1
|
Kapolos J, Giannopoulou D, Papadimitriou K, Koliadima A. A Comprehensive Review of Emulsion-Based Nisin Delivery Systems for Food Safety. Foods 2025; 14:1338. [PMID: 40282740 PMCID: PMC12026595 DOI: 10.3390/foods14081338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/19/2025] [Accepted: 04/07/2025] [Indexed: 04/29/2025] Open
Abstract
Foodborne diseases are one of the most serious problems the food sector has to confront, while questions have been raised concerning the effects of several antimicrobial additives on consumer health. Nisin is a peptide produced primarily by Lactococcus lactis with antimicrobial properties mostly against Gram-positive bacteria. It is generally recognized as safe (GRAS) for use in a wide range of food categories. However, its interaction with components of the food matrix, its susceptibility to proteolytic degradation, or the competitive presence of other components may limit its activity. To enhance its effectiveness against Gram-negative bacteria, its combination with essential oils or other antimicrobial components has been investigated. In addition, its encapsulation in several types of nano-delivery systems has been used to protect nisin from food matrix sequestering while regulating its release. In this review, we present how nisin is utilized, alone or in combination with other antimicrobial agents in a range of emulsion types, as well as the standard techniques for the physicochemical characterization of these systems.
Collapse
Affiliation(s)
- John Kapolos
- Department of Food Science and Technology, School of Agriculture and Food, University of the Peloponnese, 24100 Kalamata, Greece;
| | | | - Konstantinos Papadimitriou
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece;
| | | |
Collapse
|
2
|
Zhou C, Li C, Cui H, Lin L. Metabolomics insights into the potential of encapsulated essential oils as multifunctional food additives. Crit Rev Food Sci Nutr 2022; 64:5143-5160. [PMID: 36454059 DOI: 10.1080/10408398.2022.2151974] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Growing consumer concern about foodborne disease outbreaks and health risks associated with chemical additives has propelled the usage of essential oils (EOs) as novel food additives, but are limited by instability. In this regard, a series of EOs nano/micro-capsules have been widely used to enhance their stability and improve food quality. However, classical food quality assessment methods are insufficient to fully characterize the effects of encapsulated EOs on food properties, including physical, biochemical, organoleptic, and microbial changes. Recently, the rapid development of high-throughput sequencing is accelerating the application of metabolomics in food safety and quality analysis. This review seeks to present the most recent achievements in the application of non-targeted metabolomics to identify and quantify the overall metabolite profile associated with food quality, which can guide the development of emerging food preservation technologies. The scientific findings confirm that metabolomics opens up exciting prospects for biomarker screening in food preservation and contributes to an in-depth understanding of the mechanisms of action (MoA) of EOs. Future research should focus on constructing food quality assessment criteria based on multi-omics technologies, which will drive the standardization and commercialization of EOs for food industry applications.
Collapse
Affiliation(s)
- Changqian Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Changzhu Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, China
| | - Haiying Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Lin Lin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, China
| |
Collapse
|
3
|
Costa J, Sepúlveda M, Gallardo V, Cayún Y, Santander C, Ruíz A, Reyes M, Santos C, Cornejo P, Lima N, Santos C. Antifungal Potential of Capsaicinoids and Capsinoids from the Capsicum Genus for the Safeguarding of Agrifood Production: Advantages and Limitations for Environmental Health. Microorganisms 2022; 10:microorganisms10122387. [PMID: 36557640 PMCID: PMC9788535 DOI: 10.3390/microorganisms10122387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
Opportunistic pathogenic fungi arise in agricultural crops as well as in surrounding human daily life. The recent increase in antifungal-resistant strains has created the need for new effective antifungals, particularly those based on plant secondary metabolites, such as capsaicinoids and capsinoids produced by Capsicum species. The use of such natural compounds is well-aligned with the One Health approach, which tries to find an equilibrium among people, animals, and the environment. Considering this, the main objective of the present work is to review the antifungal potential of capsaicinoids and capsinoids, and to evaluate the environmental and health impacts of biofungicides based on these compounds. Overall, capsaicinoids and their analogues can be used to control pathogenic fungi growth in plant crops, as eco-friendly alternatives to pest management, and assist in the conservation and long-term storage of agrifood products. Their application in different stages of the agricultural and food production chains improves food safety, nutritional value, and overcomes antimicrobial resistance, with a lower associated risk to humans, animals, and the environment than that of synthetic fungicides and pesticides. Nevertheless, research on the effect of these compounds on bee-like beneficial insects and the development of new preservatives and packaging materials is still necessary.
Collapse
Affiliation(s)
- Jéssica Costa
- Departamento de Biologia, Instituto de Ciências Biológicas-ICB, Universidade Federal do Amazonas, Av. Rodrigo Otávio Jordão Ramos 3000, Bloco 01, Manaus 69077-000, AM, Brazil
| | - Marcela Sepúlveda
- Department of Chemical Science and Natural Resources, Universidad de La Frontera, Temuco 4811-230, Chile
| | - Víctor Gallardo
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Temuco 4811-230, Chile
| | - Yasna Cayún
- Department of Chemical Science and Natural Resources, Universidad de La Frontera, Temuco 4811-230, Chile
| | - Christian Santander
- Department of Chemical Science and Natural Resources, Universidad de La Frontera, Temuco 4811-230, Chile
- Environmental Engineering and Biotechnology Group, Faculty of Environmental Science and EULA-Chile Center, Universidad de Concepción, Concepción 4070-411, Chile
| | - Antonieta Ruíz
- Department of Chemical Science and Natural Resources, Universidad de La Frontera, Temuco 4811-230, Chile
| | - Marjorie Reyes
- Department of Chemical Science and Natural Resources, Universidad de La Frontera, Temuco 4811-230, Chile
| | - Carla Santos
- CEB-Centre of Biological Engineering, Micoteca da Universidade do Minho (MUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LABBELS (Associate Laboratory, Braga/Guimarães), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Pablo Cornejo
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Quillota 2260-000, Chile
| | - Nelson Lima
- CEB-Centre of Biological Engineering, Micoteca da Universidade do Minho (MUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LABBELS (Associate Laboratory, Braga/Guimarães), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Cledir Santos
- Department of Chemical Science and Natural Resources, Universidad de La Frontera, Temuco 4811-230, Chile
- Correspondence: ; Tel.: +56-452-596-726
| |
Collapse
|
4
|
Pamplona Pagnossa J, Rocchetti G, Bezerra JDP, Batiha GES, El-Masry EA, Mahmoud MH, Alsayegh AA, Mashraqi A, Cocconcelli PS, Santos C, Lucini L, Hilsdorf Piccoli R. Untargeted Metabolomics Approach of Cross-Adaptation in Salmonella Enterica Induced by Major Compounds of Essential Oils. Front Microbiol 2022; 13:769110. [PMID: 35694295 PMCID: PMC9174793 DOI: 10.3389/fmicb.2022.769110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Cross-adaptation phenomena in bacterial populations, induced by sublethal doses of antibacterial solutions, are a major problem in the field of food safety. In this regard, essential oils and their major compounds appear as an effective alternative to common sanitizers in food industry environments. The present study aimed to evaluate the untargeted metabolomics perturbations of Salmonella enterica serovar Enteritidis that has been previously exposed to the sublethal doses of the major components of essential oils: cinnamaldehyde, citral, and linalool (CIN, CIT, and LIN, respectively). Cinnamaldehyde appeared to be the most efficient compound in the assays evaluating the inhibitory effects [0.06% (v/v) as MBC]. Also, preliminary tests exhibited a phenotype of adaptation in planktonic and sessile cells of S. Enteritidis when exposed to sublethal doses of linalool, resulting in tolerance to previously lethal concentrations of citral. A metabolomics approach on S. Enteritidis provided an important insight into the phenomenon of cross-adaptation induced by sublethal doses of major compounds of some essential oils. In addition, according to the results obtained, when single molecules were used, many pathways may be involved in bacterial tolerance, which could be different from the findings revealed in previous studies regarding the use of phytocomplex of essential oils. Orthogonal projection to latent structures (OPLS) proved to be an interesting predictive model to demonstrate the adaptation events in pathogenic bacteria because of the global engagement to prevent and control foodborne outbreaks.
Collapse
Affiliation(s)
- Jorge Pamplona Pagnossa
- Health and Biological Sciences Institute, Pontifical Catholic University–PUC Minas, Poços de Caldas, Brazil
| | - Gabriele Rocchetti
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Jadson Diogo Pereira Bezerra
- Setor de Micologia, Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Brazil
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Eman A. El-Masry
- Microbiology and Immunology Unit, Department of Pathology, College of Medicine, Jouf University, Sakaka, Saudi Arabia
- Department of Medical Microbiology and Immunology, College of Medicine, Menoufia University, Shebeen El-Kom, Egypt
| | - Mohamed H. Mahmoud
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdulrahman A. Alsayegh
- Clinical Nutrition Department, Applied Medical Sciences College, Jazan University, Jazan, Saudi Arabia
| | - Abdullah Mashraqi
- Biology Department, College of Science, Jazan University, Jazan, Saudi Arabia
| | - Pier Sandro Cocconcelli
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Cledir Santos
- Department of Chemical Science and Natural Resources, Universidad de La Frontera, Temuco, Chile
- *Correspondence: Cledir Santos,
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | | |
Collapse
|
5
|
Zhang Y, Ding Z, Xie J. Metabolic Effects of Violet Light on Spoilage Bacteria from Fresh-Cut Pakchoi during Postharvest Stage. PLANTS (BASEL, SWITZERLAND) 2022; 11:267. [PMID: 35161246 PMCID: PMC8840685 DOI: 10.3390/plants11030267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Pakchoi (Brassica rapa L. Chinensis) is an important vegetable in Asia. Pseudomonas palleroniana is one of the specific spoilage organisms (SSOs) of fresh-cut pakchoi. The purpose of this study was to investigate changes to the endogenous metabolic spectrum of violet light (405 nm) with regard to food spoilage bacteria from fresh-cut pakchoi using ultrahigh-performance liquid chromatography-tandem mass spectrometry. In this study, P. palleroniana samples were treated with violet light at 4 °C, and the maximum dose was 133.63 J/cm2. The results revealed that 153 metabolites and 83 pathways significantly changed compared to the control group, which indicated that light treatment may lead to ROS accumulation in cells, inducing oxidative stress and the excessive consumption of ATP. However, the increased content of aromatic amino acids and the decreased anabolism of some amino acids and nucleotides might be a form of self-protection by reducing energy consumption, thus contributing to the improvement of the tolerance of cells to illumination. These results provide new insights into the antibacterial mechanism of P. palleroniana with regard to metabolism.
Collapse
Affiliation(s)
- Yuchen Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Y.Z.); (Z.D.)
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
| | - Zhaoyang Ding
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Y.Z.); (Z.D.)
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Y.Z.); (Z.D.)
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
| |
Collapse
|