1
|
Liu Y, Zou Y, Hu H, Gao H, Yuan Y, Chen M, Li R, Dai Y, Huang X, Zhang C, Li J, Zhou W. Cellulose stabilized palm oil emulsions as 3D printing inks: Controlled release of d-limonene. Int J Biol Macromol 2025; 303:140681. [PMID: 39914540 DOI: 10.1016/j.ijbiomac.2025.140681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/22/2025] [Accepted: 02/03/2025] [Indexed: 02/09/2025]
Abstract
Natural essential oils, such as d-limonene, are frequently used as flavoring agents and fragrances in the food industry. However, their susceptibility to volatilization and chemical degradation poses challenges for widespread application. In this study, cellulose nanocrystals (CNCs) and cellulose nanofibers (CNFs) were used to stabilize palm oils (POs) with different melting points to prepare Pickering emulsions (PEs) for the encapsulation of d-limonene. The physicochemical properties, environmental stability, 3D printing performance, and retention of d-limonene were explored. It results indicated that CNFs stabilized PO emulsions exhibit a stronger gel network structure, particularly pronounced in high melting point PO. CNF-stabilized emulsions enhanced stability to pH changes, salt ion, and storage conditions, due to a greater gel structure. Notably, it should be noted that CNCs and CNFs slowed down the release of d-limonene in both fresh and heat-treated emulsions. Furthermore, CNCs and CNFs emulsions as 3D printing inks, ensure accurate and stable formation of target shapes. The volatilization of d-limonene during the process was effectively suppressed (<9 %). The lower release of d-limonene in CNF emulsions (<2.8 %) could be linked to the tight distribution of CNF particles between the oil/water interface and the droplets, which makes the emulsion more resistant to extrusion. This study provides valuable insights into the use of PEs for encapsulating flavor components in 3D printing applications.
Collapse
Affiliation(s)
- Yanping Liu
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, Guangdong, China; College of Food and Quality Engineering, Nanning University, Nanning 530200, Guangxi, China; College of Food Science & Engineering, Hainan University, Haikou 570228, Hainan, China
| | - Ying Zou
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, Guangdong, China
| | - Hong Hu
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, Guangdong, China
| | - Hongxia Gao
- School of Life Science, Jiangxi Science and Technology Normal University, Nanchang 330013, Jiangxi, China
| | - Yuan Yuan
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, Guangdong, China
| | - Mianhong Chen
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, Guangdong, China
| | - Ruyi Li
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, Guangdong, China
| | - Yaping Dai
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, Guangdong, China
| | - Xiaobing Huang
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, Guangdong, China.
| | - Chenghui Zhang
- College of Food Science & Engineering, Hainan University, Haikou 570228, Hainan, China
| | - Jihua Li
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, Guangdong, China
| | - Wei Zhou
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, Guangdong, China.
| |
Collapse
|
2
|
Wang Q, Rao Z, Jiang L, Lei X, Zhao J, Lei L, Zeng K, Ming J. Oleogels loaded with lycopene structured using Zein/EGCG/Ca 2+ complexes: Preparation, characterization and potential application. Food Chem 2025; 463:140976. [PMID: 39362089 DOI: 10.1016/j.foodchem.2024.140976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 10/05/2024]
Abstract
Oleogels have attracted considerable attention due to their excellent viscoelasticity and high content of polyunsaturated fatty acid. This study explored the potential of Zein/(-)-epigallocatechin-3-gallate/Ca2+ complexes oleogels loaded with lycopene as potential substitute for solid fats in biscuit formulations. Utilizing an emulsion-templated method, oleogels were prepared and characterized for visual appearance, droplet size, microstructure, and rheological properties. The incorporation of lycopene indicated a dose-dependent effect on these characteristics, achieving optimal properties at a concentration of 0.3 mg/mL. At this concentration, oleogels exhibited higher encapsulation efficiency (> 90 %), lower oil loss (< 2 %), and denser network structures. Rheological analysis highlighted the shear-thinning behavior, gel-like structure, and thixotropic recovery of oleogels. Substituting of margarine with lycopene-loaded oleogels in biscuits yielded products with regular appearance, uniform color, and potential health benefits, demonstrating the viability of these oleogels as a healthier alternative to traditional solid fats in baking.
Collapse
Affiliation(s)
- Qiming Wang
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Zhenan Rao
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Ling Jiang
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Xiaojuan Lei
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Jichun Zhao
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Lin Lei
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Kaihong Zeng
- Institute of Health Management & Department of Health Management Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China.
| | - Jian Ming
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Research Center for Fruits and Vegetables Logistics Preservation and Nutritional Quality Control, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, People's Republic of China.
| |
Collapse
|
3
|
Xiang Y, Chi Y, He Q, Jia L, Zhang W, Dong Y. Complexation of Olive Protein with Soluble Dietary Fibers: A Way to Improve the Functional Properties of Proteins and Efficiently Utilize Olives. Foods 2024; 13:2563. [PMID: 39200490 PMCID: PMC11354045 DOI: 10.3390/foods13162563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 09/02/2024] Open
Abstract
High-value resources beyond oil extraction for the olive industry need to be developed due to increased olive production. Soluble dietary fibers (SDFs) and olive proteins (OPIs) are important components of olives. However, the commercial production process partially damages OPIs' emulsifying and foaming properties. Thus, the preparation of SDF-OPI complexes would help protect and even improve the emulsifying and foaming properties. The effects of pH and thermal-ultrasonic treatment on the complexation were explored, which showed that the SDF-OPI complexes prepared at pH 5 exhibited superior solubility (p < 0.05). SDF addition noticeably improved OPI thermal stability, emulsifying properties, and foaming properties. Moreover, the complexes prepared by thermal-ultrasonic treatment exhibited higher emulsion stability and lower emulsification activity than those prepared without thermal-ultrasonic treatment. In the acidic system, the electrostatic interaction was considered the main driving factor, assisted by the hydrophobic interaction. Additionally, after thermal-ultrasonic treatment, the covalent binding was observed by infrared spectroscopy. These results revealed the interaction mechanism between SDF and OPI, and the complexes significantly enhanced the functional properties of OPI. This study provides a reference for the high-value utilization of olives, thus broadening their potential uses in the food sector and beyond.
Collapse
Affiliation(s)
| | | | | | | | | | - Yi Dong
- Healthy Food Evaluation Research Center, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; (Y.X.); (Y.C.); (Q.H.); (L.J.); (W.Z.)
| |
Collapse
|
4
|
Aanniz T, El Omari N, Elouafy Y, Benali T, Zengin G, Khalid A, Abdalla AN, Sakran AM, Bouyahya A. Innovative Encapsulation Strategies for Food, Industrial, and Pharmaceutical Applications. Chem Biodivers 2024; 21:e202400116. [PMID: 38462536 DOI: 10.1002/cbdv.202400116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/07/2024] [Accepted: 03/10/2024] [Indexed: 03/12/2024]
Abstract
Bioactive metabolites obtained from fruits and vegetables as well as many drugs have various capacities to prevent or treat various ailments. Nevertheless, their efficiency, in vivo, encounter many challenges resulting in lower efficacy as well as different side effects when high doses are used resulting in many challenges for their application. Indeed, demand for effective treatments with no or less unfavorable side effects is rising. Delivering active molecules to a particular site of action within the human body is an example of targeted therapy which remains a challenging field. Developments of nanotechnology and polymer science have great promise for meeting the growing demands of efficient options. Encapsulation of active ingredients in nano-delivery systems has become as a vitally tool for protecting the integrity of critical biochemicals, improving their delivery, enabling their controlled release and maintaining their biological features. Here, we examine a wide range of nano-delivery techniques, such as niosomes, polymeric/solid lipid nanoparticles, nanostructured lipid carriers, and nano-emulsions. The advantages of encapsulation in targeted, synergistic, and supportive therapies are emphasized, along with current progress in its application. Additionally, a revised collection of studies was given, focusing on improving the effectiveness of anticancer medications and addressing the problem of antimicrobial resistance. To sum up, this paper conducted a thorough analysis to determine the efficacy of encapsulation technology in the field of drug discovery and development.
Collapse
Affiliation(s)
- Tarik Aanniz
- Biotechnology Laboratory (MedBiotech), Bioinova Research Center, Rabat Medical and Pharmacy School, Mohammed V University in Rabat, Rabat, 10100, Morocco
| | - Nasreddine El Omari
- High Institute of Nursing Professions and Health Techniques of Tetouan, Tetouan, Morocco
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, 10100, Morocco
| | - Youssef Elouafy
- Laboratory of Materials, Nanotechnology and Environment LMNE, Faculty of Sciences, Mohammed V University in Rabat, Rabat BP, 1014, Morocco
| | - Taoufiq Benali
- Environment and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Marrakech, 46030, Morocco
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, 42130, Konya, Turkey
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box: 114, Jazan, 45142, Saudi Arabia
- Medicinal and Aromatic Plants and Traditional Medicine Research Institute, National Center for Research, P. O. Box 2404, Khartoum, Sudan
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Ashraf M Sakran
- Department of Anatomy, Faculty of Medicine, Umm Alqura University, Makkah, 21955, Saudi Arabia
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, 10106, Morocco
| |
Collapse
|
5
|
Krstonošić V, Pavlović N, Nikolić I, Milutinov J, Ćirin D. Physicochemical properties and stability of oil-in-water emulsions stabilized by soy protein isolate and xanthan gum. Int J Biol Macromol 2024; 260:129610. [PMID: 38246463 DOI: 10.1016/j.ijbiomac.2024.129610] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/31/2023] [Accepted: 01/17/2024] [Indexed: 01/23/2024]
Abstract
The aim of this work was to determine rheological and disperse characteristics and stability of oil-in-water emulsions stabilized by soy protein isolate (SPI) and xanthan gum (XG), as natural components. The effects of their combination on emulsion stabilization have not been investigated yet. The existence of interactions between the two macromolecules were indicated by the influence of XG on SPI surface hydrophobicity and surface tension values. Increase in SPI concentration from 1 to 3 % shift of distribution curves towards smaller particle size, while the opposite effects of further increase of SPI was obtained. The emulsions stabilized by SPI showed shear-thinning flow behavior, which changed to thixotropic at 5 % of SPI concentration. The presence of XG in emulsions at low concentrations did not affect the size distribution of the droplets, while at 0.1 % of XG Sauter mean diameter value raised and distribution curves were shifted towards a higher particle size. The presence of XG at higher concentration resulted in thixotropic flow behavior of emulsions. Also, increase in XG concentration led to the increase in consistency index and extent of non-Newtonian behavior of emulsions and enhanced the influence of the elastic modulus and creaming stability of the systems.
Collapse
Affiliation(s)
- Veljko Krstonošić
- University of Novi Sad, Faculty of Medicine, Department of Pharmacy, Hajduk Veljkova 3, 21000, Novi Sad, Serbia.
| | - Nebojša Pavlović
- University of Novi Sad, Faculty of Medicine, Department of Pharmacy, Hajduk Veljkova 3, 21000, Novi Sad, Serbia
| | - Ivana Nikolić
- University of Novi Sad, Faculty of Technology, Bulevar Cara Lazara 1, 21000, Novi Sad, Serbia
| | - Jovana Milutinov
- University of Novi Sad, Faculty of Medicine, Department of Pharmacy, Hajduk Veljkova 3, 21000, Novi Sad, Serbia
| | - Dejan Ćirin
- University of Novi Sad, Faculty of Medicine, Department of Pharmacy, Hajduk Veljkova 3, 21000, Novi Sad, Serbia
| |
Collapse
|
6
|
Blanco-Morales V, Mercatante D, Rodriguez-Estrada MT, Garcia-Llatas G. Current and New Insights on Delivery Systems for Plant Sterols in Food. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1440:403-435. [PMID: 38036891 DOI: 10.1007/978-3-031-43883-7_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Plant sterols are minor bioactive components of food lipids, which are often used for the formulation of functional foods due to their cholesterol-lowering properties. However, they have low solubility and tend to crystallize, which may affect their biological effects, the sensory profile of the sterol-enriched food, and its consumer acceptability. Moreover, due to the unsaturated structure of sterols, they are susceptible to oxidation, so different encapsulation systems have been developed to improve their dispersibility/solubility, stability, delivery, and bioaccessibility. This chapter provides an overview of the main encapsulation systems currently used for plant sterols and their application in model and food systems, with a particular focus on their efficiency and impact on sterol bioaccessibility.
Collapse
Affiliation(s)
- V Blanco-Morales
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - D Mercatante
- Department of Agricultural and Food Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - M T Rodriguez-Estrada
- Department of Agricultural and Food Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy.
- CIRI-Agrifood (Interdepartmental Centre of Industrial Agrifood Research), Alma Mater Studiorum-University of Bologna, Cesena, Italy.
| | - G Garcia-Llatas
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| |
Collapse
|
7
|
Tian W, Huang Y, Song Z, Abdullah, Yu Y, Liu J, Cao Y, Xiao J. Flexible control of bigel microstructure for enhanced stability and flavor release during oral consumption. Food Res Int 2023; 174:113606. [PMID: 37986533 DOI: 10.1016/j.foodres.2023.113606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 11/22/2023]
Abstract
Edible delivery systems such as emulsions and gels that possess flexible oral flavor sensation and comprehensive stability under freeze-thaw processing are highly demanded in the frozen food industry. Bigels were fabricated via emulsification of stearic acid based oleogel with konjac glucomannan (KGM)-gelatin (G) based binary hydrogel. By varing the KGM/G mass ratio (γ) and oleogel/hydrogel volume ratio (φ) of bigels, modulation over the micromorphology, tribology, flavor sensation and cheese stick imitating capacity were achieved. Notably, as φ increased from O4:W6 to O5:W5, the microstructural transformation from oleogel-in-hydrogel to bicontinuous morphology emerged as a remarkable feature. The influence of γ was evident in bicontinuous bigels, significantly enhancing water holding capacity (WHC) by 3.38-fold as γ transitioned from 1KGM:5G to 6KGM:5G during freeze-thaw cycles. φ and γ both played pivotal roles in altering the microstructure and rheological properties of the bigels, enabling customizable release of bioactive components and flavor perception. Oleogel-in-hydrogel bigels effectively prevented bioactive compound leakage during freeze-thaw conditions, while bicontinuous bigels demonstrated sustained flavor release during oral mastication. Release behaviors were dual-controlled by φ and γ, reducing oil-soluble flavor release with increased φ and lowering hydrophilic volatile release with elevated γ. Moreover, bigel-based cheese sticks showcased lower viscosity, higher creep recovery rates, and enhanced mouthfeel during minimal oral chewing, suggesting their potential in mimicking the properties of commercial counterparts. These findings extend insights into bigel design for tailored flavor release and bioactive preservation in food products.
Collapse
Affiliation(s)
- Wenni Tian
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yushu Huang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Zengliu Song
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Abdullah
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yuanshan Yu
- Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Sericultural & Argi-Food Research Institute, Guangzhou 510610, China
| | - Jia Liu
- Beijing Key Laboratory of the Innovative Development of Functional Staple and the Nutritional Intervention for Chronic Disease, China National Research Institute of Food and Fermentation Industries, Beijing, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
8
|
Cauduro VH, Cui J, Flores EMM, Ashokkumar M. Ultrasound-Assisted Encapsulation of Phytochemicals for Food Applications: A Review. Foods 2023; 12:3859. [PMID: 37893751 PMCID: PMC10606579 DOI: 10.3390/foods12203859] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
The use of phytochemicals as natural food additives is a topic of interest for both academic and food industry communities. However, many of these substances are sensitive to environmental conditions. For this reason, encapsulation is usually performed prior to incorporation into food products. In this sense, ultrasound-assisted encapsulation is an emerging technique that has been gaining attention in this field, bringing important advantages for the production of functional food products. This review article covered applications published in the last five years (from 2019 to 2023) on the use of ultrasound to encapsulate phytochemicals for further incorporation into food. The ultrasound mechanisms for encapsulation, its parameters, such as reactor configuration, frequency, and power, and the use of ultrasound technology, along with conventional encapsulation techniques, were all discussed. Additionally, the main challenges of existing methods and future possibilities were discussed. In general, ultrasound-assisted encapsulation has been considered a great tool for the production of smaller capsules with a lower polydispersity index. Encapsulated materials also present a higher bioavailability. However, there is still room for further developments regarding process scale-up for industrial applications. Future studies should also focus on incorporating produced capsules in model food products to further assess their stability and sensory properties.
Collapse
Affiliation(s)
- Vitoria Hagemann Cauduro
- Department of Chemistry, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil; (V.H.C.); (E.M.M.F.)
| | - Jiwei Cui
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China;
| | - Erico Marlon Moraes Flores
- Department of Chemistry, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil; (V.H.C.); (E.M.M.F.)
| | | |
Collapse
|
9
|
Wei Z, Dong Y, Li X, Wang M, Zhang K. Design of Novel Knot-like Structures Based on Ovotransferrin Fibril-Gum Arabic Complexes: Effective Strategies to Stabilize Pickering Emulsions. Foods 2023; 12:3767. [PMID: 37893660 PMCID: PMC10606543 DOI: 10.3390/foods12203767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
This work aimed to clarify the effects of gum arabic (GA) on the morphology and properties of ovotransferrin fibrils (OVTFs). By constructing OVTF-GA complexes and exploring the dispersion stability, turbidity and the ζ-potential of the complexes, the optimum mass ratio of OVTFs to GA and pH for complex formation were confirmed as being 1:1 and pH 4.6, respectively. The interaction between OVTFs and GA was determined to be predominantly driven by electrostatic attraction. The OVTF-GA complexes exhibited a knot-like structure when observed using atomic force microscopy. Then, OVTFs and OVTF-GA complexes were compared in terms of contact angle, surface hydrophobicity and dynamic interfacial tension. The combination of OVTFs and GA decreased the contact angle of OVTFs from 80.85° to 70.36°. In comparison with OVTFs, OVTF-GA complexes reduced the oil-water interfacial tension to a lower level (8.14 mN/m). Furthermore, the capacities of OVTF-GA complexes in stabilizing emulsions were explored. OVTF-GA complex-stabilized oleogel-based Pickering emulsion (OGPE) was constructed, and OVTF-stabilized oleogel-based Pickering emulsion (OPE) was used as the control. OGPE had a higher emulsified phase volume fraction (EPVF) and stability index (SI). The EPVF of OGPE was 100.0% and 99.4% before and after one-month storage, respectively, compared with 98.3% and 95.7% of OPE. This work can provide some useful references for the design of biopolymers with novel structures composed of protein fibrils and polysaccharides, which may also help to construct and apply protein fibril-polysaccharide complexes under specific needs.
Collapse
Affiliation(s)
- Zihao Wei
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | | | | | | | | |
Collapse
|
10
|
Zhang X, Li C, Hu W, Abdel-Samie MA, Cui H, Lin L. An overview of tea saponin as a surfactant in food applications. Crit Rev Food Sci Nutr 2023; 64:12922-12934. [PMID: 37737159 DOI: 10.1080/10408398.2023.2258392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
The residue of Camellia seeds after oil extraction contains many bioactive ingredients, including tea saponin. Tea saponin has many pharmacological effects and is an excellent nonionic surfactant. The development of natural surfactants has become a hot topic in food research. This review gathers the applications of tea saponin as a surfactant in food. It focuses on the application of tea saponin in emulsions, delivery systems, extraction and fermentation, as well as the challenges and development prospects in food applications. Tea saponin shows great potential as a surfactant in food applications, which can replace some synthetic surfactants. The full utilization of tea saponin improves the comprehensive utilization value of Camellia seed residue, contributes to the sustainable development of Camellia industry and avoids resource waste.
Collapse
Affiliation(s)
- Xueli Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Changzhu Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, China
| | - Wei Hu
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, China
| | - Mohamed A Abdel-Samie
- Department of Food and Dairy Sciences and technology, Faculty of Environmental Agricultural Sciences, Arish University, El-Arish, Egypt
| | - Haiying Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Lin Lin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, China
| |
Collapse
|
11
|
Dong Y, Wei Z, Xue C. Effect of interaction between ovotransferrin fibrils and pectin on properties of oleogel-based Pickering emulsions. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
12
|
Chen XW, Zhang H, Li XX, Sun SD. Edible HIPE-Gels and oleogels formed by synergistically combining natural triterpenoid saponin and citrus dietary fiber. Carbohydr Polym 2023; 305:120499. [PMID: 36737180 DOI: 10.1016/j.carbpol.2022.120499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022]
Abstract
High-internal-phase emulsion gels (HIPE-Gels) and oleogels were successfully fabricated through synergistically combination of natural triterpenoid Quillaja saponin (QS) and citrus dietary fiber (CDF). The amphiphilic QS significantly lowered the oil-water interface tension; whereas CDF could form compact structure at the interface as well as in the bulk under a hydrogen-bonding interaction with saponin. The combination endowed the emulsion gels with enhanced performance, such as decreasing droplet size, strengthening gel network structure and better viscoelastic. At a very low QS of 0.045 %, stable HIPE-Gels can be produced with 0.3 % CDF, which mainly attributing to the highly viscoelastic fiber networks in continuous phase and thus actively trap the QS-coated emulsion droplets. Consequently, the robust HIPE-Gels were applied as soft template to fabricate oleogels with controlled by QS and CDF loading. These findings proved an effective strategy towards structuring edible liquid oil into healthy gels for alternating saturated and trans fats in foods.
Collapse
Affiliation(s)
- Xiao-Wei Chen
- College of Food Science and Engineering, National Engineering Laboratory, Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001, China.
| | - Huan Zhang
- College of Food Science and Engineering, National Engineering Laboratory, Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001, China
| | - Xiao-Xiao Li
- College of Food Science and Engineering, National Engineering Laboratory, Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001, China
| | - Shang-De Sun
- College of Food Science and Engineering, National Engineering Laboratory, Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001, China.
| |
Collapse
|
13
|
Jiang W, Xiang W, Xu L, Yuan D, Gao Z, Hu B, Li Y, Wu Y. Fabrication, characterization, and emulsifying properties of hexadecyltrimethylammonium bromide complexed alginate microgel. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
14
|
Frolova Y, Sarkisyan V, Sobolev R, Kochetkova A. Ultrasonic Treatment of Food Colloidal Systems Containing Oleogels: A Review. Gels 2022; 8:gels8120801. [PMID: 36547325 PMCID: PMC9777715 DOI: 10.3390/gels8120801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
The use of oleogels as an alternative to solid fats to reduce the content of saturated and trans-isomeric fatty acids is a developing area of research. Studies devoted to the search for methods of obtaining oleogels with given properties are of current interest. Ultrasonic treatment as a method for modifying oleogel properties has been used to solve this problem. The number of publications on the study of the effect of ultrasonic treatment on oleogel properties is increasing. This review aimed to systematize and summarize existing data. It allowed us to identify the incompleteness of this data, assess the effect of ultrasonic treatment on oleogel properties, which depends on various factors, and identify the vector of this direction in the food industry. A more detailed description of the parameters of ultrasonic treatment is needed to compare the results between various publications. Ultrasonic treatment generally leads to a decrease in crystal size and an increase in oil-binding capacity, rheological properties, and hardness. The chemical composition of oleogels and the concentration of gelators, the amplitude and duration of sonication, the cooling rate, and the crystallization process stage at which the treatment occurs are shown to be the factors influencing the efficiency of the ultrasonic treatment.
Collapse
|
15
|
Wang Q, Rao Z, Chen Y, Lei X, Zhao J, Li F, Lei L, Zeng K, Ming J. Characterization of responsive zein-based oleogels with tunable properties fabricated from emulsion-templated approach. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
16
|
Yusoff IM, Mat Taher Z, Rahmat Z, Chua LS. A review of ultrasound-assisted extraction for plant bioactive compounds: Phenolics, flavonoids, thymols, saponins and proteins. Food Res Int 2022; 157:111268. [DOI: 10.1016/j.foodres.2022.111268] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/14/2022] [Accepted: 04/17/2022] [Indexed: 12/27/2022]
|
17
|
Gao Y, Wang Z, Xue C, Wei Z. Modulation of Fabrication and Nutraceutical Delivery Performance of Ovalbumin-Stabilized Oleogel-Based Nanoemulsions via Complexation with Gum Arabic. Foods 2022; 11:foods11131859. [PMID: 35804676 PMCID: PMC9265802 DOI: 10.3390/foods11131859] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 12/17/2022] Open
Abstract
Protein–polysaccharide complexes, which involve Maillard-type protein–polysaccharide conjugates and electrostatic protein–polysaccharide complexes, have the potential to stabilize oleogel-based nanoemulsions for nutraceutical delivery. Here, ovalbumin (OVA) and gum arabic (GA) were used to prepare OVA–GA conjugate (OGC) and OVA–GA mixture (OGM), followed by the fabrication of astaxanthin-loaded oleogel-based nanoemulsions. Carnauba wax (5% w/w) and rice bran oil were mixed to prepare food-grade oleogel. The successful preparation of OGC was verified by means of SDS-PAGE analysis and free amino groups determination. OGC endowed oleogel-based nanoemulsions with smaller emulsion droplets and higher stability during 30-day storage, implying more outstanding emulsifying capability than OGM. Both OGC-stabilized nanoemulsions and OGM-stabilized nanoemulsions could enhance the extent of lipolysis and the bioaccessibility of astaxanthin compared with oleogel. Meanwhile, OGC exhibited significantly better than OGM, which indicated that OGC-stabilized oleogel-based nanoemulsions possessed more desirable nutraceutical delivery performance than OGM-stabilized oleogel-based nanoemulsions. This study may fill a gap in the influence of different protein–polysaccharide complexes on oleogel-based nanoemulsions and contribute to deeper insights about novel oleogel-based nanoemulsions for their applications in the food industry.
Collapse
Affiliation(s)
- Yuxing Gao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (Y.G.); (Z.W.); (C.X.)
| | - Zihua Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (Y.G.); (Z.W.); (C.X.)
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (Y.G.); (Z.W.); (C.X.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Zihao Wei
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (Y.G.); (Z.W.); (C.X.)
- Correspondence:
| |
Collapse
|
18
|
Pinto MIS, Campos Guerra JM, Meira HM, Sarubbo LA, de Luna JM. A Biosurfactant from Candida bombicola: Its Synthesis, Characterization, and its Application as a Food Emulsions. Foods 2022; 11:foods11040561. [PMID: 35206039 PMCID: PMC8871145 DOI: 10.3390/foods11040561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/28/2022] [Accepted: 02/05/2022] [Indexed: 02/01/2023] Open
Abstract
The present study aimed to produce a biosurfactant from Candida yeast cultivated in a low-cost medium made of sugar-cane molasses (5%), frying oil waste (5%), and corn steep liquor (5%). Initially, the production at the flask-scale was investigated and then scaled up in bioreactors to 1.2, 3.0, and 50 L to simulate a real production scale. The products obtained an excellent reduction in surface tensions from 70 to 29 mN·m−1 in the flask-scale, comparable to 33 mN·m−1 in the 1.2-L reactor, to 31 mN·m−1 in the 3-L reactor, and to 30 mN·m−1 in the 50-L reactor. Regarding the yield, it was observed that the isolation by liquid-to-liquid extraction aided biosurfactant production up to 221.9 g·L−1 with a critical micellar concentration of 0.5%. The isolated biosurfactant did not exhibit an inhibitory effect on the germination of vegetable seeds and presented no significant acute toxicity in assays with Artemia salina and Allium cepa. Among the different formulations of mayonnaise-like sauces, the most stable formula was observed with the addition of the biosurfactant at a concentration of 0.5% and the greatest results were associated with the guar and carboxymethyl cellulose gums. Thus, the biosurfactant from C. bombicola represents a promising alternative as a food additive in emulsions.
Collapse
Affiliation(s)
- Maria Isabel Silveira Pinto
- Escola Icam Tech, Universidade Católica de Pernambuco (UNICAP), Rua do Príncipe, n. 526, Boa Vista, Recife 50050-900, Brazil; (M.I.S.P.); (H.M.M.); (L.A.S.)
| | - Jenyffer Medeiros Campos Guerra
- Departamento de Engenharia Química, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, s/n, Recife 50670-901, Brazil;
| | - Hugo Morais Meira
- Escola Icam Tech, Universidade Católica de Pernambuco (UNICAP), Rua do Príncipe, n. 526, Boa Vista, Recife 50050-900, Brazil; (M.I.S.P.); (H.M.M.); (L.A.S.)
- Instituto Avançado de Tecnologia e Inovação (IATI), Rua Potyra, n. 31, Prado, Recife 50751-310, Brazil
| | - Leonie Asfora Sarubbo
- Escola Icam Tech, Universidade Católica de Pernambuco (UNICAP), Rua do Príncipe, n. 526, Boa Vista, Recife 50050-900, Brazil; (M.I.S.P.); (H.M.M.); (L.A.S.)
- Instituto Avançado de Tecnologia e Inovação (IATI), Rua Potyra, n. 31, Prado, Recife 50751-310, Brazil
| | - Juliana Moura de Luna
- Instituto Avançado de Tecnologia e Inovação (IATI), Rua Potyra, n. 31, Prado, Recife 50751-310, Brazil
- Escola de Saúde e Ciências da Vida, Universidade Católica de Pernambuco (UNICAP), Rua do Príncipe, n. 526, Boa Vista, Recife 50050-900, Brazil
- Correspondence: ; Tel.: +55-81-2119-4084
| |
Collapse
|
19
|
Yu Y, Wang T, Gong Y, Wang W, Wang X, Yu D, Wu F, Wang L. Effect of ultrasound on the structural characteristics and oxidative stability of walnut oil oleogel coated with soy protein isolate-phosphatidylserine. ULTRASONICS SONOCHEMISTRY 2022; 83:105945. [PMID: 35149379 PMCID: PMC8841881 DOI: 10.1016/j.ultsonch.2022.105945] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/30/2022] [Accepted: 02/03/2022] [Indexed: 05/24/2023]
Abstract
In this study, the three-dimensional network system formed by rice bran wax (RBW) was used as the internal structure, and the external structure formed by soybean protein isolate (SPI) and phosphatidylserine (PS) was added on the basis of the internal structure to prepare walnut oil oleogel (SPI-PS-WOG). Ultrasonic treatment was applied to the mixed solution to make SPI-PS-WOG, on the basis, the effects of ultrasonic treatment on SPI-PS-WOG were investigated. The results showed that both β and β' crystalline forms were present in all SPI-PS-WOG samples. When the ultrasonic power was 450 W, the first weight loss peak in the thermogravimetric (TGA) curve appeared at 326 °C, which was shifted to the right compared to the peak that occurred when the ultrasonic power was 0 W, indicating that the thermal stability of the SPI-PS-WOG was improved by the ultrasonic treatment. Moreover, when the ultrasonic power was 450 W, the oil holding capacity (OHC) reached 95.3 %, which was the best compared with other groups. Both confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM) showed that the ultrasonic treatment of appropriate power succeeded in making the SPI-PS-WOG samples more evenly dispersed in the internal structure and denser in the external structure. In terms of oxidative stability, it was found that the peroxide value of SPI-PS-WOG remained at 9.8 mmol/kg oil for 50 days under 450 W ultrasonic power treatment, which was significantly improved compared with liquid walnut oil (WO). These results provide a new idea for the preparation of oleogels, and also lay a theoretical foundation for the application of ultrasonic treatment in oleogels.
Collapse
Affiliation(s)
- Yingjie Yu
- School of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Tong Wang
- School of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yuhang Gong
- School of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Weining Wang
- School of Computer and Information Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Xue Wang
- School of Computer and Information Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Dianyu Yu
- School of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Fei Wu
- School of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Liqi Wang
- School of Computer and Information Engineering, Harbin University of Commerce, Harbin 150028, China
| |
Collapse
|