1
|
Zhan F, Li Q, Feng H, Lin R, Liang W, Lin L, Qin Z. A short-term of starvation improved the antioxidant activity and quality of African catfish (Clarias gariepinus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:911-925. [PMID: 38300371 DOI: 10.1007/s10695-024-01306-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/23/2024] [Indexed: 02/02/2024]
Abstract
Clarias gariepinus is an important freshwater fish with high economic value and breeding potential in China. It is a fast-growing and adaptable catfish, but the main problems facing the current market are its low price and poor taste, although starvation is a good solution to these problems. In this study, the effects of starvation on the physiology, biochemistry, and muscle quality of C. gariepinus were investigated. The results showed that compared with the control group, the weight gain rate and specific growth rate of the starvation group were significantly different. Body weight, visceral weight, condition factor, viscerosomatic index, hepatosomatic index, and viscera fat index all decreased, while visceral weight and hepatosomatic index decreased significantly after starvation for 30 days. The hardness and crude protein of muscle increased significantly and crude lipid decreased significantly. Taste-enhancing amino acids increased slightly, and fatty acids increased significantly. Compared with the control group, starvation led to changes in antioxidant defense parameters. The level of malondialdehyde (MDA) in liver increased significantly; the activities of superoxide dismutase (SOD) increased in serum after 30 days; the activities of glutathione peroxidase (GSH-Px) increased considerably in the serum and liver after 15 days; the activities of alanine aminotransferase (ALT) increased considerably in the serum and liver after 30 days. The in-depth study of changes in physiological, biochemical, and nutritional components of fish under starvation is helpful to understand the ecological strategy of fish to adapt to starvation and of great guiding significance for fishery resource management and aquaculture production.
Collapse
Affiliation(s)
- Fanbin Zhan
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510222, Guangdong Province, China
| | - Qingqing Li
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510222, Guangdong Province, China
| | - Huiwen Feng
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510222, Guangdong Province, China
| | - Ruikang Lin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510222, Guangdong Province, China
| | - Weiming Liang
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510222, Guangdong Province, China
| | - Li Lin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510222, Guangdong Province, China.
| | - Zhendong Qin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510222, Guangdong Province, China.
| |
Collapse
|
2
|
Peng L, Zhang L, Xiong S, You J, Liu R, Xu D, Huang Q, Ma H, Yin T. A comprehensive review of the mechanisms on fish stress affecting muscle qualities: Nutrition, physical properties, and flavor. Compr Rev Food Sci Food Saf 2024; 23:e13336. [PMID: 38558497 DOI: 10.1111/1541-4337.13336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/10/2024] [Accepted: 03/15/2024] [Indexed: 04/04/2024]
Abstract
Fish inevitably face numerous stressors in growth, processing, and circulation. In recent years, stress-related change in fish muscle quality has gradually become a research hotspot. Thus, the understanding of the mechanism regarding the change is constantly deepening. This review introduces the physiological regulation of fish under stress, with particular attention devoted to signal transduction, gene expression, and metabolism, and changes in the physiological characteristics of muscular cells. Then, the influences of various stressors on the nutrition, physical properties, and flavor of the fish muscle are sequentially described. This review emphasizes recent advances in the mechanisms underlying changes in muscle quality, which are believed to be involved mainly in physiological regulation under stress. In addition, studies are also introduced on improving muscle quality by mitigating fish stress.
Collapse
Affiliation(s)
- Ling Peng
- College of Food Science and Technology/National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Huazhong Agricultural University, Wuhan, China
| | | | - Shanbai Xiong
- College of Food Science and Technology/National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Juan You
- College of Food Science and Technology/National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Ru Liu
- College of Food Science and Technology/National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Defeng Xu
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Qilin Huang
- College of Food Science and Technology/National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Huawei Ma
- Engineering Research Center of Processing & Storage of Characteristic and Advantage Aquatic Products from Guangxi, Guangxi Academy of Fishery Science, Nanning, China
| | - Tao Yin
- College of Food Science and Technology/National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
3
|
Cao S, Guan L, Li C, Sun G, Tian H, Sun R, Tu J, Meng Y, Ma R. Effects of Dietary Protein and Lipid Levels on Growth, Metabolism, Antioxidative Capacity, and Fillet Quality of Adult Triploid Rainbow Trout Farmed in Net Cage. AQUACULTURE NUTRITION 2023; 2023:4733343. [PMID: 37288329 PMCID: PMC10243945 DOI: 10.1155/2023/4733343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/09/2023]
Abstract
The research is aimed at investigating the effects of dietary protein and lipid levels on adult triploid rainbow trout growth performance, feed utilization, digestive and metabolic enzyme activities, antioxidative capacity, and fillet quality. Nine diets containing three dietary protein levels (DP) (300, 350, and 400 g kg-1) and three dietary lipid levels (DL) (200, 250, and 300 g kg-1) were prepared using a 3 × 3 factorial design. In freshwater cages, 13,500 adult female triploid rainbow trout (3.2 ± 0.1 kg) were cultured for 77 days. Triplicate cages (500 fish per cage) were used as repetitions of each experimental diet. The findings revealed that as DP increased to 400 g kg-1 and DL raised to 300 g kg-1, the weight gain ratio (WGR) elevated significantly (P < 0.05). However, when DP ≥ 350 g kg-1, WGR was similar in the DL250 and DL300 groups. As DP raised to 350 g kg-1, the feed conversion ratio (FCR) notably decreased (P < 0.05). In the DP350DL300 group, lipids had a protein-sparing impact. High DP diet (400 g kg-1) generally improved fish health status by increasing antioxidant capacity in the liver and intestine. A high DL diet (300 g kg-1) showed no harmful effect on hepatic health based on plasma levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and antioxidant capacity in the liver. For fillet quality, a high DP diet could increase fillet yield, improve fillet hardness, springiness, and water-holding capacity values, and inhibit the production of off-flavors caused by n-6 fatty acids. A high DL diet could increase odor intensity, and EPA, DHA, and n-3 fatty acid concentrations decrease the thrombogenicity index value. The maximum fillet redness value was discovered in the DP400DL300 group. Overall, for adult triploid rainbow trout (≥3 kg), the minimum recommended DP and DL according to growth performance were 400 and 250 g kg-1, respectively; DP and DL based on feed utilization were 350 and 200 g kg-1, respectively; DP and DL based on fillet quality were 400 and 300 g kg-1, respectively.
Collapse
Affiliation(s)
- Songjing Cao
- State Key Laboratory of Plateau Ecology and Agriculture, College of Ecological Environmental Engineering, Qinghai University, Xining 810016, China
| | - Lingling Guan
- State Key Laboratory of Plateau Ecology and Agriculture, College of Ecological Environmental Engineering, Qinghai University, Xining 810016, China
| | - Changzhong Li
- State Key Laboratory of Plateau Ecology and Agriculture, College of Ecological Environmental Engineering, Qinghai University, Xining 810016, China
| | - Guoliang Sun
- State Key Laboratory of Plateau Ecology and Agriculture, College of Ecological Environmental Engineering, Qinghai University, Xining 810016, China
| | - Haining Tian
- State Key Laboratory of Plateau Ecology and Agriculture, College of Ecological Environmental Engineering, Qinghai University, Xining 810016, China
| | - Ruijian Sun
- Tongwei Agricultural Development Co., LTD., Chengdu 610000, China
| | - Jun Tu
- Tongwei Agricultural Development Co., LTD., Chengdu 610000, China
| | - Yuqiong Meng
- State Key Laboratory of Plateau Ecology and Agriculture, College of Ecological Environmental Engineering, Qinghai University, Xining 810016, China
| | - Rui Ma
- State Key Laboratory of Plateau Ecology and Agriculture, College of Ecological Environmental Engineering, Qinghai University, Xining 810016, China
| |
Collapse
|
4
|
Meng Y, Liu X, Guan L, Bao S, Zhuo L, Tian H, Li C, Ma R. Does Dietary Lipid Level Affect the Quality of Triploid Rainbow Trout and How Should It Be Assessed? Foods 2022; 12:15. [PMID: 36613231 PMCID: PMC9818296 DOI: 10.3390/foods12010015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Organoleptic properties and nutritional value are the most important characteristics of fish fillet quality, which can be determined by a series of quality evaluation indexes and closely related to fish nutrition. Systematic organoleptic and nutritional quality evaluation indexes consisting of 139 indexes for physical properties and chemical compositions of triploid rainbow trout were established. Besides, effects of dietary lipid levels (6.6%, 14.8%, 22.8% and 29.4%) on the quality of triploid rainbow trout were analyzed in the study. The main results showed that, for fillet appearance quality, fish fed diets with lipid levels above 22.8% had higher fillet thickness and redness but lower gutted yield and fillet yield (p < 0.05). For fillet texture, fish fed the diet with a 6.6% lipid level had the highest fillet hardness (5.59 N) and lowest adhesiveness (1.98 mJ) (p < 0.05), which could be related to lipid, glycogen, water soluble protein and collagen contents of the fish fillet. For fillet odor, the odor intensity of “green, fatty and fishy” significantly increased with the increase of the dietary lipid level (from 1400 to 2773 ng/g muscle; p < 0.05), which was related to the degradation of n-6 and n-9 fatty acids. For fillet taste, a high lipid diet (≥22.8%) could increase the umami taste compounds contents (from 114 to 261 mg/100 g muscle) but decrease the bitterness and sourness taste compounds contents (from 127 to 106 mg/100 g muscle and from 1468 to 1075 mg/100 g muscle, respectively) (p < 0.05). For nutritional value, a high lipid diet could increase the lipid nutrition level (such as the content of long chain polyunsaturated fatty acids increased from 3.47 to 4.41 g/kg muscle) but decease tryptophan and selenium content (from 2.48 to 1.60 g/kg muscle and from 0.17 to 0.11 g/kg muscle, respectively). In total, a high lipid diet could improve the quality of triploid rainbow trout. The minimum dietary lipid level for triploid rainbow trout should be 22.8% to keep the better organoleptic and nutritional quality.
Collapse
Affiliation(s)
- Yuqiong Meng
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
- College of Ecological Environmental Engineering, Qinghai University, Xining 810016, China
| | - Xiaohong Liu
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Lingling Guan
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Shoumin Bao
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Linying Zhuo
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Haining Tian
- College of Ecological Environmental Engineering, Qinghai University, Xining 810016, China
| | - Changzhong Li
- College of Ecological Environmental Engineering, Qinghai University, Xining 810016, China
| | - Rui Ma
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| |
Collapse
|