1
|
Tkaczewska J, Mungure T, Warner R. Is it still meat? The effects of replacing meat with alternative ingredients on the nutritional and functional properties of hybrid products: a review. Crit Rev Food Sci Nutr 2024:1-20. [PMID: 39579157 DOI: 10.1080/10408398.2024.2430750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
Consumer interest in a shift toward moderating animal products in their diets (flexitarian) is constantly increasing. One way to meet this consumer demand is through hybrid meat products, defined as those in which a portion of the meat is substituted by plant protein. This review article aims to analyze literature regarding the impact of replacing meat proteins with other alternative proteins on the functional and nutritional properties of hybrid products. Different food matrices created by hybrid products have impact on the digestive processes and outcomes in vitro and in vivo, and the bioavailability of protein, lipid, and mineral nutrients is modified, hence these aspects are reviewed. The functional properties of hybrid products change with regard to type of alternative protein source used. In hybrid products, deficiencies in amino acids in alternative proteins are balanced by amino acids from meat proteins, resulting in wholesome products. Additionally, animal protein degrades into peptides in the gut which bind non-animal iron and increase the availability of iron from the alternative protein material. This relationship may support the development of hybrid products offering products with increased iron bioavailability and a previously unseen beneficial nutritional composition. The effects of alternative protein addition in hybrid meat products on protein and mineral digestibility remains unclear. More research is required to clarify the interaction of the protein-food matrix as well as its effects on digestibility. Very little research has been conducted on the oxidative stability and microbiological safety of hybrid products.
Collapse
Affiliation(s)
- Joanna Tkaczewska
- Department of Animal Product Technology, University of Agriculture in Kraków, Poland Kraków
- School of Agriculture, Food, and Ecosystem Sciences, University of Melbourne, Parkville, Australia
| | - Tanyaradzwa Mungure
- School of Agriculture, Food, and Ecosystem Sciences, University of Melbourne, Parkville, Australia
| | - Robyn Warner
- School of Agriculture, Food, and Ecosystem Sciences, University of Melbourne, Parkville, Australia
| |
Collapse
|
2
|
Kim SH, Kumari S, Kim CJ, Lee EY, Alam AMMN, Chung YS, Hwang YH, Joo ST. Effect of Adding Cultured Meat Tissue on Physicochemical and Taste Characteristics of Hybrid Cultured Meat Manufactured Using Wet-Spinning. Food Sci Anim Resour 2024; 44:1440-1452. [PMID: 39554828 PMCID: PMC11564141 DOI: 10.5851/kosfa.2024.e104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 11/19/2024] Open
Abstract
This study investigated effect of adding cultured meat tissue (CMT; 10%, 20%, and 30%) to plant protein on quality of imitation muscle fiber (IMF) and hybrid cultured chicken meat (HCCM) manufactured using wet-spinning. The composite plant-based protein (CPP) solution consisted of pea protein, wheat protein, and sodium alginate. Adding 10%, 20% and 30% of CMT to CPP significantly reduced pH and Warner-Bratzler shear force of IMF (p<0.05). However, texture profile analysis revealed that hardness, gumminess, and cohesiveness of the CMT 30% sample were significantly higher while springiness was lower in CPP without adding CMT (p<0.05). Chewiness of CMT 20% was the highest among HCCM samples (p<0.05). As the amount of CMT added increased, sourness decreased significantly, while bitterness and richness increased significantly (all p<0.05). As CMT addition level increased, essential amino acid levels also increased comprehensively except phenylalanine, leading to improved nutritional quality of HCCM. These results imply that adding CMT could compensate for amino acids that are absent or lacking in CPP and enhance the taste of HCCM.
Collapse
Affiliation(s)
- So-Hee Kim
- Division of Applied Life Science (BK21
Four), Gyeongsang National University, Jinju 52828,
Korea
| | - Swati Kumari
- Division of Applied Life Science (BK21
Four), Gyeongsang National University, Jinju 52828,
Korea
| | - Chan-Jin Kim
- Division of Applied Life Science (BK21
Four), Gyeongsang National University, Jinju 52828,
Korea
| | - Eun-Yeong Lee
- Division of Applied Life Science (BK21
Four), Gyeongsang National University, Jinju 52828,
Korea
| | - AMM Nurul Alam
- Division of Applied Life Science (BK21
Four), Gyeongsang National University, Jinju 52828,
Korea
| | - Yong-Sik Chung
- Department of Organic Materials and
Textile Engineering, Jeonbuk National University, Jeonju
54896, Korea
| | - Young-Hwa Hwang
- Institute of Agriculture & Life
Science, Gyeongsang National University, Jinju 52828,
Korea
- Orange CAU Co., Ltd., Jinju
52839, Korea
| | - Seon-Tea Joo
- Division of Applied Life Science (BK21
Four), Gyeongsang National University, Jinju 52828,
Korea
- Institute of Agriculture & Life
Science, Gyeongsang National University, Jinju 52828,
Korea
- Orange CAU Co., Ltd., Jinju
52839, Korea
| |
Collapse
|
3
|
Han JH, Keum DH, Hong SJ, Kim YJ, Han SG. Comparative Evaluation of Polysaccharide Binders on the Quality Characteristics of Plant-Based Patties. Foods 2023; 12:3731. [PMID: 37893624 PMCID: PMC10606718 DOI: 10.3390/foods12203731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Polysaccharides have been used in the production of plant-based meat analogs to replicate the texture of real meat. However, there has been no study that comprehensively compares the effects of different polysaccharides, and a limited number of polysaccharides have been evaluated. Thus, we aimed to identify the most suitable polysaccharide and concentration for plant-based patties. Plant-based patties were manufactured by blending different concentrations (0%, 1%, and 2%) of six polysaccharides with other ingredients, and the quality characteristics and sensory properties were evaluated. The L* values of plant-based patties reduced during the cooking process resembled the color change of beef patty (BP). In particular, a 2% κ-carrageenan-added patty (Car-2) exhibited the lowest L* value among the plant-based patties, measured at 44.05 (p < 0.05). Texture parameters exhibited high values by adding 2% κ-carrageenan and locust bean gum, which was close to BP. In the sensory evaluation, Car-2 showed higher scores for sensory preferences than other plant-based patties. Based on our data, incorporating 2% κ-carrageenan could offer a feasible way of crafting plant-based meat analogs due to its potential to enhance texture and flavor. Further studies are required to evaluate the suitability of polysaccharides in various types of plant-based meat analogs.
Collapse
Affiliation(s)
| | | | | | | | - Sung-Gu Han
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea; (J.-H.H.); (D.-H.K.); (S.-J.H.); (Y.-J.K.)
| |
Collapse
|
4
|
Flores M, Hernán A, Salvador A, Belloch C. Influence of soaking and solvent extraction for deodorization of texturized pea protein isolate on the formulation and properties of hybrid meat patties. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2806-2814. [PMID: 36647301 DOI: 10.1002/jsfa.12453] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Hybrid batters constitute the base for the processing of cooked and dry meat analogues. The use of texturized plant proteins in their formulation is a key strategy to reduce the consumption of animal proteins, although off-flavors present in these plant proteins often cause sensory rejection. The aim was to study the effect of a deodorization process of pea protein, for their use in hybrid meat batters at different percentages of substitution. RESULTS Hybrid patties with higher percentages of pea protein showed higher values of yellowness, pH, and water activity, whereas hardness was reduced. Soaking treatment with ethanol for deodorization of the texturized pea protein increased humidity and pH in all patties but reduced the textural properties (hardness, springiness, cohesiveness, and chewiness). The addition of oat flour improved the patty texture at higher percentages of pea protein, but in soaked deodorized patty formulations it affected volatile retention. Volatile compounds related to off-flavors (aldehydes, alcohols, acid compounds, ketones, and pyrazines) appeared significantly increased as the pea percentage increased, although these were efficiently removed by the soaking deodorizing process applied. CONCLUSION Soaking of the texturized pea protein with ethanol is an effective strategy to reduce off-flavors in hybrid meat patties. However, it produces changes in the textural characteristics by the solubilization of the proteins of the texturized pea, reducing the availability to form a network and affecting volatile retention. The formulation of hybrid batter should be controlled in all sensory aspects for the processing of cooked and dry cured meat product analogues. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Mónica Flores
- Institute of Agrochemistry and Food Technology (IATA-CSIC), Paterna, Valencia, Spain
| | - Aina Hernán
- Institute of Agrochemistry and Food Technology (IATA-CSIC), Paterna, Valencia, Spain
| | - Ana Salvador
- Institute of Agrochemistry and Food Technology (IATA-CSIC), Paterna, Valencia, Spain
| | - Carmela Belloch
- Institute of Agrochemistry and Food Technology (IATA-CSIC), Paterna, Valencia, Spain
| |
Collapse
|
5
|
Strategies to Reduce Purge Losses in Meat Products Stuffed in Plastic Casings. J FOOD QUALITY 2023. [DOI: 10.1155/2023/8536199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
Abstract
Two different meat emulsions were prepared with different physical stability: R1 with 6.28 ± 1.13% total expressible fluid and R2 with 17.7 ± 1.48%. The emulsions were placed in plastic casings at three different surface tensions (ST), expressed as contact angle, and three distinct overstuffing percentages (OS). The stuffed samples were cooked in an industrial oven. After cooling, purge losses (PL) and texture profile analysis (TPA) were measured. The reduced surface tension of the plastic casings significantly decreased the PL of both recipes. In the case of R2, a combination of high OS and low ST was necessary to reduce PL in a 60%. In the case of TPA, OS had a statistical influence on parameters like chewiness, cohesiveness, and hardness. Plastic casings with different surface tension (to increase adherence of meat emulsion to the casing) stuffed at different levels of overstuffing percentages (to reduce free space between meat emulsion and casing) represent a potential tool to reduce PL of products based on low stability meat emulsions.
Collapse
|
6
|
Liu Z, Shaposhnikov M, Zhuang S, Tu T, Wang H, Wang L. Growth and survival of common spoilage and pathogenic bacteria in ground beef and plant-based meat analogues. Food Res Int 2023; 164:112408. [PMID: 36737989 DOI: 10.1016/j.foodres.2022.112408] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/17/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022]
Abstract
To better understand the microbial quality and safety of plant-based meat analogues, this study investigated the changes of native microflora present in soy- and pea-based meat analogues (SBM and PBM) and compared them with ground beef (GB). SBM, PBM, and GB were also artificially inoculated with meat spoilage microorganisms, Pseudomonas fluorescens and Brochothrix thermosphacta, and pathogenic microorganisms, Escherichia coli O157:H7, Salmonella spp., and Listeria monocytogenes; the fitness of these bacteria was evaluated during storage at refrigerated and/or abused temperatures. Results showed that the initial total aerobic plate count (APC), coliform, lactic acid bacteria (LAB), and mold/yeast (M/Y) counts for GB could be as high as 5.44, 2.90, 4.61, and 3.45 log CFU/g, while the highest initial APC, coliform, LAB, and M/Y counts found in SBM were 3.10, 2.00, 2.04, and 1.95 log CFU/g, and were 3.82, 2.51, 3.61, and 1.44 log CFU/g for PBM. The batch-to-batch differences in microbial counts were more significant in GB than in SBM and PBM. Despite the different initial concentrations, there was no difference among APC and LAB counts between the three meat types by the end of the 10-day 4 °C storage period, all approaching ca. 7.00 log CFU/g. Artificially-inoculated B. thermosphacta increased by 0.76, 1.58, and 0.96 log CFU/g in GB, PBM, and SBM respectively by the end of the refrigeration storage; P. fluorescens increased by 4.92, 3.00, and 0.40 log CFU/g in GB, PBM, and SBM respectively. Under refrigerated storage conditions, pathogenic bacteria did not change in GB and SBM. L. monocytogenes increased by 0.74 log in PBM during the 7-day storage at 4 °C. All three pathogens grew at abused storage temperatures, regardless of the meat type. Results indicated that plant-based meat could support the survival and even growth of spoilage and pathogenic microorganisms. Preventive controls are needed for ensuring the microbial quality and safety of plant-based meat analogues.
Collapse
Affiliation(s)
- Zhuosheng Liu
- Department of Food Science and Technology, University of California Davis, Davis, CA 95616, USA
| | - Maria Shaposhnikov
- Department of Food Science and Technology, University of California Davis, Davis, CA 95616, USA
| | - Shuai Zhuang
- Department of Food Science and Technology, University of California Davis, Davis, CA 95616, USA
| | - Tianyi Tu
- Department of Food Science and Technology, University of California Davis, Davis, CA 95616, USA
| | - Hongye Wang
- Department of Food Science and Technology, University of California Davis, Davis, CA 95616, USA.
| | - Luxin Wang
- Department of Food Science and Technology, University of California Davis, Davis, CA 95616, USA.
| |
Collapse
|
7
|
Baune MC, Terjung N, Tülbek MÇ, Boukid F. Textured vegetable proteins (TVP): Future foods standing on their merits as meat alternatives. FUTURE FOODS 2022. [DOI: 10.1016/j.fufo.2022.100181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
8
|
The best of both worlds? Challenges and opportunities in the development of hybrid meat products from the last 3 years. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
9
|
Guidi S, Formica FA, Denkel C. Mixing plant-based proteins: Gel properties of hemp, pea, lentil proteins and their binary mixtures. Food Res Int 2022; 161:111752. [PMID: 36192925 DOI: 10.1016/j.foodres.2022.111752] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/06/2022] [Accepted: 07/26/2022] [Indexed: 11/21/2022]
Abstract
One of the challenges in substituting dairy products by alternative proteins is that the properties of mixed protein gels cannot necessarily be predicted by those of single protein gels, whereas the need of mixing is often driven by nutritional aspects. However, mixing plant proteins could also open a door to new textures. The main goal of this study was to investigate the impact of binary mixing of hemp (H), yellow pea (P), and brown lentil (L) protein concentrates/isolates on their gel and water-holding properties. Dispersions of reconstituted proteins and mixtures thereof were gelled using glucono-δ-lactone (GDL), transglutaminase (TG), and temperature (T) at a protein content of 12% (w/w). Mixtures of pea and lentil proteins showed gel strengths for TG- and T-induced gels that are proportional to the ratio of the mixture constituents (linear mixing behavior), whereas synergistic effects were observed for GDL-induced gelation. In contrast, all mixtures containing hemp exhibited a non-linear mixing behavior for the three gelation methods, usually resulting in lower gel strengths compared to theoretically expected values. The study showed that mixing plant-based proteins of different protein sources can lead to very different mixing behaviors in terms of gel properties, showing either a reinforcing, an indifferent or a weakening effect compared to the theoretically expected properties. The results can help developing more targeted plant protein-based soft gel products such as yogurt alternatives with specific techno-functional properties, while adjusting the nutritional characteristics.
Collapse
Affiliation(s)
- Sarah Guidi
- Bern University of Applied Science, School of Agricultural, Forest and Food Sciences, Länggasse 85, CH-3052 Zollikofen, Switzerland
| | - Florian A Formica
- Bern University of Applied Science, School of Agricultural, Forest and Food Sciences, Länggasse 85, CH-3052 Zollikofen, Switzerland
| | - Christoph Denkel
- Bern University of Applied Science, School of Agricultural, Forest and Food Sciences, Länggasse 85, CH-3052 Zollikofen, Switzerland.
| |
Collapse
|
10
|
Ebert S, Michel W, Gotzmann L, Baune MC, Terjung N, Gibis M, Weiss J. Acidification behavior of mixtures of pork meat and wet texturized plant proteins in a minced model system. J Food Sci 2022; 87:1731-1741. [PMID: 35257380 DOI: 10.1111/1750-3841.16080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/05/2022] [Accepted: 01/20/2022] [Indexed: 02/06/2023]
Abstract
The increasing use of wet texturized plant proteins as meat substitutes requires a characterization of their functional properties, especially in terms of pH-behavior when being mixed with meat proteins to create so-called hybrid products. In this study, a minced model system containing pork meat, curing salt, and various amounts (0-100 wt%) of wet extruded proteins from pea (Pea I, II), pumpkin (Pumpkin I, II, III), and sunflower was used to evaluate the effect of mixing on pH and time-dependent pH-changes upon the addition of glucono-delta-lactone (GDL). Increasing concentrations of plant extrudates resulted in a linear increase of the initial (pH0h ), intermediate (pH6h ), and final pH48h for all samples and higher slopes at higher native pH of extrudates were found. Acidification kinetics of all samples were similar with a distinct pH-drop by 0.3 to 0.8 pH-units per wt% GDL in the first 6 h, followed by a plateau where pH remained constant. At extrudate concentrations of 5 wt% (Pea I, II, Pumpkin I, II) or 15 wt% (Pumpkin III, Sunflower), a sufficient acidification with typically used GDL-amounts ( = 1 wt%) could be achieved, while higher plant protein contents required higher GDL-concentrations in order to reach a pH value of 5.0; a common target value in dry-cured sausages. A mathematical model was proposed to correlate pH, time, acidifier, extrudate concentration, and plant protein origin, to aid in the adjustment of dry-cured hybrid meat formulations, and to describe thresholds of the feasible extrudate and acidifier concentrations. PRACTICAL APPLICATION: Despite the increasing relevance of texturized plant proteins as meat mimetics, little is known about their functional and process-related properties. This study shows that plant protein origin, the level of meat replacement, and the amount of acidifier are linked to the time-dependent pH-value on the basis of a mathematical model. This brings food developers one step closer in creating tailored formulations and estimating the effects of these novel ingredients in the final product characteristics of hybrid meats and analogues.
Collapse
Affiliation(s)
- Sandra Ebert
- Department of Food Material Science, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Wiebke Michel
- Department of Food Material Science, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Lisa Gotzmann
- Department of Food Material Science, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Marie-Christin Baune
- German Institute for Food Technology, Product Innovation, Lower Saxony, Quakenbrück, Germany
| | - Nino Terjung
- German Institute for Food Technology, Product Innovation, Lower Saxony, Quakenbrück, Germany
| | - Monika Gibis
- Department of Food Material Science, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Jochen Weiss
- Department of Food Material Science, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|