1
|
Burbano JJ, Di Pierro JP, Camacho C, Vidaurre-Ruiz J, Repo-Carrasco-Valencia R, Iglesias FA, Sánchez M, Ospina YAM, Igartúa DE, Correa MJ, Cabezas DM. Extruded Quinoa Flour Applied for the Development of Gluten-Free Breads: a Technological, Sensory and Microstructural Approach. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2025; 80:33. [PMID: 39775288 DOI: 10.1007/s11130-024-01241-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/21/2024] [Indexed: 01/11/2025]
Abstract
Quinoa flour due to its nutritional and sensory characteristics could be used as an ingredient to improve the nutritional and technological properties of gluten-free bread. Furthermore, the application of hydrothermal processes such as extrusion can enhance their native properties. Hence, our objective was to evaluate how the incorporation of extruded quinoa flours (EQFs) affects the technological, sensory and nutritional quality of gluten-free bread. EQFs were obtained following two extrusion conditions with different ranges and ramps of temperature: (EQF1: from 77 °C to 139 °C, and EQF2: from 79 °C to 145 °C). Replacements (25, 35 and 45%) of a base premix (rice flour and corn and cassava starches) by EQFs were tested. Breads with EQFs showed a reduction in luminosity and specific volume (SV) with respect to control (bread without quinoa). While increasing levels of EQF1 led to a progressive decrease in SV, it remained constant when increasing levels of EQF2 were used. The crumb texture showed an increase in hardness, cohesiveness, chewiness, and resilience with respect to control, presenting EQF1 at 45% the highest increase in hardness (53%). The same tendency was observed in the crust since crust hardness was higher in formulations with EQF1. Finally, bread containing the EQFs showed higher protein, ash, and total dietary fiber content than the control bread. In conclusion, these results showed that the extrusion procedure impacted the flour aptitude for breadmaking. However, EQFs are suitable for developing bakery goods with improved nutritional properties and acceptable technological and sensory properties.
Collapse
Affiliation(s)
- Juan José Burbano
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), Facultad de Ciencias Exactas-Universidad Nacional de La Plata, Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, 47 y 116, C.P 1900, La Plata, Argentina
| | - Juan Pablo Di Pierro
- Laboratorio de Investigación en Funcionalidad y Tecnología de Alimentos (LIFTA), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
| | - Catalina Camacho
- Laboratorio de Investigación en Funcionalidad y Tecnología de Alimentos (LIFTA), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
| | - Julio Vidaurre-Ruiz
- Centro de Investigación e Innovación en Productos Derivados de Cultivos Andinos CIINCA, Universidad Nacional Agraria La Molina, Avenida La Molina s/n, Lima 12, Perú
| | - Ritva Repo-Carrasco-Valencia
- Centro de Investigación e Innovación en Productos Derivados de Cultivos Andinos CIINCA, Universidad Nacional Agraria La Molina, Avenida La Molina s/n, Lima 12, Perú
| | | | - Mariana Sánchez
- Instituto Nacional de Tecnología Industrial (INTI), San Martín, Argentina
| | - Yeisson Andrés Moscoso Ospina
- Laboratorio de Investigación en Funcionalidad y Tecnología de Alimentos (LIFTA), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CABA, Argentina
| | - Daniela Edith Igartúa
- Laboratorio de Investigación en Funcionalidad y Tecnología de Alimentos (LIFTA), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CABA, Argentina
| | - María Jimena Correa
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), Facultad de Ciencias Exactas-Universidad Nacional de La Plata, Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, 47 y 116, C.P 1900, La Plata, Argentina.
| | - Dario Marcelino Cabezas
- Laboratorio de Investigación en Funcionalidad y Tecnología de Alimentos (LIFTA), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CABA, Argentina.
| |
Collapse
|
2
|
Maçãs M, Biduski B, Ferragina A, Santos AAD, Huet M, Arendt EK, Gallagher E. Impact of conventional and emerging processing methods on alternative breads- a comprehensive review and meta-analysis. Crit Rev Food Sci Nutr 2024:1-21. [PMID: 39714071 DOI: 10.1080/10408398.2024.2442527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
An increasing consumer demand for plant-based and high-protein options, motivated by health and sustainability, has resulted in a surge of food innovation in this area. Incorporating alternative plant sources, such as pulses and pseudocereals, has been proven to enhance the nutritional profile of baked products. However, these can also negatively impact the yeasted bread acceptability. In the bakery sector, it is crucial to consider how incorporating non-wheat ingredients influences product quality. Consequently, exploring effective treatments/processing methods becomes essential to minimize the impact of alternative plant ingredient additions. This review explores conventional and emerging processing approaches for alternative plant materials and discusses the nutritional value may be enhanced while maintaining high acceptability. A meta-analysis was undertaken to visualize the influence of plant processing technologies on product quality, specifically on loaf-specific volume and crumb texture. This review highlighted the importance of conventional processing methods when applied to bread. Additionally revealed the potential of emerging processing which can positively affect a loaf volume and texture when compared with non-processed plant ingredients. Such studies enabled the production of acceptable bakery products with higher levels of alternative ingredient incorporation. However, increased use of emerging technologies is dependent on further research and overcoming scaling-up difficulties.
Collapse
Affiliation(s)
- Mariana Maçãs
- Department of Food Quality and Sensory Science, Teagasc Food Research Centre, Ashtown, Ireland
- Department of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Bárbara Biduski
- Department of Food Quality and Sensory Science, Teagasc Food Research Centre, Ashtown, Ireland
| | - Alessandro Ferragina
- Department of Food Quality and Sensory Science, Teagasc Food Research Centre, Ashtown, Ireland
- Department of Veterinary Science, University of Parma, Parma, Italy
| | | | - Melanie Huet
- ESIROI Université de la Réunion, Reunion Island, France
| | - Elke K Arendt
- Department of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Eimear Gallagher
- Department of Food Quality and Sensory Science, Teagasc Food Research Centre, Ashtown, Ireland
| |
Collapse
|
3
|
Ren X, Zhang H, Lv M, Fan H, Liu L, Wang B, Hu X, Shi Y, Yang C, Chen F, Sun Y. Technology for Blending Recombined Flour: Substitution of Extruded Rice Flour, Quantity of Addition, and Impact on Dough. Foods 2024; 13:2929. [PMID: 39335858 PMCID: PMC11431399 DOI: 10.3390/foods13182929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
In a previous study, rice bread was prepared using a combination of rice-wheat mixed flour. To investigate the impact of the partial adoption of extruded rice flour (ERF) on mixed flour (MF) and mixed dough (MD), the effects of adding ERF on the pasting, mixing characteristics, texture, and water retention of the MF and MD were examined by a rapid visco analyzer (RVA), Mixolab, texture profile analysis (TPA), and a low-field nuclear magnetic resonance analyzer (LF-NMR). The PV, TV, BD, FV, and SV of the MF declined as the incorporated amount of ERF increased. There was no significant difference in the PT at the 5-15% addition level (p < 0.05), but it showed an increasing trend at the 20-30% level (p < 0.05). The incorporation of ERF led to a significant increase in the water absorption (WA) of the MD, while the DT, ST, C2, C3, C4, and C5 exhibited a declining trend. The texture analysis revealed a significant decrease in the dough hardness with the addition of ERF, with a 55% reduction in the hardness of the 30% improved mixed dough (IMD), and the cohesiveness increased significantly (p < 0.05). The IMD was mainly composed of weakly bound water. The content of weakly bound water increased with the ERF amount.
Collapse
Affiliation(s)
- Xuyang Ren
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Huining Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Mingshou Lv
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Hongchen Fan
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Linlin Liu
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Bing Wang
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Xiaofeng Hu
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Yanguo Shi
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Chunhua Yang
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Fenglian Chen
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Ying Sun
- College of Tourism and Cuisine, Harbin University of Commerce, Harbin 150028, China
| |
Collapse
|
4
|
Tang Y, Zhu Y, Wang X, Peng H, Wang Z, Yue C, Wang L, Bai Z, Li P, Luo D. Study of the structural characterization, physicochemical properties and antioxidant activities of phosphorylated long-chain inulin with different degrees of substitution. Int J Biol Macromol 2024; 263:130139. [PMID: 38354927 DOI: 10.1016/j.ijbiomac.2024.130139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/12/2024] [Accepted: 02/11/2024] [Indexed: 02/16/2024]
Abstract
In this study, phosphorylated derivatives of long-chain inulin with different substitution degrees were prepared. The synthesized samples were named PFXL-1, PFXL-2, PFXL-3, and PFXL-4 according to their degree of substitution (from low to high). The structures of FXL and PFXL were characterized by infrared spectroscopy and nuclear magnetic resonance spectroscopy, and the results indicated the successful introduction of phosphate groups. FXL and PFXL were composed of two types of sugar, fructose and glucose, with a molar ratio of 0.977:0.023. The SEM results showed that phosphorylation changed the morphology of FXL from an irregular mass to small spherical aggregates. The XRD pattern showed that the crystallinity was reduced by the introduction of phosphate groups. The Mw of FXL was 2649 g/mol, and the Mw of PFXL-4 increased the most (2965 g/mol). Additionally, PFXL was more stable and uniform, and the absolute value of the PFXL potential reached 7.83 mV. Phosphorylation decreased the weight loss rate of FXL and improved the viscoelastic properties and antioxidant activity of FXL. This study presents a method for the modification of FXL, demonstrating that phosphorylation can enhance its physicochemical properties and physiological activity and suggesting its potential as a functional food and quality modifier.
Collapse
Affiliation(s)
- Yu Tang
- College of Food & Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Ying Zhu
- College of Food & Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Xiaojing Wang
- College of Food & Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Huainan Peng
- College of Food & Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Ziyu Wang
- College of Food & Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Chonghui Yue
- College of Food & Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; Henan Engineering Research Center of Food Material, Henan University of Science & Technology, Luoyang, China.
| | - Libo Wang
- College of Food & Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; Henan Engineering Research Center of Food Material, Henan University of Science & Technology, Luoyang, China
| | - Zhouya Bai
- College of Food & Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; Henan Engineering Research Center of Food Material, Henan University of Science & Technology, Luoyang, China
| | - Peiyan Li
- College of Food & Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; Henan Engineering Research Center of Food Material, Henan University of Science & Technology, Luoyang, China
| | - Denglin Luo
- College of Food & Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; Henan Engineering Research Center of Food Material, Henan University of Science & Technology, Luoyang, China
| |
Collapse
|
5
|
Zamaratskaia G, Gerhardt K, Knicky M, Wendin K. Buckwheat: an underutilized crop with attractive sensory qualities and health benefits. Crit Rev Food Sci Nutr 2023; 64:12303-12318. [PMID: 37640053 DOI: 10.1080/10408398.2023.2249112] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The pseudocereal buckwheat is one of the ancient domesticated crops. The aim of the present review was to outline the potential of buckwheat as an agricultural crop and brings studies on buckwheat into a new larger perspective combining current knowledge in agricultural history and practice, nutritional and sensory properties, as well as possible benefits to human health. Historically, buckwheat was an appreciated crop because of its short growth period, moderate requirements for growth conditions, and high adaptability to adverse environments. Nowadays, interest in buckwheat-based food has increased because of its nutritional composition and many beneficial properties for human health. Buckwheat is a rich course of proteins, dietary fibers, vitamins, minerals, and bioactive compounds, including flavonoids. Moreover, it contains no gluten and can be used in the production of gluten-free foods for individuals diagnosed with celiac disease, non-celiac gluten sensitivity, or wheat protein allergies. Buckwheat is traditionally used in the production of various foods and can be successfully incorporated into various new food formulations with positive effects on their nutritional value and attractive sensory properties. Further research is needed to optimize buckwheat-based food development and understand the mechanism of the health effects of buckwheat consumption on human well-being.
Collapse
Affiliation(s)
- Galia Zamaratskaia
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Vodnany, Czech Republic
| | - Karin Gerhardt
- Swedish Biodiversity Centre, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Martin Knicky
- Bioeconomy and Health, Agriculture and Food, RISE Research Institutes of Sweden, Uppsala, Sweden
| | - Karin Wendin
- Research Environment MEAL, Faculty of Natural Science, Kristianstad University, Kristianstad, Sweden
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Gkountenoudi-Eskitzi I, Kotsiou K, Irakli MN, Lazaridis A, Biliaderis CG, Lazaridou A. In vitro and in vivo glycemic responses and antioxidant potency of acorn and chickpea fortified gluten-free breads. Food Res Int 2023; 166:112579. [PMID: 36914342 DOI: 10.1016/j.foodres.2023.112579] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/30/2022] [Accepted: 02/03/2023] [Indexed: 02/10/2023]
Abstract
Gluten-free (GF) breads, based on rice flour and corn starch (50:50), were fortified with a mixture of acorn flour (ACF) - chickpea flour (CPF) at 30% substitution level of corn starch (i.e., rice flour:corn starch:ACF-CPF 50:20:30) using different flour blends of ACF:CPF at weight ratios of 5:25, 7.5:22.5, 12.5:17.5, and 20:10 in order to improve the nutritional quality and antioxidant potential as well as the glycemic responses of the GF breads; a control GF bread with rice flour:corn starch 50:50 ratio was also prepared. ACF was richer in total phenolic content than CPF, whereas CPF was characterized by higher amounts of total tocopherols and lutein compared to ACF. For both ACF and CPF as well as the fortified breads, the most abundant phenolic compounds were gallic (GA) and ellagic (ELLA) acids as found by HPLC-DAD analysis, while a hydrolysable tannin, valoneic acid dilactone, was also identified and quantified by HPLC-DAD-ESI-MS in high amount in the ACF-GF bread having the highest level of ACF (ACF:CPF 20:10), even though it seemed to decompose during breadmaking, possibly into GA and ELLA. Therefore, the inclusion of these two raw materials as ingredients in GF bread formulations resulted in baked products with enhanced concentrations of such bioactive compounds and higher antioxidant activities, as indicated by three different assays (DPPH, ABTS and FRAP). The extent of glucose release, as evaluated by an in vitro enzymic assay, was negatively correlated (r = -0.96; p = 0.005) with the level of added ACF, and was significantly reduced for all ACF-CPF fortified products when compared with their non-fortified GF counterpart. Furthermore, the GF bread containing a flour mixture of ACP:CPF at a weight ratio of 7.5:22.5, was subjected to an in vivo intervention protocol to assess the glycemic response when consumed by 12 healthy volunteers; in this case, white wheat bread was used as reference food. The glycemic index (GI) of the fortified bread was significantly lower compared to the control GF bread (97.4 versus 159.2, respectively), which along with its lower amount of available carbohydrates and the higher level of dietary fibers, resulted in a significantly reduced glycemic load (7.8 versus 18.8 g per serving of 30 g). The present findings underlined the effectiveness of acorn and chickpea flours in improving the nutritional quality and glycemic responses of fortified GF breads with these flours.
Collapse
Affiliation(s)
- Ippolyti Gkountenoudi-Eskitzi
- Laboratory of Food Chemistry and Biochemistry, Department of Food Science and Technology, School of Agriculture, Aristotle University of Thessaloniki, P.O. Box 235, 54124 Thessaloniki, Greece
| | - Kali Kotsiou
- Laboratory of Food Chemistry and Biochemistry, Department of Food Science and Technology, School of Agriculture, Aristotle University of Thessaloniki, P.O. Box 235, 54124 Thessaloniki, Greece
| | - Maria N Irakli
- Hellenic Agricultural Organization 'Dimitra', Institute of Plant Breeding and Genetic Resources, Thermi 570 01, Greece
| | - Antonios Lazaridis
- 3rd Department of Internal Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Thessaloniki, Greece
| | - Costas G Biliaderis
- Laboratory of Food Chemistry and Biochemistry, Department of Food Science and Technology, School of Agriculture, Aristotle University of Thessaloniki, P.O. Box 235, 54124 Thessaloniki, Greece
| | - Athina Lazaridou
- Laboratory of Food Chemistry and Biochemistry, Department of Food Science and Technology, School of Agriculture, Aristotle University of Thessaloniki, P.O. Box 235, 54124 Thessaloniki, Greece.
| |
Collapse
|
7
|
Liu C, Ma R, Tian Y. An overview of the nutritional profile, processing technologies, and health benefits of quinoa with an emphasis on impacts of processing. Crit Rev Food Sci Nutr 2022; 64:5533-5550. [PMID: 36510748 DOI: 10.1080/10408398.2022.2155796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Consumers are becoming increasingly conscious of adopting a healthy lifestyle and demanding food with high nutritional values. Quinoa (Chenopodium quinoa Willd.) has attracted considerable attention and is consumed worldwide in the form of a variety of whole and processed products owing to its excellent nutritional features, including richness in micronutrients and bioactive phytochemicals, well-balanced amino acids composition, and gluten-free properties. Recent studies have indicated that the diverse utilization and final product quality of this pseudo-grain are closely related to the processing technologies used, which can result in variations in nutritional profiles and health benefits. This review comprehensively summarizes the nutritional properties, processing technologies, and potential health benefits of quinoa, suggesting that quinoa plays a promising role in enhancing the nutrition of processed food. In particular, the effects of different processing technologies on the nutritional profile and health benefits of quinoa are highlighted, which can provide a foundation for the updating and upgrading of the quinoa processing industry. It further discusses the present quinoa-based food products containing quinoa as partial or whole substitute for traditional grains.
Collapse
Affiliation(s)
- Chang Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Rongrong Ma
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yaoqi Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
8
|
Mir SA, Farooq S, Shah MA, Sofi SA, Dar BN, Sunooj KV, Khaneghah AM. Recent advancements in the development of multigrain bread. Cereal Chem 2022. [DOI: 10.1002/cche.10578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shabir Ahmad Mir
- Department of Food Science and TechnologyGovernment College for Women, M. A. RoadSrinagarJammu and KashmirIndia
| | - Saqib Farooq
- Department of Food TechnologyIslamic University of Science and TechnologyAwantiporaJammu and KashmirIndia
| | - Manzoor Ahmad Shah
- Department of Food Science and TechnologyGovernment Degree College for WomenAnantnagJammu and KashmirIndia
| | - Sajad Ahmad Sofi
- Department of Food TechnologyIslamic University of Science and TechnologyAwantiporaJammu and KashmirIndia
| | - B. N. Dar
- Department of Food TechnologyIslamic University of Science and TechnologyAwantiporaJammu and KashmirIndia
| | | | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product TechnologyProf. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology – State Research Institute36 Rakowiecka St., 02‐532WarsawPoland
| |
Collapse
|
9
|
Defining Amaranth, Buckwheat and Quinoa Flour Levels in Gluten-Free Bread: A Simultaneous Improvement on Physical Properties, Acceptability and Nutrient Composition through Mixture Design. Foods 2022; 11:foods11060848. [PMID: 35327270 PMCID: PMC8954203 DOI: 10.3390/foods11060848] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 02/04/2023] Open
Abstract
The study aimed to define the ideal proportions of pseudocereal flours (PF) in sensory-accepted gluten-free bread (GFB) formulations. The characteristics of GFB developed with PF (amaranth, buckwheat, and quinoa) were verified through a mixture design and response surface methodology. Three simplex-centroid designs were studied to analyze the effects of each PF and their interactions with potato starch (PS), and rice flour (RF) on GFB’s physical and sensory characteristics, each design producing three single, three binary and six ternary GFB formulations. Results showed that using PF alone resulted in unacceptable GFB. However, the interactions between PF and RF improved the loaf specific volume and the crumb softness and also enhanced appearance, color, odor, texture, flavor, and overall liking. Moreover, the composite formulations prepared with 50% PF and 50% RF (flour basis) presented physical properties and acceptability scores like those of white GFB, prepared with 100% RF or a 50% RF + 50% PS blend (flour basis). Maximum proportions of PF to obtain well-accepted GFB (scores ≥7 for all evaluated attributes on a 10-cm hybrid hedonic scale) were defined at 60% for amaranth flour (AF), 85% for buckwheat flour (BF), and 82% for quinoa flour (QF) in blends with RF.
Collapse
|
10
|
Olive Cake Powder as Functional Ingredient to Improve the Quality of Gluten-Free Breadsticks. Foods 2022; 11:foods11040552. [PMID: 35206029 PMCID: PMC8871176 DOI: 10.3390/foods11040552] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 02/06/2023] Open
Abstract
The growing demand for high-quality gluten-free baked snacks has led researchers to test innovative ingredients. The aim of this work was to assess the feasibility of olive cake powder (OCP) to be used as a functional ingredient in gluten-free (GF) breadsticks. OCP was used by replacing 1, 2, and 3% of maize flour into GF breadstick production (BS1, BS2, BS3, respectively), and their influence on nutritional, bioactive, textural, and sensorial properties was assessed and compared with a control sample (BSC). BS1, BS2, and BS3 showed a higher lipid, moisture, and ash content. BS2 and BS3 had a total dietary fibre higher than 3 g 100 g−1, achieving the nutritional requirement for it to be labelled as a “source of fibre”. The increasing replacement of olive cake in the formulation resulted in progressively higher total phenol content and antioxidant activity for fortified GF breadsticks. The L* and b* values decreased in all enriched GF breadsticks when compared with the control, while hardness was the lowest in BS3. The volatile profile highlighted a significant reduction in aldehydes, markers of lipid oxidation, and Maillard products (Strecker aldehydes, pyrazines, furans, ketones) in BS1, BS2, and BS3 when compared with BSC. The sensory profile showed a strong influence of OCP addition on GF breadsticks for almost all the parameters considered, with a higher overall pleasantness score for BS2 and BS3.
Collapse
|