, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, China
| | - Mohammad Ali
- Centre for Biotechnology and Microbiology, University of Swat, Charbagh, Swat, Pakistan
| | - Javed Iqbal
- Department of Botany, Bacha Khan University, Charsadda, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Zahoor
- Department of Biochemistry, University of Malakand, Chakdara, Khyber Pakhtunkhwa, Pakistan
| | - Iftikhar Ali
- Centre for Plant Sciences and Biodiversity, University of Swat, Charbagh, Swat, Pakistan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
14
|
Polyphenolic Profiling, Antioxidant, and Antimicrobial Activities Revealed the Quality and Adaptive Behavior of Viola Species, a Dietary Spice in the Himalayas. Molecules 2022; 27:molecules27123867. [PMID: 35744989 PMCID: PMC9230710 DOI: 10.3390/molecules27123867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/05/2022] [Accepted: 04/15/2022] [Indexed: 12/10/2022] Open
Abstract
Background: Himalayan Viola species (Banksha) are traditionally important herbs with versatile therapeutic benefits such as antitussive, analgesic, antipyretic, antimalarial, anti-inflammatory, and anticancerous ones. The current investigation was focused on exploring polyphenolic profiles, antioxidant, and antimicrobial potentials of wild viola species at 15 gradient locations (375–1829 m). Methods: Morphological, physiochemical, and proximate analyses were carried out as per WHO guidelines for plant drug standardization. Total polyphenolic and flavonoid content were carried out using gallic acid and rutin equivalent. UPLC-DAD was used to profile the targeted polyphenols (gallic acid, vanillic acid, syringic acid, p-coumaric acid, ferulic acid, rutin, quercetin, luteolin, caffeic acid, and epicatechin). Similarly, all samples were screened for antioxidant and antimicrobial activity. Statistical analysis was used to correlate polyphenolic and targeted activities to assess Viola species adaptation behavior patterns. Results: Viola canescens (V. canescens) and Viola pilosa (V. pilosa) were found abundantly at their respective sites. Among flowers and leaves, flowers of V. canescens and V. pilosa showed higher total polyphenolic and flavonoid content (51.4 ± 1.13 mg GAE/g and 65.05 ± 0.85 mg RE/g, and 33.26 ± 0.62 mg GAE/g and 36.10 ± 1.41 mg RE/g, respectively). Furthermore, UPLC-DAD showed the uppermost content of p-coumaric acid in flowers and ferulic acid in leaves, while rutin was significant in both the tissues. Conclusions: The adaptive behavior of Viola species showed variability in morphological characters with the altitudes, while targeted polyphenols and activities were significant at mid-altitudes. This research helps in the selection of right chemotype for agrotechnological interventions and the development of nutraceutical products.
Collapse
|
15
|
Hu Y, Yin M, Bai Y, Chu S, Zhang L, Yang M, Zheng X, Yang Z, Liu J, Li L, Huang L, Peng H. An Evaluation of Traits, Nutritional, and Medicinal Component Quality of Polygonatum cyrtonema Hua and P. sibiricum Red. FRONTIERS IN PLANT SCIENCE 2022; 13:891775. [PMID: 35519815 PMCID: PMC9062581 DOI: 10.3389/fpls.2022.891775] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Polygonati rhizoma (Huangjing in Chinese) is a traditional and classic dual-purpose material used in food and medicine. Herbalists in China and Japan have noticed several different rhizome types in Huangjing with different qualities. Rhizome of Polygonatum cyrtonema Hua and P. sibiricum Red. is divided into five types: "Jitou-type" Polygonati rhizoma (JTPR), atypical "Jitou-type" Polygonati rhizoma (AJTPR), "Jiang-type" Polygonati rhizoma (JPR), "Cylinder-type" Polygonati rhizoma (CPR), and "Baiji-type" Polygonati rhizoma (BJPR). This study observed the microstructure and histochemical localization of polysaccharides, saponins, and proteins in Huangjing. Nutritional and medicinal component data and antioxidant capacity (DPPH and ABTS) were analyzed to evaluate the quality of different types of Huangjing. The results showed that the comprehensive quality of the rhizomes, BJPR and JTPR, was better, regardless of their nutritional or medicinal values. Altogether, these results could recommend future breeding efforts to produce Huangjing with improved nutritional and medicinal qualities.
Collapse
Affiliation(s)
- Yan Hu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Minzhen Yin
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Research Unit of DAO-DI Herbs, Chinese Academy of Medical Sciences, Beijing, 2019RU57, China
| | - Yunjun Bai
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shanshan Chu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Ling Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Mei Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Xiaowen Zheng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Zhengyang Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Junling Liu
- Anhui Provincial Institute for Food and Drug Control, Hefei, China
| | - Lei Li
- Jinzhai Senfeng Agricultural Technology Development Co., Ltd., Lu’an, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Research Unit of DAO-DI Herbs, Chinese Academy of Medical Sciences, Beijing, 2019RU57, China
| | - Huasheng Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Research Unit of DAO-DI Herbs, Chinese Academy of Medical Sciences, Beijing, 2019RU57, China
| |
Collapse
|
16
|
Kumar D, Joshi R, Sharma A, Nadda G, Kumar D. A Comprehensive Search of the Primary and Secondary Metabolites and Radical Scavenging Potential of Trillium govanianum Wall. ex D. Don. Chem Biodivers 2021; 18:e2100300. [PMID: 34375021 DOI: 10.1002/cbdv.202100300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/10/2021] [Indexed: 01/20/2023]
Abstract
Trillium govanianum rhizomes are traditionally consumed as a raw powder and decoction for the treatment of health complications. Hence, the present study aimed to investigate whether aqueous and alcoholic extracts of T. govanianum rhizomes under hot and cold extraction conditions have similar or dissimilar chemical, nutrient, and antioxidant profiles. The total phenolics, flavonoids, carbohydrates, proteins, fats, and energy values were estimated in all the conditionally prepared samples. The total phenolics (21.23±1.4 mg GAE/g extract), flavonoids (70.57±3.24 mg RE/g extract) were found higher in hot ethanolic extract (TGHEt), while cold water extract (TGGC) showed higher nutrients including amino acids (10.545±0.219 mg/g) and nucleosides (1.803±0.018 mg/g). The nutrient energy value (2.60 and 2.49 Kcal/g extract) was higher in cold and hot ethanolic extracts. Further, TGHEt scavenged the DPPH. (IC50 ; 870±22 μg/mL) and ABTS.+ (IC50 ; 80±1.49 μg/mL) effectively and proved its highest antioxidant activity compared to other samples. In LC/MS/MS-based metabolite profiling, twenty-six metabolites (fatty acids, steroidal saponins, triterpene saponins, ecdysteroid hormones) were confirmed with mass fragmentation and literature, while one hundred nine metabolites were identified using the METLIN database. The principal component analysis showed clustering of hot condition extracts while cold extracts were differentially located in quadrants. The heatmaps exhibited the associations and differences between metabolite composition, solvents, and extraction conditions. The identified metabolites speculatively predicted the biosynthesis pathway of T. govanianum. Findings also illustrated that T. govanianum is a source of bioactive nutritional components and saponins. The current metabolite profiling of T. govanianum will help in its agricultural and biotechnological interventions for higher quality produce.
Collapse
Affiliation(s)
- Dinesh Kumar
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Robin Joshi
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176 061, HP, India
| | - Aakriti Sharma
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.,Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India
| | - Gireesh Nadda
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.,Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India
| | - Dinesh Kumar
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|