1
|
Ruíz-Baltazar ÁDJ. Advancements in nanoparticle-modified zeolites for sustainable water treatment: An interdisciplinary review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174373. [PMID: 38964399 DOI: 10.1016/j.scitotenv.2024.174373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/05/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024]
Abstract
The contamination of water sources with heavy metals, dyes, and other pollutants poses significant challenges to environmental sustainability and public health. Traditional water treatment methods often exhibit limitations in effectively addressing these complex contaminants. In response, recent developments in nanotechnology have catalyzed the exploration of novel materials for water remediation, with nanoparticle-doped zeolites emerging as a promising solution. This comprehensive review synthesizes current literature on the integration of nanoparticles into zeolite frameworks for enhanced contaminant removal in water treatment applications. We delve into synthesis methodologies, elucidate mechanistic insights, and evaluate the efficacy of nanoparticle-doped zeolites in targeting specific pollutants, while also assessing considerations of material stability and environmental impact. The review underscores the superior adsorptive and catalytic properties of nanoparticle-doped zeolites, owing to their high surface area, tailored porosity, and enhanced ion-exchange capabilities. Furthermore, we highlight recent advancements in heavy metal and organic pollutant uptake facilitated by these materials. Additionally, we explore the catalytic degradation of contaminants through advanced oxidation processes, demonstrating the multifunctionality of nanoparticle-doped zeolites in water treatment. By providing a comprehensive analysis of existing research, this review aims to guide future developments in the field, promoting the sustainable utilization of nanoparticle-doped zeolites as efficient and versatile materials for water remediation endeavors.
Collapse
Affiliation(s)
- Álvaro de Jesús Ruíz-Baltazar
- CONAHCYT-Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Santiago de Querétaro, Qro. 76230, Mexico.
| |
Collapse
|
2
|
Munir N, Javaid A, Abideen Z, Duarte B, Jarar H, El-Keblawy A, Sheteiwy MS. The potential of zeolite nanocomposites in removing microplastics, ammonia, and trace metals from wastewater and their role in phytoremediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:1695-1718. [PMID: 38051490 DOI: 10.1007/s11356-023-31185-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/18/2023] [Indexed: 12/07/2023]
Abstract
Nanocomposites are emerging as a new generation of materials that can be used to combat water pollution. Zeolite-based nanocomposites consisting of combinations of metals, metal oxides, carbon materials, and polymers are particularly effective for separating and adsorbing multiple contaminants from water. This review presents the potential of zeolite-based nanocomposites for eliminating a range of toxic organic and inorganic substances, dyes, heavy metals, microplastics, and ammonia from water. The review emphasizes that nanocomposites offer enhanced mechanical, catalytic, adsorptive, and porosity properties necessary for sustainable water purification techniques compared to individual composite materials. The adsorption potential of several zeolite-metal/metal oxide/polymer-based composites for heavy metals, anionic/cationic dyes, microplastics, ammonia, and other organic contaminants ranges between approximately 81 and over 99%. However, zeolite substrates or zeolite-amended soil have limited benefits for hyperaccumulators, which have been utilized for phytoremediation. Further research is needed to evaluate the potential of zeolite-based composites for phytoremediation. Additionally, the development of nanocomposites with enhanced adsorption capacity would be necessary for more effective removal of pollutants.
Collapse
Affiliation(s)
- Neelma Munir
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Ayesha Javaid
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Zainul Abideen
- Dr. Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi, 75270, Pakistan.
- Department of Applied Biology, University of Sharjah, P.O. Box 2727, Sharjah, UAE.
| | - Bernardo Duarte
- MARE-Marine and Environmental Sciences Centre & ARNET-Aquatic Research Network Associated Laboratory, Faculdade de Ciências da Universidade de Lisboa, 1749-016, Lisbon, Portugal
- Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Heba Jarar
- Renewable Energy and Energy Efficiency Research Group, Research Institute for Sciences and Engineering, University of Sharjah, 27272, Sharjah, United Arab Emirates
| | - Ali El-Keblawy
- Department of Applied Biology, University of Sharjah, P.O. Box 2727, Sharjah, UAE
| | - Mohamed S Sheteiwy
- Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
3
|
Gan C, Hu H, Meng Z, Zhu X, Gu R, Wu Z, Sun W, Han P, Wang H, Dou G, Gan H. Local Clays from China as Alternative Hemostatic Agents. Molecules 2023; 28:7756. [PMID: 38067486 PMCID: PMC10708434 DOI: 10.3390/molecules28237756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
In recent years, the coagulation properties of inorganic minerals such as kaolin and zeolite have been demonstrated. This study aimed to assess the hemostatic properties of three local clays from China: natural kaolin from Hainan, natural halloysite from Yunnan, and zeolite synthesized by our group. The physical and chemical properties, blood coagulation performance, and cell biocompatibility of the three materials were tested. The studied materials were characterized by using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray fluorescence spectroscopy (XRF), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). All three clays showed different morphologies and particle size, and exhibited negative potentials between pH 6 and 8. The TGA and DSC curves for kaolin and halloysite were highly similar. Kaolin showed the highest water absorption capacity (approximately 93.8% ± 0.8%). All three clays were noncytotoxic toward L929 mouse fibroblasts. Kaolin and halloysite showed blood coagulation effects similar to that exhibited by zeolite, indicating that kaolin and halloysite are promising alternative hemostatic materials.
Collapse
Affiliation(s)
- Changjiao Gan
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (C.G.)
- National Medical Products Administration Institute of Executive Development, 16 Xi Zhan Nan Road, Beijing 100073, China
| | - Hongjie Hu
- Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Zhengzhou 450006, China
| | - Zhiyun Meng
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (C.G.)
| | - Xiaoxia Zhu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (C.G.)
| | - Ruolan Gu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (C.G.)
| | - Zhuona Wu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (C.G.)
| | - Wenzhong Sun
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (C.G.)
| | - Peng Han
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (C.G.)
| | - Hongliang Wang
- Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Zhengzhou 450006, China
| | - Guifang Dou
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (C.G.)
| | - Hui Gan
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (C.G.)
| |
Collapse
|
4
|
Barbieri L, Altimari F, Andreola F, Maggi B, Lancellotti I. Characterization of Volcano-Sedimentary Rocks and Related Scraps for Design of Sustainable Materials. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16093408. [PMID: 37176290 PMCID: PMC10179768 DOI: 10.3390/ma16093408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
This work started as a joint academia and company research project with the aim of finding new applications for domestically sourced volcanic products and related waste (pumice, lapillus, zeolitic tuff and volcanic debris from Tessennano and Arlena quarry) by creating a database of secondary volcanic raw materials and their intrinsic characteristics to help industry replace virgin materials and enhance circularity. In this context, accurate chemical, mineralogical, morphological, granulometric and thermal characterizations were performed. Based on the results presented, it can be concluded that due to their lightness, these materials can be used in the design and preparation of lightweight aggregates for agronomic purposes or in the construction field. Furthermore, due to their aluminosilicate nature and amorphous fraction, pumice and lapillus can play the role of precursor or activator for geopolymer preparation. With its porous nature, zeolitic tuff can be exploited for flue gas treatment. Due to the presence of feldspathic phase (sanidine), these materials can be used in tile production as a fluxing component, and with their pozzolanic activity and calcium content, they have application in the binder field as supplementary cementitious material or as aggregates.
Collapse
Affiliation(s)
- Luisa Barbieri
- Department of Engineering "Enzo Ferrari", University of Modena and Reggio Emilia, Via P. Vivarelli 10, 41125 Modena, Italy
- CRICT-Inter-Departmental Research and Innovation Center on Constructions and Environmental Services, Via P. Vivarelli 10, 41125 Modena, Italy
| | - Fabiana Altimari
- Department of Engineering "Enzo Ferrari", University of Modena and Reggio Emilia, Via P. Vivarelli 10, 41125 Modena, Italy
| | - Fernanda Andreola
- Department of Engineering "Enzo Ferrari", University of Modena and Reggio Emilia, Via P. Vivarelli 10, 41125 Modena, Italy
| | - Bruno Maggi
- Europomice SRL, Via N. Torriani 1, 20124 Milan, Italy
| | - Isabella Lancellotti
- Department of Engineering "Enzo Ferrari", University of Modena and Reggio Emilia, Via P. Vivarelli 10, 41125 Modena, Italy
- CRICT-Inter-Departmental Research and Innovation Center on Constructions and Environmental Services, Via P. Vivarelli 10, 41125 Modena, Italy
| |
Collapse
|
5
|
Equilibrium Isotherms and Kinetic Effects during the Adsorption of Pb(II) on Titanosilicates Compared with Natural Zeolite Clinoptilolite. WATER 2022. [DOI: 10.3390/w14142152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The present study focuses on the adsorption of Pb(II) by the H-form of titanosilicates (ETS-4, GTS-1) and clinoptilolite. The H-forms were prepared by first exchanging the extra-framework cations—Na+, K+, Ca2+, etc.—with NH4+, and by subsequent thermal treatment for obtaining H-forms. The purity and thermal behaviour of the initial, NH4+, and H-forms of ETS-4, GTS-1, and clinoptilolite were analysed by powder XRD, while the morphology and size of the particles were determined by SEM. The chemical composition of the solids and the solutions was obtained by WDXRF and ICP-OES, respectively. The kinetics research of the Pb(II) adsorption processes was based on WDXRF and ICP-OES. The H-forms of the materials displayed favourable properties for the adsorption of Pb(II). The best behaviour in this respect was demonstrated by GTS-1 when compared to ETS-4 and clinoptilolite.
Collapse
|
6
|
Senila M, Neag E, Cadar O, Kovacs ED, Aschilean I, Kovacs MH. Simultaneous Removal of Heavy Metals (Cu, Cd, Cr, Ni, Zn and Pb) from Aqueous Solutions Using Thermally Treated Romanian Zeolitic Volcanic Tuff. Molecules 2022; 27:molecules27123938. [PMID: 35745064 PMCID: PMC9231371 DOI: 10.3390/molecules27123938] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/15/2022] [Accepted: 06/18/2022] [Indexed: 12/07/2022] Open
Abstract
Increased concentrations of heavy metals in the environment are of public health concern, their removal from waters receiving considerable interest. The aim of this paper was to study the simultaneous adsorption of heavy metals (Cu, Cd, Cr, Ni, Zn and Pb) from aqueous solutions using the zeolitic volcanic tuffs as adsorbents. The effect of thermal treatment temperature, particle size and initial metal concentrations on the metal ions sorption was investigated. The selectivity of used zeolite for the adsorption of studied heavy metals followed the order: Pb > Cr > Cu > Zn > Cd > Ni. The removal efficiency of the heavy metals was strongly influenced by the particle sizes, the samples with smaller particle size (0−0.05 mm) being more efficient in heavy metals removal than those with larger particle size (1−3 mm). Generally, no relevant changes were observed in heavy metals removal efficiency for the treatment temperatures of 200 °C and 350 °C. Moreover, at a higher temperature (550 °C), a decrease in the removal efficiencies was observed. The Cd, Zn, Cu, Cr, Zn and Ni sorption was best described by Langmuir model according to the high values of correlation coefficient. The pseudo-first-order kinetic model presented the best correlation of the experimental data.
Collapse
Affiliation(s)
- Marin Senila
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Street, 400293 Cluj-Napoca, Romania; (E.N.); (O.C.); (E.D.K.); (M.H.K.)
- Correspondence:
| | - Emilia Neag
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Street, 400293 Cluj-Napoca, Romania; (E.N.); (O.C.); (E.D.K.); (M.H.K.)
| | - Oana Cadar
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Street, 400293 Cluj-Napoca, Romania; (E.N.); (O.C.); (E.D.K.); (M.H.K.)
| | - Emoke Dalma Kovacs
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Street, 400293 Cluj-Napoca, Romania; (E.N.); (O.C.); (E.D.K.); (M.H.K.)
| | - Ioan Aschilean
- Zeolites Production S.A., 359 Republicii Street, Rupea, 505500 Brasov, Romania;
- Faculty of Civil Engineering, Technical University of Cluj-Napoca, 28 Memorandumului St., 400114 Cluj-Napoca, Romania
| | - Melinda Haydee Kovacs
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Street, 400293 Cluj-Napoca, Romania; (E.N.); (O.C.); (E.D.K.); (M.H.K.)
| |
Collapse
|