1
|
Ruiz‐Malagón AJ, Rodríguez‐Sojo MJ, Redondo E, Rodríguez‐Cabezas ME, Gálvez J, Rodríguez‐Nogales A. Systematic review: The gut microbiota as a link between colorectal cancer and obesity. Obes Rev 2025; 26:e13872. [PMID: 39614602 PMCID: PMC11884970 DOI: 10.1111/obr.13872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 10/11/2024] [Accepted: 10/25/2024] [Indexed: 12/01/2024]
Abstract
Microbiome modulation is one of the novel strategies in medicine with the greatest future to improve the health of individuals and reduce the risk of different conditions, including metabolic, immune, inflammatory, and degenerative diseases, as well as cancer. Regarding the latter, many studies have reported the role of the gut microbiome in carcinogenesis, formation and progression of colorectal cancer (CRC), as well as its response to different systemic therapies. Likewise, obesity, one of the most important risk factors for CRC, is also well known for its association with gut dysbiosis. Moreover, obesity and CRC display, apart from microbial dysbiosis, chronic inflammation, which participates in their pathogenesis. Although human and murine studies demonstrate the significant impact of the microbiome in regulating energy metabolism and CRC development, little is understood about the contribution of the microbiome to the development of obesity-associated CRC. Therefore, this systematic review explores the evidence for microbiome changes associated with these conditions and hypothesizes that this may contribute to the pathogenesis of obesity-related CRC. Two databases were searched, and different studies on the relationship among obesity, intestinal microbiota and CRC in clinical and preclinical models were selected. Data extraction was carried out by two reviewers independently, and 101 studies were finally considered. Findings indicate the existence of a risk association between obesity and CRC derived from metabolic, immune, and microbial disorders.
Collapse
Affiliation(s)
- Antonio Jesús Ruiz‐Malagón
- Department of Pharmacology, Center for Biomedical Research (CIBM)University of GranadaGranadaSpain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA)GranadaSpain
- Instituto de Investigación Biomédica de Málaga (IBIMA)MalgaSpain
| | - María Jesús Rodríguez‐Sojo
- Department of Pharmacology, Center for Biomedical Research (CIBM)University of GranadaGranadaSpain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA)GranadaSpain
| | - Eduardo Redondo
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA)GranadaSpain
- Servicio de DigestivoHospital Universitario Virgen de las NievesGranadaSpain
| | - María Elena Rodríguez‐Cabezas
- Department of Pharmacology, Center for Biomedical Research (CIBM)University of GranadaGranadaSpain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA)GranadaSpain
| | - Julio Gálvez
- Department of Pharmacology, Center for Biomedical Research (CIBM)University of GranadaGranadaSpain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA)GranadaSpain
| | - Alba Rodríguez‐Nogales
- Department of Pharmacology, Center for Biomedical Research (CIBM)University of GranadaGranadaSpain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA)GranadaSpain
| |
Collapse
|
2
|
Costa de Almeida T, Sabino YNV, Brasiel PGDA, Rocha BMDO, de Cássia Ávila Alpino G, Rocha VN, Dias VC, Diniz CG, Paiva AD, Silva VLD, Dutra Medeiros J, Potente Dutra Luquetti SC, Barbosa Ferreira Machado A. Maternal kefir intake during lactation impacts the breast milk and gut microbiota of the Wistar rat's offspring. Int J Food Sci Nutr 2025; 76:179-193. [PMID: 39895284 DOI: 10.1080/09637486.2025.2461142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 01/18/2025] [Accepted: 01/27/2025] [Indexed: 02/04/2025]
Abstract
Environmental factors can play fundamental role in health in childhood and adulthood during critical developmental periods like lactation. The maternal intake of probiotics like kefir during lactation could benefit newborns' intestinal health. This study aimed to evaluate the effects of maternal kefir intake during lactation on bacterial breast milk composition and the gut microbiota of offspring Wistar male rats at weaning. Lactating Wistar rats and their pups were divided into four groups based on litter size and maternal kefir intake. Sequencing of the 16S rRNA gene in breast milk revealed the predominance of the Proteobacteria, Firmicutes, and Actinobacteriota phyla. Offspring gut microbiota exhibited clustering tendencies in kefir groups with varying genus abundance. Additionally, maternal kefir intake led to increased levels of butyrate acid in offspring faeces (> +30%, p > 0.05). These findings show that the lactation period could be a window of opportunity to program intestinal health through microbiota modulation.
Collapse
Affiliation(s)
- Thaís Costa de Almeida
- Department of Parasitology, Microbiology and Immunology, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Yasmin Neves Vieira Sabino
- Department of Parasitology, Microbiology and Immunology, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | | | - Beatriz Macedo de Oliveira Rocha
- Department of Parasitology, Microbiology and Immunology, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | | | - Vinícius Novaes Rocha
- Department of Veterinary Medicine, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Vanessa Cordeiro Dias
- Department of Parasitology, Microbiology and Immunology, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Cláudio Galuppo Diniz
- Department of Parasitology, Microbiology and Immunology, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Aline Dias Paiva
- Department of Microbiology, Immunology and Parasitology, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Vânia Lúcia da Silva
- Department of Parasitology, Microbiology and Immunology, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | | | | | | |
Collapse
|
3
|
Brasiel PGDA, Dutra Medeiros J, Costa de Almeida T, Teodoro de Souza C, de Cássia Ávila Alpino G, Barbosa Ferreira Machado A, Dutra Luquetti SCP. Preventive effects of kefir on colon tumor development in Wistar rats: gut microbiota critical role. J Dev Orig Health Dis 2025; 16:e5. [PMID: 39868980 DOI: 10.1017/s2040174424000461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
To clarify the effects of kefir in critical periods of development in adult diseases, we study the effects of kefir intake during early life on gut microbiota and prevention of colorectal carcinogenesis in adulthood. Lactating Wistar rats were divided into three groups: control (C), kefir lactation (KL), and kefir puberty (KP) groups. The C and KP groups received 1 mL of water/day; KL dams received kefir milk daily (108 CFU/mL) during lactation. After weaning (postnatal day 21), KP pups received kefir treatment until 60 days. At 67 days old, colorectal carcinogenesis was induced through intraperitoneal injection of 1, 2-dimethylhydrazine. The gut microbiota composition were analyzed by 16S rRNA gene sequencing and DESeq2 (differential abundance method), revealing significant differences in bacterial abundances between the kefir consumption periods. Maternal kefir intake strong anticancer power, suppressed tumors in adult offspring and reduced the relative risk of offspring tumor development. The gut microbiota in cecal samples of the KL group was enriched with Lactobacillus, Romboutsia, and Blautia. In contrast, control animals were enriched with Acinetobacter. The administration of kefir during critical periods of development, with emphasis on lactation, affected the gut microbial community structure to promote host benefits. Pearson analysis indicated positive correlation between tumor number with IL-1 levels. Therefore, the probiotic fermented food intake in early life may be effective as chemopreventive potential against colon tumor development, especially in lactation period.
Collapse
Affiliation(s)
| | - Julliane Dutra Medeiros
- Department of Biology, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Thaís Costa de Almeida
- Department of Nutrition, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Claudio Teodoro de Souza
- Department of Clinical Medicine, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | | | | | | |
Collapse
|
4
|
Guo X, He Y, Cheng Y, Liang J, Xu P, He W, Che J, Men J, Yuan Y, Yue T. The composition of Tibetan kefir grain TKG-Y and the antibacterial potential and milk fermentation ability of S. warneri KYS-164 screened from TKG-Y. Food Funct 2024; 15:5026-5040. [PMID: 38650522 DOI: 10.1039/d4fo00112e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
This study utilized high-throughput sequencing and SEM observation to elucidate the microbial composition of a Tibetan herder's homemade kefir grain named TKG-Y. Subsequently, S. warneri KYS-164 was isolated from TKG-Y, which can produce mixed protein substances with antibacterial activity, namely bacteriocin-like inhibitory substances (BLIS). BLIS can significantly reduce the growth rate of Escherichia coli 366-a, Staphylococcus aureus CICC 10384 and mixed strains at low concentrations (1 × MIC). The presence of the warnericin-centered gene cluster in KYS-164 may explain the antibacterial properties of the BLIS. Pepsin and an acidic environment can reduce the number of colonies of KYS-164 by 2.5 Log10 CFU mL-1 within 1 h, and reduce the antibacterial activity of BLIS by 21.48%. S. warneri KYS-164 showed no antibiotic resistance and biological toxicity after 80 subcultures, while BLIS produced by 40 generations of the strain retained their inhibitory efficacy against pathogenic bacteria. After 48-hour fermentation of milk with KYS-164, volatile compounds such as aldehydes, phenols, esters, and alcohols, giving it a floral, fruity, milky, oily, and nutty aroma, were released, enriching the sensory characteristics of dairy products. This study not only revealed the bacterial colony composition information of home-made kefir grain TKG-Y but also discovered and proved that S. warneri KYS-164 has the potential to inhibit bacteria and ferment dairy products. This will provide a basis for subsequent applied research on KYS-164.
Collapse
Affiliation(s)
- Xing Guo
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, 710069, China.
| | - Yining He
- School of Food and Advanced Technology, Massey University, Palmerston North, 4442, New Zealand
| | - Yifan Cheng
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, 710069, China.
| | - Jingyimei Liang
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, 710069, China.
- College of Analytical Chemistry and Food Science, Universidade de Vigo, Vigo, 36310, Spain
| | - Pandi Xu
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, 710069, China.
| | - Wenwen He
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, 710069, China.
| | - Jiayin Che
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, 710069, China.
| | - Jiexing Men
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, 710069, China.
| | - Yahong Yuan
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, 710069, China.
| | - Tianli Yue
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, 710069, China.
| |
Collapse
|
5
|
Apalowo OE, Adegoye GA, Mbogori T, Kandiah J, Obuotor TM. Nutritional Characteristics, Health Impact, and Applications of Kefir. Foods 2024; 13:1026. [PMID: 38611332 PMCID: PMC11011999 DOI: 10.3390/foods13071026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
A global epidemiological shift has been observed in recent decades, characterized by an increase in age-related disorders, notably non-communicable chronic diseases, such as type 2 diabetes mellitus, cardiovascular and neurodegenerative diseases, and cancer. An appreciable causal link between changes in the gut microbiota and the onset of these maladies has been recognized, offering an avenue for effective management. Kefir, a probiotic-enriched fermented food, has gained significance in this setting due to its promising resource for the development of functional or value-added food formulations and its ability to reshape gut microbial composition. This has led to increasing commercial interest worldwide as it presents a natural beverage replete with health-promoting microbes and several bioactive compounds. Given the substantial role of the gut microbiota in human health and the etiology of several diseases, we conducted a comprehensive synthesis covering a total of 33 investigations involving experimental animal models, aimed to elucidate the regulatory influence of bioactive compounds present in kefir on gut microbiota and their potential in promoting optimal health. This review underscores the outstanding nutritional properties of kefir as a central repository of bioactive compounds encompassing micronutrients and amino acids and delineates their regulatory effects at deficient, adequate, and supra-nutritional intakes on the gut microbiota and their broader physiological consequences. Furthermore, an investigation of putative mechanisms that govern the regulatory effects of kefir on the gut microbiota and its connections with various human diseases was discussed, along with potential applications in the food industry.
Collapse
Affiliation(s)
- Oladayo Emmanuel Apalowo
- Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Starkville, MS 39762, USA; (O.E.A.); (G.A.A.)
| | - Grace Adeola Adegoye
- Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Starkville, MS 39762, USA; (O.E.A.); (G.A.A.)
- Department of Nutrition and Health Science, Ball State University, Muncie, IN 47306, USA;
| | - Teresia Mbogori
- Department of Nutrition and Health Science, Ball State University, Muncie, IN 47306, USA;
| | - Jayanthi Kandiah
- Department of Nutrition and Health Science, Ball State University, Muncie, IN 47306, USA;
| | | |
Collapse
|
6
|
Zanardi KR, Grancieri M, Silva CW, Trivillin LO, Viana ML, Costa AGV, Costa NMB. Functional effects of yacon ( Smallanthus sonchifolius) and kefir on systemic inflammation, antioxidant activity, and intestinal microbiome in rats with induced colorectal cancer. Food Funct 2023; 14:9000-9017. [PMID: 37740322 DOI: 10.1039/d3fo02599c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Colorectal cancer (CRC) is one of the most common cancers with high morbidity and mortality. The modulation of intestinal health through the administration of pro- and prebiotics may be a viable alternative to reduce the risk of CRC. This study aimed to evaluate the functional effects of yacon and kefir, isolated or associated, in rats with colorectal cancer. Adult Wistar rats were divided into five groups (n = 8): HC (healthy control AIN-93M diet), CC (CCR + AIN-93M diet), Y (CCR + AIN-93 M + yacon diet), K (CCR + AIN-93-M + kefir diet) and YK (CCR + AIN-93 M + yacon + kefir diet). Colorectal carcinogenesis was induced in groups CC, Y, K, and YK with 1,2-dimethylhydrazine (55 mg kg-1, subcutaneously) for 5 weeks. From the 6th week onwards, the experimental groups were fed the respective diets. In the 15th week, urine was collected for analysis of intestinal permeability and then the animals were euthanized. Yacon increased acetate levels, reduced pH and carcinogenic neoplastic lesions, and increased the abundance of bacteria related to the fermentation of non-digestible carbohydrates, such as the genera Dorea, Collinsela, and Bifidobacteria. On the other hand, kefir increased macroscopic neoplastic lesions and increased the abundance of Firmicutes and Clostridium. The association of yacon + kefir increased the number of carcinogenic lesions, despite a reduction in pH and beneficial bacteria prevalence. Thus, it is concluded that yacon, unlikely kefir, is a promising alternative to mitigate the manifestations of induced carcinogenesis in rats.
Collapse
Affiliation(s)
- Keila Rodrigues Zanardi
- Postgraduate Program in Food Science and Technology, Centre of Agricultural and Engineering Sciences, Federal University of Espirito Santo (Universidade Federal do Espírito Santo - UFES), Alto Universitário, Guararema, 29500-000, Alegre, ES, Brazil.
| | - Mariana Grancieri
- Postgraduate Program in Food Science and Technology, Centre of Agricultural and Engineering Sciences, Federal University of Espirito Santo (Universidade Federal do Espírito Santo - UFES), Alto Universitário, Guararema, 29500-000, Alegre, ES, Brazil.
- Department of Pharmacy and Nutrition, Centre of Exact, Natural and Health Sciences, UFES, Alegre, ES, Brazil
| | - Caroline Woelffel Silva
- Postgraduate Program in Food Science and Technology, Centre of Agricultural and Engineering Sciences, Federal University of Espirito Santo (Universidade Federal do Espírito Santo - UFES), Alto Universitário, Guararema, 29500-000, Alegre, ES, Brazil.
| | - Leonardo Oliveira Trivillin
- Department of Veterinary Medicine, Centre of Agricultural and Engineering Sciences, UFES, Alegre, ES, Brazil
| | - Mirelle Lomar Viana
- Department of Pharmacy and Nutrition, Centre of Exact, Natural and Health Sciences, UFES, Alegre, ES, Brazil
| | - André Gustavo Vasconcelos Costa
- Postgraduate Program in Food Science and Technology, Centre of Agricultural and Engineering Sciences, Federal University of Espirito Santo (Universidade Federal do Espírito Santo - UFES), Alto Universitário, Guararema, 29500-000, Alegre, ES, Brazil.
- Department of Pharmacy and Nutrition, Centre of Exact, Natural and Health Sciences, UFES, Alegre, ES, Brazil
| | - Neuza Maria Brunoro Costa
- Postgraduate Program in Food Science and Technology, Centre of Agricultural and Engineering Sciences, Federal University of Espirito Santo (Universidade Federal do Espírito Santo - UFES), Alto Universitário, Guararema, 29500-000, Alegre, ES, Brazil.
- Department of Pharmacy and Nutrition, Centre of Exact, Natural and Health Sciences, UFES, Alegre, ES, Brazil
| |
Collapse
|
7
|
Wang DD, Tang GF, Li YY, Yu JJ, Lei XJ, Cao YC, Yao JH. Differences in serum metabolome profile explain individual variation in growth performance of young goats. J Proteomics 2023; 288:104982. [PMID: 37532014 DOI: 10.1016/j.jprot.2023.104982] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/14/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
High growth rates and body weight are important traits of young dairy goats that can shorten generation intervals, improve animal performance, and increase economic benefits. In the present study, ninety-nine, 6-month-old, female goats were fed with the same diet and kept under the same management condition. The ten goats with highest average daily gain (ADG, HADG, 135.27 ± 4.59 g/d) and ten goats with lowest ADG (LADG, 87.74 ± 3.13 g/d) were selected to identify the key serum metabolites associated with ADG, and to investigate the relationships of serum metabolome profiles with digestive tract microbiota. The results showed that a total of 125 serum metabolites were significantly different between HADG and LADG. Of these, 43 serum metabolites were significantly higher levels in HADG, including D-ornithine, l-glutamine, L-histidine, carnosine, LysoPC (16:1(9Z)/0:0), DCTP and hydroxylysine, while, 82 serum metabolites were significantly higher levels in LADG, including P-salicylic acid and deoxycholic acid 3-glucuronide. Pathway analysis indicated that these different metabolites were mainly involved in amino acid and lipid metabolism. Furthermore, Spearman's rank correlation analysis revealed that these differential serum metabolites were correlated with ADG and ADG-related bacteria. Notably, serum hydroxylysine and L-histidine could be used as biomarkers for distinguishing HADG and LADG goats, with an accuracy of >92.0%. SIGNIFICANCE: Our study confirms that individual microbiota and metabolic differences contribute to the variations of growth rate in young goats. Some serum metabolites may be useful in improving the growth performance of young goats, which provides directions for developing further nutritional regulation in the goat industry to achieve healthy feeding and efficiency enhancement.
Collapse
Affiliation(s)
- Dang Dang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Guang Fu Tang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuan Yuan Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jun Jian Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xin Jian Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yang Chun Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jun Hu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
8
|
Zeighamy Alamdary S, Halimi S, Rezaei A, Afifirad R. Association between Probiotics and Modulation of Gut Microbial Community Composition in Colorectal Cancer Animal Models: A Systematic Review (2010-2021). THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2023; 2023:3571184. [PMID: 37719797 PMCID: PMC10505085 DOI: 10.1155/2023/3571184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 07/09/2023] [Accepted: 07/21/2023] [Indexed: 09/19/2023]
Abstract
Background Colorectal cancer (CRC) is one of the most prevalent gastrointestinal malignancies and is considered the third major cause of mortality globally. Probiotics have been shown to protect against the CRC cascade in numerous studies. Aims The goal of this systematic review was to gather the preclinical studies that examined the impact of probiotics on the alteration of gut microbiota profiles (bacterial communities) and their link to colorectal carcinogenesis as well as the potential processes involved. Methods The search was performed using Scopus, Web of Science, and PubMed databases. Five parameters were used to develop search filters: "probiotics," "prebiotics," "synbiotics," "colorectal cancer," and "animal model." Results Of the 399 full texts that were screened, 33 original articles met the inclusion criteria. According to the current findings, probiotics/synbiotics could significantly attenuate aberrant crypt foci (ACF) formation, restore beneficial bacteria in the microbiota population, increase short-chain fatty acids (SCFAs), and change inflammatory marker expression. Conclusions The present systematic review results indicate that probiotics could modulate the gut microbial composition and immune regulation to combat/inhibit CRC in preclinical models. However, where the evidence is more limited, it is critical to transfer preclinical research into clinical data.
Collapse
Affiliation(s)
| | - Shahnaz Halimi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Rezaei
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Roghayeh Afifirad
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Grancieri M, Viana ML, de Oliveira DF, Vaz Tostes MDG, Costa Ignacchiti MD, Costa AGV, Brunoro Costa NM. Yacon ( Smallanthus sonchifolius) Flour Reduces Inflammation and Had No Effects on Oxidative Stress and Endotoxemia in Wistar Rats with Induced Colorectal Carcinogenesis. Nutrients 2023; 15:3281. [PMID: 37513699 PMCID: PMC10383765 DOI: 10.3390/nu15143281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Colorectal cancer has a high worldwide incidence. The aim of this study was to determine the effect of yacon flour (YF) on oxidative stress, inflammation, and endotoxemia in rats with induced colorectal cancer (CRC). The Wistar male rats were divided and kept for 8 weeks in four groups: S (basal diet, n = 10), Y (YF flour + basal diet, n = 10), C (CRC-induced control + basal diet, n = 12), CY (CRC-induced animals + YF, n = 12). CRC was induced by intraperitoneal injections of 1,2-dimethylhydrazine (25 mg/kg body weight). Groups Y and CY received 7.5% of the prebiotic FOS from YF. The treatment with YF increased fecal secretory immunoglobulin A levels and decreased lipopolysaccharides, tumor necrosis factor alpha and interleukin-12. However, no effect was observed on the oxidative stress by the total antioxidant capacity of plasma, anion superoxide, and nitric oxide analysis of the animals (p < 0.05). The short-chain fatty acids acetate, propionate, and butyrate showed interactions with NF-κB, TLR4, iNOS, and NADPH oxidase by in silico analysis and had a correlation (by the Person analysis) with CRC markers. The yacon flour treatment reduced the inflammation in rats with induced CRC, and could be a promising food to reduce the damages caused by colorectal cancer.
Collapse
Affiliation(s)
- Mariana Grancieri
- Department of Pharmacy and Nutrition, Center for Exact, Natural and Health Sciences, Federal University of Espirito Santo, Alto Universitário, S/N Guararema, Alegre 29500-000, ES, Brazil
| | - Mirelle Lomar Viana
- Department of Pharmacy and Nutrition, Center for Exact, Natural and Health Sciences, Federal University of Espirito Santo, Alto Universitário, S/N Guararema, Alegre 29500-000, ES, Brazil
| | - Daniela Furtado de Oliveira
- Department of Pharmacy and Nutrition, Center for Exact, Natural and Health Sciences, Federal University of Espirito Santo, Alto Universitário, S/N Guararema, Alegre 29500-000, ES, Brazil
| | - Maria das Graças Vaz Tostes
- Department of Pharmacy and Nutrition, Center for Exact, Natural and Health Sciences, Federal University of Espirito Santo, Alto Universitário, S/N Guararema, Alegre 29500-000, ES, Brazil
| | - Mariana Drummond Costa Ignacchiti
- Department of Pharmacy and Nutrition, Center for Exact, Natural and Health Sciences, Federal University of Espirito Santo, Alto Universitário, S/N Guararema, Alegre 29500-000, ES, Brazil
| | - André Gustavo Vasconcelos Costa
- Department of Pharmacy and Nutrition, Center for Exact, Natural and Health Sciences, Federal University of Espirito Santo, Alto Universitário, S/N Guararema, Alegre 29500-000, ES, Brazil
| | - Neuza Maria Brunoro Costa
- Department of Pharmacy and Nutrition, Center for Exact, Natural and Health Sciences, Federal University of Espirito Santo, Alto Universitário, S/N Guararema, Alegre 29500-000, ES, Brazil
| |
Collapse
|
10
|
Vallino L, Garavaglia B, Visciglia A, Amoruso A, Pane M, Ferraresi A, Isidoro C. Cell-free Lactiplantibacillus plantarum OC01 supernatant suppresses IL-6-induced proliferation and invasion of human colorectal cancer cells: Effect on β-Catenin degradation and induction of autophagy. J Tradit Complement Med 2023; 13:193-206. [PMID: 36970462 PMCID: PMC10037073 DOI: 10.1016/j.jtcme.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
Background and aim Gut microbiota is considered as a complex organ of human body. The interaction between the host and microbiota is dynamic and controlled by a huge number of factors, such as lifestyle, geography, pharmaceuticals, diet, and stress. The breakdown of this relationship could change microbiota composition favoring the onset of several diseases, including cancer. Metabolites released by microbiota bacterial strains have been reported to elicit protective effects on the mucosa that could contrast cancer development and progression. Here, we tested the ability of specific probiotic strain Lactiplantibacillus plantarum OC01-derived metabolites (NCIMB 30624) to contrast the malignant features of colorectal cancer (CRC) cells. Experimental procedure The study was performed on two cell lines, HCT116 and HT29, cultured in 2D and 3D, and focused on the hallmarks of cell proliferation and migration. Results and conclusion Probiotic metabolites reduced cell proliferation both in 2D and 3D-spheroid cultures, the latter model mimicking the growth in vivo. The bacterial metabolites also contrasted the pro-growth and pro-migratory activity of inteurleukin-6 (IL-6), an inflammatory cytokine abundantly found in the tumor microenvironment of CRC. These effects were associated with inhibition of the ERK and of the mTOR/p70S6k pathways and with the inhibition of the E-to N-Cadherin switch. In a parallel study, we found that sodium butyrate (a representative of the main probiotic metabolites) induced autophagy and β-Catenin degradation, which is consistent with the growth inhibitory activity. The present data indicate that the metabolites of Lactiplantibacillus plantarum OC01 (NCIMB 30624) elicits anti-tumor effect and support its possible inclusion as adjuvant therapy of CRC for limiting cancer growth and progression.
Collapse
Affiliation(s)
- Letizia Vallino
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale “A. Avogadro”, Via P. Solaroli 17, 28100, Novara, Italy
| | - Beatrice Garavaglia
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale “A. Avogadro”, Via P. Solaroli 17, 28100, Novara, Italy
| | | | - Angela Amoruso
- Probiotical Research Srl, via E. Mattei, 3, 28100, Novara, Italy
| | - Marco Pane
- Probiotical Research Srl, via E. Mattei, 3, 28100, Novara, Italy
| | - Alessandra Ferraresi
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale “A. Avogadro”, Via P. Solaroli 17, 28100, Novara, Italy
| | - Ciro Isidoro
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale “A. Avogadro”, Via P. Solaroli 17, 28100, Novara, Italy
| |
Collapse
|
11
|
Theabrownin Alleviates Colorectal Tumorigenesis in Murine AOM/DSS Model via PI3K/Akt/mTOR Pathway Suppression and Gut Microbiota Modulation. Antioxidants (Basel) 2022; 11:antiox11091716. [PMID: 36139789 PMCID: PMC9495753 DOI: 10.3390/antiox11091716] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/27/2022] [Accepted: 08/27/2022] [Indexed: 11/24/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common and fatal cancers worldwide, yet therapeutic options for CRC often exhibit strong side effects which cause patients’ well-being to deteriorate. Theabrownin (TB), an antioxidant from Pu-erh tea, has previously been reported to have antitumor effects on non-small-cell lung cancer, osteosarcoma, hepatocellular carcinoma, gliomas, and melanoma. However, the potential antitumor effect of TB on CRC has not previously been investigated in vivo. The present study therefore aimed to investigate the antitumor effect of TB on CRC and the underlying mechanisms. Azoxymethane (AOM)/dextran sodium sulphate (DSS) was used to establish CRC tumorigenesis in a wild type mice model. TB was found to significantly reduce the total tumor count and improve crypt length and fibrosis of the colon when compared to the AOM/DSS group. Immunohistochemistry staining shows that the expression of the proliferation marker, Ki67 was reduced, while cleaved caspase 3 was increased in the TB group. Furthermore, TB significantly reduced phosphorylation of phosphatidylinositol 3-kinase (PI3K), protein kinase B (Akt), and the downstream mechanistic target of rapamycin (mTOR)and cyclin D1 protein expression, which might contribute to cell proliferation suppression and apoptosis enhancement. The 16s rRNA sequencing revealed that TB significantly modulated the gut microbiota composition in AOM/DSS mice. TB increased the abundance of short chain fatty acid as well as SCFA-producing Prevotellaceae and Alloprevotella, and it decreased CRC-related Bacteroidceae and Bacteroides. Taken together, our results suggest that TB could inhibit tumor formation and potentially be a promising candidate for CRC treatment.
Collapse
|
12
|
Culpepper T. The Effects of Kefir and Kefir Components on Immune and Metabolic Physiology in Pre-Clinical Studies: A Narrative Review. Cureus 2022; 14:e27768. [PMID: 36106262 PMCID: PMC9450431 DOI: 10.7759/cureus.27768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2022] [Indexed: 02/01/2023] Open
Abstract
Kefir, a fermented beverage made from kefir grains, has gained immense popularity around the world due to its potential health-promoting properties. Kefir beverages are both marketed commercially and brewed privately by individuals. Both milk and sugar solutions can be used as substrates with various additives included based on consumer preference. Fermentation occurs via microorganisms including lactic acid bacteria, acetic acid bacteria, and yeasts, which are naturally present in kefir grains. Health-promoting effects of kefir are thought to occur through immune, gastrointestinal, and metabolic regulation. Both clinical trials and mechanistic studies in cell culture and animal models have explored these effects. Studies in vitro and in animals have shown the ability of kefir and kefir components to antagonize pathogens, reduce proinflammatory cytokine production, contribute to cytotoxicity of tumor cell lines and reduce tumor burden, and improve serum glycemic and lipid profiles. However, some data from clinical trials are conflicting, and the precise mechanisms by which kefir promotes well-being are not completely defined. This review summarizes the current body of evidence in both cell culture and animal models that provide insight into the mechanisms by which kefir beverages may protect consumers from enteric infections and improve immune and metabolic health. We believe that readers will gain knowledge helpful for both developing more targeted mechanistic studies and selecting informative outcomes when designing clinical studies.
Collapse
|
13
|
Litter Size Reduction as a Model of Overfeeding during Lactation and Its Consequences for the Development of Metabolic Diseases in the Offspring. Nutrients 2022; 14:nu14102045. [PMID: 35631188 PMCID: PMC9145223 DOI: 10.3390/nu14102045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/10/2022] [Accepted: 05/10/2022] [Indexed: 02/06/2023] Open
Abstract
Overfeeding during lactation has a deleterious impact on the baby’s health throughout life. In humans, early overnutrition has been associated with higher susceptibility to obesity and metabolic disorders in childhood and adulthood. In rodents, using a rodent litter size reduction model (small litter) to mimic early overfeeding, the same metabolic profile has been described. Therefore, the rodent small litter model is an efficient tool to investigate the adaptive mechanisms involved in obesogenesis. Besides central and metabolic dysfunctions, studies have pointed to the contribution of the endocrine system to the small litter phenotype. Hormones, especially leptin, insulin, and adrenal hormones, have been associated with satiety, glucose homeostasis, and adipogenesis, while hypothyroidism impairs energy metabolism, favoring obesity. Behavioral modifications, hepatic metabolism changes, and reproductive dysfunctions have also been reported. In this review, we update these findings, highlighting the interaction of early nutrition and the adaptive features of the endocrine system. We also report the sex-related differences and epigenetic mechanisms. This model highlights the intense plasticity during lactation triggering many adaptive responses, which are the basis of the developmental origins of health and disease (DOHaD) concept. Our review demonstrates the complexity of the adaptive mechanisms involved in the obesity phenotype promoted by early overnutrition, reinforcing the necessity of adequate nutritional habits during lactation.
Collapse
|