1
|
Mbye M, Ali AH, Kamal-Eldin A, Banat F. The impact of camel milk and its products on diabetes mellitus management: A review of bioactive components and therapeutic potential. NFS JOURNAL 2025; 38:100204. [DOI: 10.1016/j.nfs.2024.100204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
2
|
Rahman AU, Khan NU, Khan M, Khan ZU, Basit A, Panichayupakaranant P. A standardized chamuangone enriched extract from Garcinia cowa Roxb. leaves shows acute and sub-acute safety. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118625. [PMID: 39053706 DOI: 10.1016/j.jep.2024.118625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The safety assessment of herbal products is critical for their appropriate pharmacological applications. Garcinia cowa Roxb., commonly known as Cha-muang in Thai, has ethnopharmacological relevance for inflammation, infectious diseases, and diabetes. The leaf extracts of G. cowa have been extensively reported for their anticancer, anti-inflammatory, antimicrobial, and antioxidant effects. Notably, chamuangone is their major active constituent that contributes to various pharmacological properties. AIM OF THE STUDY The current study aims to establish a standardized chamuangone enriched extract (CEE) and assess its acute and sub-acute toxicities in animal models. METHODOLOGY CEE was established from G. cowa leaves using a microwave-assisted extraction (MAE), followed by fractionation and enrichment through silica gel vacuum and column chromatography. The concentration of chamuangone in the extract was quantified using a validated quantitative high-performance liquid chromatography (HPLC) method. The safety profiles of CEE were thoroughly evaluated in rodents according to the Organization for Economic Cooperation and Development (OECD) 425 and 407 guidelines. The effects on oxidative stress markers such as superoxide dismutase (SOD), reduced glutathione (GSH), catalase (CAT), and malondialdehyde (MDA) levels were also evaluated in various organs. RESULTS Based on the quantitative HPLC analysis, the CEE contained 73.0 ± 2.0% w/w of chamuangone. In the acute toxicity study, following up and down procedure the female rats were dosed with CEE at 1750 and 550 mg/kg body weight (b.w.), with CEE 1750 mg/kg b.w. was toxic, causing mortality, while CEE 550 mg/kg b.w. was deemed safe. An LD50 value was calculated according to the standard protocols, resulting in 970 mg/kg b.w. In histopathological examination, 550 mg/kg b.w. of CEE was safe in all the selected organs, while the 1750 mg/kg b.w. CEE treated rats exhibited toxic effects in histological tissues sections in the form of necrosis in the brain, cardiac muscle hypertrophy, liver inflammation, mild untoward effect in the spleen, fibrosis in the lungs, pancreatitis, pyelonephritis, and ovarian cyst. Administration of CEE at doses of 550 mg/kg b.w. (single dose) in the acute and 100 mg/kg b.w. (regularly 28-days) in the sub-acute toxicity studies significantly (p < 0.05) decreased levels of uric acid, triglycerides, and cholesterol. Importantly, the CEE (550 and 100 mg/kg b.w.) also significantly increased the levels of antioxidant enzymes (SOD, GSH, and CAT) and decreased MDA levels. Normal histopathology was observed in the sub-acute toxicity study in all treated groups. CONCLUSION This study successfully concludes that CEE at a dose of 100 mg/kg b.w. is safe for therapeutic application or use as a chemopreventive functional food utilizing green extraction methods. However, chronic toxicity studies are further recommended to validate safety concerns over an extended period.
Collapse
Affiliation(s)
- Asad Ur Rahman
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, 90112, Thailand
| | - Naveed Ullah Khan
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310013, China.
| | - Muhammad Khan
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, 90112, Thailand; Department of Pharmacology, Federal Urdu University of Arts, Science and Technology, Karachi, Pakistan
| | - Zaheer Ullah Khan
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, 22060, KP, Pakistan
| | - Abdul Basit
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, 90112, Songkhla, Thailand
| | - Pharkphoom Panichayupakaranant
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, 90112, Thailand; Phytomedicine and Pharmaceutical Biotechnology Excellence Centre, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, 90112, Thailand.
| |
Collapse
|
3
|
Almasri RS, Bedir AS, Ranneh YK, El-Tarabily KA, Al Raish SM. Benefits of Camel Milk over Cow and Goat Milk for Infant and Adult Health in Fighting Chronic Diseases: A Review. Nutrients 2024; 16:3848. [PMID: 39599634 PMCID: PMC11597306 DOI: 10.3390/nu16223848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
The nutritional composition, antimicrobial properties, and health benefits of camel milk (CAM), cow milk (COM), and goat milk (GOM) have been extensively studied for their roles in managing diabetes and cardiovascular diseases (CVD). This review compares these milk types' nutritional and therapeutic properties, emphasizing their applications in chronic disease management. CAM is rich in insulin-like proteins, vitamins, minerals, and bioactive compounds that benefit glycemic control and cardiovascular health. It also exhibits potent antioxidants, anti-inflammatory, and lipid-lowering effects, which are crucial for managing diabetes and reducing CVD risk factors. While COM and GOM provide essential nutrients, their impact on metabolic health differs. GOM is known for its digestibility and antihypertensive properties, whereas COM's higher lactose content may be less suitable for diabetic patients. CAM's unique nutritional profile offers distinct therapeutic benefits, particularly for diabetes and CVD management. Further research is needed to clarify its mechanisms of action and optimize its clinical application for chronic disease prevention and management.
Collapse
Affiliation(s)
- Razan S. Almasri
- Department of Nutrition, College of Medicine and Health Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (R.S.A.); (A.S.B.)
| | - Alaa S. Bedir
- Department of Nutrition, College of Medicine and Health Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (R.S.A.); (A.S.B.)
| | - Yazan K. Ranneh
- Department of Pharmacy, College of Pharmacy, Al Ain University of Science and Technology, Al Ain 64141, United Arab Emirates;
| | - Khaled A. El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates;
| | - Seham M. Al Raish
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates;
| |
Collapse
|
4
|
Ağagündüz D, Yilmaz B, Cemali Ö, Šimat V, Akkus G, Kulawik P, Ozogul F. Impact of dairy food products on type 2 diabetes: Gut-pancreas axis for lower glucose level. Trends Food Sci Technol 2024; 153:104741. [DOI: 10.1016/j.tifs.2024.104741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
5
|
Seyiti S, Kelimu A, Yusufu G. Bactrian Camel Milk: Chemical Composition, Bioactivities, Processing Techniques, and Economic Potential in China. Molecules 2024; 29:4680. [PMID: 39407609 PMCID: PMC11478162 DOI: 10.3390/molecules29194680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Bactrian camel (BC) milk has gained increasing attention due to its unique nutritional profile and potential bioactivities. This comprehensive review explores the chemical composition, bioactivities, processing techniques, and economic potential of BC milk in China. The distinctive chemical composition of BC milk, including protein, lipid, carbohydrate, vitamin, and mineral content, is discussed, emphasizing its differences from other mammalian milk. The review highlights the various bioactivities of BC milk, such as anti-inflammatory, antidiabetic, lipid-lowering, and anticancer properties, as well as its modulatory effects on intestinal microbiota. The technological properties of BC milk, focusing on its heat stability, coagulation behavior, and potential for product development, are examined. The review also addresses current processing techniques and their impact on milk quality. Finally, the economic potential and future perspectives of BC milk in China are evaluated. This review provides valuable insights into the multifaceted aspects of BC milk, serving as a foundation for future research and development in this emerging field. The motivation for this review stems from the growing interest in BC milk as a functional food and the need for a comprehensive understanding of its properties, applications, and market potential to guide future research and industry development.
Collapse
Affiliation(s)
- Shamila Seyiti
- School of Economics and Management, Xinjiang University, Shengli Road 666, Urumqi 830046, China;
| | - Abulimiti Kelimu
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Nongda East Road 311, Urumqi 830052, China
| | - Gulinaer Yusufu
- School of Economics and Management, Xinjiang University, Shengli Road 666, Urumqi 830046, China;
| |
Collapse
|
6
|
Yuzbashian E, Berg E, de Campos Zani SC, Chan CB. Cow's Milk Bioactive Molecules in the Regulation of Glucose Homeostasis in Human and Animal Studies. Foods 2024; 13:2837. [PMID: 39272602 PMCID: PMC11395457 DOI: 10.3390/foods13172837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/26/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024] Open
Abstract
Obesity disrupts glucose metabolism, leading to insulin resistance (IR) and cardiometabolic diseases. Consumption of cow's milk and other dairy products may influence glucose metabolism. Within the complex matrix of cow's milk, various carbohydrates, lipids, and peptides act as bioactive molecules to alter human metabolism. Here, we summarize data from human studies and rodent experiments illustrating how these bioactive molecules regulate insulin and glucose homeostasis, supplemented with in vitro studies of the mechanisms behind their effects. Bioactive carbohydrates, including lactose, galactose, and oligosaccharides, generally reduce hyperglycemia, possibly by preventing gut microbiota dysbiosis. Milk-derived lipids of the milk fat globular membrane improve activation of insulin signaling pathways in animal trials but seem to have little impact on glycemia in human studies. However, other lipids produced by ruminants, including polar lipids, odd-chain, trans-, and branched-chain fatty acids, produce neutral or contradictory effects on glucose metabolism. Bioactive peptides derived from whey and casein may exert their effects both directly through their insulinotropic effects or renin-angiotensin-aldosterone system inhibition and indirectly by the regulation of incretin hormones. Overall, the results bolster many observational studies in humans and suggest that cow's milk intake reduces the risk of, and can perhaps be used in treating, metabolic disorders. However, the mechanisms of action for most bioactive compounds in milk are still largely undiscovered.
Collapse
Affiliation(s)
- Emad Yuzbashian
- Department of Agriculture, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Emily Berg
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | | | - Catherine B Chan
- Department of Agriculture, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
7
|
Guo Y, Gu D, Okeke ES, Feng W, Chen Y, Mao G, Yang L, Wu X, Zhao T. Fenitrothion induces glucose metabolism disorders in rat liver BRL cells by inhibiting AMPKα and IRS1/PI3K/AKT signaling pathway. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106098. [PMID: 39277407 DOI: 10.1016/j.pestbp.2024.106098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/22/2024] [Accepted: 08/20/2024] [Indexed: 09/17/2024]
Abstract
Fenitrothion (FNT) is a common organophosphorus pesticide that is widely used in both agricultural and domestic pest control. FNT has been frequently detected in various environmental media, including the human body, and is a notable contaminant. Epidemiological investigations have recently shown the implications of exposure to FNT in the incidence of various metabolic diseases, such as diabetes mellitus in humans, indicating that FNT may be a potential endocrine disruptor. However, the effects of FNT exposure on glucose homeostasis and their underlying mechanisms in model organisms remain largely unknown, which may limit our understanding of the health risks of FNT. In this study, FNT (4 5, 90, 180, and 4 50 μM) exposure model of rat hepatocytes (Buffalo Rat Liver, BRL cells) was established to investigate the effects and potential mechanisms of its toxicity on glucose metabolism. Several key processes of glucose metabolism were detected in this study. The results showed significantly increased glucose levels in the culture medium and decreased glycogen content in the FNT-exposed BRL cells. The results of quantitative real-time PCR and enzymology showed the abnormal expression of genes and activity/content of glucose metabolic enzymes involved in glucose metabolism, which might promote gluconeogenesis and inhibit glucose uptake, glycolysis, and glycogenesis. Furthermore, gluconeogenesis and glycolytic were carried out in the mitochondrial membrane. The abnormal of mitochondrial membrane potential may be a potential mechanism underlying FNT-induced glucose metabolism disorder. In addition, the mRNA and protein expression implicated that FNT may disrupt glucose metabolism by inhibiting the AMPKα and IRS1/PI3K/AKT signaling pathways. In conclusion, results provide in vitro evidence that FNT can cause glucose metabolism disorder, which emphasizes the potential health risks of exposure to FNT in inducing diabetes mellitus.
Collapse
Affiliation(s)
- Yuchao Guo
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu, China
| | - Dandan Gu
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu, China
| | - Emmanuel Sunday Okeke
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu, China; Department of Biochemistry, Faculty of Biological Science & Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State 410001, Nigeria
| | - Weiwei Feng
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China
| | - Yao Chen
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu, China
| | - Guanghua Mao
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu, China
| | - Liuqing Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China
| | - Xiangyang Wu
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu, China.
| | - Ting Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China.
| |
Collapse
|
8
|
Ayoub MA, Yap PG, Mudgil P, Khan FB, Anwar I, Muhammad K, Gan CY, Maqsood S. Invited review: Camel milk-derived bioactive peptides and diabetes-Molecular view and perspectives. J Dairy Sci 2024; 107:649-668. [PMID: 37709024 DOI: 10.3168/jds.2023-23733] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/20/2023] [Indexed: 09/16/2023]
Abstract
In dairy science, camel milk (CM) constitutes a center of interest for scientists due to its known beneficial effect on diabetes as demonstrated in many in vitro, in vivo, and clinical studies and trials. Overall, CM had positive effects on various parameters related to glucose transport and metabolism as well as the structural and functional properties of the pancreatic β-cells and insulin secretion. Thus, CM consumption may help manage diabetes; however, such a recommendation will become rationale and clinically conceivable only if the exact molecular mechanisms and pathways involved at the cellular levels are well understood. Moreover, the application of CM as an alternative antidiabetic tool may first require the identification of the exact bioactive molecules behind such antidiabetic properties. In this review, we describe the advances in our knowledge of the molecular mechanisms reported to be involved in the beneficial effects of CM in managing diabetes using different in vitro and in vivo models. This mainly includes the effects of CM on the different molecular pathways controlling (1) insulin receptor signaling and glucose uptake, (2) the pancreatic β-cell structure and function, and (3) the activity of key metabolic enzymes in glucose metabolism. Moreover, we described the current status of the identification of CM-derived bioactive peptides and their structure-activity relationship study and characterization in the context of molecular markers related to diabetes. Such an overview will not only enrich our scientific knowledge of the plausible mode of action of CM in diabetes but should ultimately rationalize the claim of the potential application of CM against diabetes. This will pave the way toward new directions and ideas for developing a new generation of antidiabetic products taking benefits from the chemical composition of CM.
Collapse
Affiliation(s)
- Mohammed Akli Ayoub
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, 127788, Abu Dhabi, United Arab Emirates.
| | - Pei-Gee Yap
- Analytical Biochemistry Research Centre (ABrC), University Innovation Incubator (i2U) Building, SAINS@USM Campus, Universiti Sains Malaysia, Lebuh Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia
| | - Priti Mudgil
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, 15551, Al Ain, United Arab Emirates
| | - Farheen Badrealam Khan
- Department of Biology, College of Science, United Arab Emirates University, 15551, Al Ain, United Arab Emirates
| | - Irfa Anwar
- Department of Biology, College of Science, United Arab Emirates University, 15551, Al Ain, United Arab Emirates
| | - Khalid Muhammad
- Department of Biology, College of Science, United Arab Emirates University, 15551, Al Ain, United Arab Emirates
| | - Chee-Yuen Gan
- Analytical Biochemistry Research Centre (ABrC), University Innovation Incubator (i2U) Building, SAINS@USM Campus, Universiti Sains Malaysia, Lebuh Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia
| | - Sajid Maqsood
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, 15551, Al Ain, United Arab Emirates
| |
Collapse
|
9
|
Yang S, Yang H, Zhang Y. Yao-Shan of traditional Chinese medicine: an old story for metabolic health. Front Pharmacol 2023; 14:1194026. [PMID: 37663255 PMCID: PMC10468577 DOI: 10.3389/fphar.2023.1194026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 07/21/2023] [Indexed: 09/05/2023] Open
Abstract
Type 2 diabetes mellitus, nonalcoholic fatty liver disease (NAFLD), cardio-cerebrovascular diseases (CCVDs), hyperuricemia and gout, and metabolic-related sexual dysfunction are metabolic diseases that affect human health in modern society. Scientists have made great efforts to investigate metabolic diseases using cell models in vitro or animal models in the past. However, the findings from cells or animals are difficult to translate into clinical applications due to factors such as the in vitro and in vivo differences; the differences in anatomy, physiology, and genetics between humans and animals; and the differences in microbiome-host interaction. The Chinese have extensively used the medicated diet of traditional Chinese medicine (TCM) (also named as Yao-Shan of TCM, Chinese Yao-Shan et al.) to maintain or improve cardiometabolic health for more than 2,200 years. These ancient classic diets of TCM are essential summaries of long-term life and clinical practices. Over the past 5 years, our group has made every effort to collect and sort out the classic Yao-Shan of TCM from the ancient TCM literature since Spring and Autumn and Warring States Period, especially these are involved in the prevention and treatment of metabolic diseases, such as diabetes, NAFLD, CCVDs, hyperuricemia and gout, and sexual dysfunction. Here, we summarized and discussed the classic Yao-Shan of TCM for metabolic diseases according to the time recorded in the ancient literature, and revised the Latin names of the raw materials in these Yao-Shan of TCM. Moreover, the modern medicine evidences of some Yao-Shan of TCM on metabolic diseases have also been summarized and emphasized in here. However, the exact composition (in terms of ratios), preparation process, and dosage of many Yao-Shan are not standardized, and their main active ingredients are vague. Uncovering the mystery of Yao-Shan of TCM through modern biological and chemical strategies will help us open a door, which is ancient but now looks new, to modulate metabolic homeostasis and diseases.
Collapse
Affiliation(s)
- Shuangling Yang
- School of Health Sciences, Guangzhou Xinhua University, Guangzhou, Guangdong, China
| | - Hongzhi Yang
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yaxing Zhang
- Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Key Laboratory of Chinese Medicine Pathogenesis and Therapy Research, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
10
|
Wu J, Luo J, He Q, Xia Y, Tian H, Zhu L, Li C, Loor JJ. Docosahexaenoic Acid Alters Lipid Metabolism Processes via H3K9ac Epigenetic Modification in Dairy Goat. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37224334 DOI: 10.1021/acs.jafc.3c01606] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Goat milk is increasingly recognized by consumers due to its high nutritional value, richness in short- and medium-chain fatty acids, and richness in polyunsaturated fatty acids (PUFA). Exogenous supplementation of docosahexaenoic acid (DHA) is an important approach to increasing the content of PUFA in goat milk. Several studies have reported benefits of dietary DHA in terms of human health, including potential against chronic diseases and tumors. However, the mechanisms whereby an increased supply of DHA regulates mammary cell function is unknown. In this study, we investigated the effect of DHA on lipid metabolism processes in goat mammary epithelial cells (GMEC) and the function of H3K9ac epigenetic modifications in this process. Supplementation of DHA promoted lipid droplet accumulation increased the DHA content and altered fatty acid composition in GMEC. Lipid metabolism processes were altered by DHA supplementation through transcriptional programs in GMEC. ChIP-seq analysis revealed that DHA induced genome-wide H3K9ac epigenetic changes in GMEC. Multiomics analyses (H3K9ac genome-wide screening and RNA-seq) revealed that DHA-induced expression of lipid metabolism genes (FASN, SCD1, FADS1, FADS2, LPIN1, DGAT1, MBOAT2), which were closely related with changes in lipid metabolism processes and fatty acid profiles, were regulated by modification of H3K9ac. In particular, DHA increased the enrichment of H3K9ac in the promoter region of PDK4 and promoted its transcription, while PDK4 inhibited lipid synthesis and activated AMPK signaling in GMEC. The activation of the expression of fatty acid metabolism-related genes FASN, FADS2, and SCD1 and their upstream transcription factor SREBP1 by the AMPK inhibitor was attenuated in PDK4-overexpressing GMEC. In conclusion, DHA alters lipid metabolism processes via H3K9ac modifications and the PDK4-AMPK-SREBP1 signaling axis in goat mammary epithelial cells, providing new insights into the mechanism through which DHA affects mammary cell function and regulates milk fat metabolism.
Collapse
Affiliation(s)
- Jiao Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, People's Republic of China
| | - Jun Luo
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, People's Republic of China
| | - Qiuya He
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, People's Republic of China
| | - Yingying Xia
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, People's Republic of China
| | - Huibin Tian
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, People's Republic of China
| | - Lu Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, People's Republic of China
| | - Cong Li
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, People's Republic of China
| | - Juan J Loor
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, Illinois 61801, United States of America
| |
Collapse
|
11
|
Pei X, Li H, Yu H, Wang W, Mao D. APN Expression in Serum and Corpus Luteum: Regulation of Luteal Steroidogenesis Is Possibly Dependent on the AdipoR2/AMPK Pathway in Goats. Cells 2023; 12:1393. [PMID: 37408227 DOI: 10.3390/cells12101393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/23/2023] [Accepted: 05/09/2023] [Indexed: 07/07/2023] Open
Abstract
Adiponectin (APN) is an essential adipokine for a variety of reproductive processes. To investigate the role of APN in goat corpora lutea (CLs), CLs and sera from different luteal phases were collected for analysis. The results showed that the APN structure and content had no significant divergence in different luteal phases both in CLs and sera; however, high molecular weight APN was dominant in serum, while low molecular weight APN was more present in CLs. The luteal expression of both AdipoR1/2 and T-cadherin (T-Ca) increased on D11 and 17. APN and its receptors (AdipoR1/2 and T-Ca) were mainly expressed in goat luteal steroidogenic cells. The steroidogenesis and APN structure in pregnant CLs had a similar model as in the mid-cycle CLs. To further explore the effects and mechanisms of APN in CLs, steroidogenic cells from pregnant CLs were isolated to detect the AMPK-mediated pathway by the activation of APN (AdipoRon) and knockdown of APN receptors. The results revealed that P-AMPK in goat luteal cells increased after incubation with APN (1 μg/mL) or AdipoRon (25 μM) for 1 h, and progesterone (P4) and steroidogenic proteins levels (STAR/CYP11A1/HSD3B) decreased after 24 h. APN did not affect the steroidogenic protein expression when cells were pretreated with Compound C or SiAMPK. APN increased P-AMPK and reduced the CYP11A1 expression and P4 levels when cells were pretreated with SiAdipoR1 or SiT-Ca, while APN failed to affect P-AMPK, the CYP11A1 expression or the P4 levels when pretreated with SiAdipoR2. Therefore, the different structural forms of APN in CLs and sera may possess distinct functions; APN might regulate luteal steroidogenesis through AdipoR2 which is most likely dependent on AMPK.
Collapse
Affiliation(s)
- Xiaomeng Pei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Haolin Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hao Yu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Dagan Mao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
12
|
Mo J, Wang X, Liang N, Zhang N, Li Y, Zheng Z, Ao Q, Wu Y, Tang T, Liao S, Lei Y, Ding H, Du B, Feng M, Chen C, Shi Q, Wei L, Huang Y, Lu C, Tang S, Li X. Hepatic Leucine Carboxyl Methyltransferase 1 (LCMT1) contributes to high fat diet-induced glucose intolerance through regulation of glycogen metabolism. J Nutr Biochem 2023; 117:109321. [PMID: 36963730 DOI: 10.1016/j.jnutbio.2023.109321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 02/13/2023] [Accepted: 03/15/2023] [Indexed: 03/26/2023]
Abstract
Impaired glucose regulation is one of the most important risk factors for type 2 diabetes mellitus (T2DM) and cardiovascular diseases, which have become a major public health issue worldwide. Dysregulation of carbohydrate metabolism in liver has been shown to play a critical role in the development of glucose intolerance but the molecular mechanism has not yet been fully understood. In this study, we investigated the role of hepatic LCMT1 in the regulation of glucose homeostasis using a liver-specific LCMT1 knockout mouse model. The hepatocyte-specific deletion of LCMT1 significantly upregulated the hepatic glycogen synthesis and glycogen accumulation in liver. We found that the liver-specific knockout of LCMT1 improved high fat diet-induced glucose intolerance and insulin resistance. Consistently, the high fat diet-induced downregulation of glucokinase (GCK) and other important glycogen synthesis genes were reversed in LCMT1 knockout liver. In addition, the expression of GCK was significantly upregulated in MIHA cells treated with siRNA targeting LCMT1 and improved glycogen synthesis. In this study, we provided evidences to support the role of hepatic LCMT1 in the development of glucose intolerance induced by high fat diet and demonstrated that inhibiting LCMT1 could be a novel therapeutic strategy for the treatment of glucose metabolism disorders.
Collapse
Affiliation(s)
- Jiao Mo
- Department of Nutrition and Food Hygiene, School of Public Health, Guangxi Medical University, Nanning, 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China
| | - Xinhang Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Guangxi Medical University, Nanning, 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China
| | - Ningjing Liang
- Department of Nutrition and Food Hygiene, School of Public Health, Guangxi Medical University, Nanning, 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China
| | - Ning Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Guangxi Medical University, Nanning, 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China
| | - Yunqing Li
- Department of Nutrition and Food Hygiene, School of Public Health, Guangxi Medical University, Nanning, 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China
| | - Zhijian Zheng
- Department of Nutrition and Food Hygiene, School of Public Health, Guangxi Medical University, Nanning, 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China
| | - Qingqing Ao
- Department of Nutrition and Food Hygiene, School of Public Health, Guangxi Medical University, Nanning, 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China
| | - Yijie Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Guangxi Medical University, Nanning, 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China
| | - Tingting Tang
- Department of Nutrition and Food Hygiene, School of Public Health, Guangxi Medical University, Nanning, 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China
| | - Simi Liao
- Department of Nutrition and Food Hygiene, School of Public Health, Guangxi Medical University, Nanning, 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China
| | - Yu Lei
- Department of Nutrition and Food Hygiene, School of Public Health, Guangxi Medical University, Nanning, 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China
| | - Huan Ding
- Department of Nutrition and Food Hygiene, School of Public Health, Guangxi Medical University, Nanning, 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China
| | - Bingxin Du
- Department of Nutrition and Food Hygiene, School of Public Health, Guangxi Medical University, Nanning, 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China
| | - Mei Feng
- Department of Nutrition and Food Hygiene, School of Public Health, Guangxi Medical University, Nanning, 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China
| | - Chengying Chen
- School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, China
| | - Qianqian Shi
- Department of Nutrition and Food Hygiene, School of Public Health, Guangxi Medical University, Nanning, 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China
| | - Lancheng Wei
- Department of Nutrition and Food Hygiene, School of Public Health, Guangxi Medical University, Nanning, 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China
| | - Yue Huang
- Division of Medical Genetics, Department of Human Genetics, the David Geffen School of Medicine, The University of California-Los Angeles, Los Angeles, CA, USA
| | - Cailing Lu
- Department of Nutrition and Food Hygiene, School of Public Health, Guangxi Medical University, Nanning, 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China.
| | - Shen Tang
- School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, China.
| | - Xiyi Li
- Department of Nutrition and Food Hygiene, School of Public Health, Guangxi Medical University, Nanning, 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
13
|
Liu Y, Zheng Y, Yang T, Mac Regenstein J, Zhou P. Functional properties and sensory characteristics of kombucha analogs prepared with alternative materials. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
14
|
Liu Y, Hettinga K, Liu D, Zhang L, Zhou P. Current progress of emerging technologies in human and animals' milk processing: Retention of immune-active components and microbial safety. Compr Rev Food Sci Food Saf 2022; 21:4327-4353. [PMID: 36036722 DOI: 10.1111/1541-4337.13019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 01/28/2023]
Abstract
Human milk and commercial dairy products play a vital role in humans, as they can provide almost all essential nutrients and immune-active components for the development of children. However, how to retain more native immune-active components of milk during processing remains a big question for the dairy industry. Nonthermal technologies for milk processing are gaining increasing interest in both academic and industrial fields, as it is known that thermal processing may negatively affect the quality of milk products. Thermosensitive components, such as lactoferrin, immunoglobulins (Igs), growth factors, and hormones, are highly important for the healthy development of newborns. In addition to product quality, thermal processing also causes environmental problems, such as high energy consumption and greenhouse gas (GHG) emissions. This review summarizes the recent advances of UV-C, ultrasonication (US), high-pressure processing (HPP), and other emerging technologies for milk processing from the perspective of immune-active components retention and microbial safety, focusing on human, bovine, goat, camel, sheep, and donkey milk. Also, the detailed application, including the instrumental design, technical parameters, and obtained results, are discussed. Finally, future prospects and current limitations of nonthermal techniques as applied in milk processing are discussed. This review thereby describes the current state-of-the-art in nonthermal milk processing techniques and will inspire the development of such techniques for in-practice applications in milk processing.
Collapse
Affiliation(s)
- Yaowei Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Kasper Hettinga
- Dairy Science and Technology, Food Quality and Design Group, Wageningen, University and Research, Wageningen, The Netherlands
| | - Dasong Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Lina Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Peng Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
| |
Collapse
|