1
|
Severo JS, da Silva ACA, dos Santos BLB, Reinaldo TS, de Oliveira AM, Lima RSP, Torres-Leal FL, dos Santos AA, da Silva MTB. Physical Exercise as a Therapeutic Approach in Gastrointestinal Diseases. J Clin Med 2025; 14:1708. [PMID: 40095789 PMCID: PMC11899784 DOI: 10.3390/jcm14051708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 03/19/2025] Open
Abstract
Background/Objectives: Physical exercise can have significant consequences for the gastrointestinal tract, which is why there have been studies into its influence on the treatment of conditions such as colorectal cancer, inflammatory bowel diseases (IBD), and irritable bowel syndrome (IBS), being that there is epidemiological evidence that exercise has a protective effect against colon cancer. This review aims to demonstrate the mechanisms of action of physical exercise in the gastrointestinal tract, as well as the benefits of exercise in diseases associated with the digestive system, in addition to gathering training recommendations in treating different gastrointestinal diseases. Results: Physical exercise modulates gastrointestinal motility, permeability, immune responses, and microbiota composition, with both beneficial and adverse effects depending on intensity and duration. Regular moderate exercise is associated with improved quality of life in IBD and IBS, reduced colorectal cancer risk, and potential symptom relief in constipation. However, high-intensity exercise may exacerbate gastroesophageal reflux symptoms and increase the risk of gastrointestinal bleeding. While aerobic exercise has been extensively studied, the effects of resistance training on gastrointestinal health remain underexplored. Conclusions: New methodologies and techniques, such as molecular biology and the study of gastric receptors, have led to advances in understanding the gastrointestinal changes associated with physical exercise. These advances cover different exercise intensities and are being investigated in both experimental models and clinical studies.
Collapse
Affiliation(s)
- Juliana Soares Severo
- Graduate Program in Food Sciences and Nutrition, Metabolic Diseases, Exercise and Nutrition Research Group (DOMEN), Laboratory of Metabolic Diseases Glauto Tuquarre, Department of Biophysics and Physiology, Center for Health Sciences, Federal University of Piaui, Teresina 64049-550, PI, Brazil; (J.S.S.); (A.M.d.O.); (R.S.P.L.); (F.L.T.-L.)
| | | | | | - Thiago Sousa Reinaldo
- Multicenter Postgraduate Program in Physiological Sciences in Association with the Brazilian Society of Physiology, Federal University of Piauí, Teresina 64049-550, PI, Brazil;
| | - Aureliano Machado de Oliveira
- Graduate Program in Food Sciences and Nutrition, Metabolic Diseases, Exercise and Nutrition Research Group (DOMEN), Laboratory of Metabolic Diseases Glauto Tuquarre, Department of Biophysics and Physiology, Center for Health Sciences, Federal University of Piaui, Teresina 64049-550, PI, Brazil; (J.S.S.); (A.M.d.O.); (R.S.P.L.); (F.L.T.-L.)
| | - Rodrigo Soares Pereira Lima
- Graduate Program in Food Sciences and Nutrition, Metabolic Diseases, Exercise and Nutrition Research Group (DOMEN), Laboratory of Metabolic Diseases Glauto Tuquarre, Department of Biophysics and Physiology, Center for Health Sciences, Federal University of Piaui, Teresina 64049-550, PI, Brazil; (J.S.S.); (A.M.d.O.); (R.S.P.L.); (F.L.T.-L.)
| | - Francisco Leonardo Torres-Leal
- Graduate Program in Food Sciences and Nutrition, Metabolic Diseases, Exercise and Nutrition Research Group (DOMEN), Laboratory of Metabolic Diseases Glauto Tuquarre, Department of Biophysics and Physiology, Center for Health Sciences, Federal University of Piaui, Teresina 64049-550, PI, Brazil; (J.S.S.); (A.M.d.O.); (R.S.P.L.); (F.L.T.-L.)
| | - Armênio Aguiar dos Santos
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza 60430-270, CE, Brazil;
| | - Moisés Tolentino Bento da Silva
- Graduate Program in Pharmacology, Federal University of Piauí, Teresina 64049-550, PI, Brazil;
- Laboratory of Physiology, (MedInUP/RISE-Health)—Department of Immunophysiology and Pharmacology, School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
2
|
Kar A, Bornhorst GM. Ultrasound-treated hybrid protein gels from pea and whey: A comparison of gastric breakdown mechanisms with commercial protein-based foods. Food Res Int 2025; 203:115856. [PMID: 40022377 DOI: 10.1016/j.foodres.2025.115856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/15/2025] [Accepted: 01/23/2025] [Indexed: 03/03/2025]
Abstract
A novel hybrid protein gel was developed to sustainably meet the growing demands for protein with pea and whey protein isolates (3:2 in 15 % w/v protein content) which was ultrasound treated (7.5 and 15 min), and gelled (90 °C, 60 min). The study investigated the impact of ultrasound treatment on the structure and gastric breakdown kinetics of hybrid protein gels and compared these properties to commercial protein-based foods (ham, paneer, and mozzarella). Ultrasound treatment for 15 min significantly (p < 0.05) reduced particle size (d50: 5.4 µm vs 32.5 µm in control) and resulted in a higher initial Young's modulus than control. Protein hydrolysis at 180 min was ∼53 % lower (p < 0.05) with 15 min ultrasound treatment than control and 7.5 min ultrasound treatment. Hybrid protein gels exhibited similarities in initial Young's modulus to mozzarella (p > 0.05), while ham and paneer were significantly firmer (p < 0.05). Effective diffusivity of moisture from gastric fluid decreased (p < 0.05) in the order: ham > paneer and mozzarella > hybrid protein gels. In contrast, the effective acid diffusivity from gastric fluid was similar (p > 0.05) between hybrid protein gels and paneer, which were ∼74 % higher (p < 0.05) than ham and mozzarella. Digestion time influenced (p < 0.05) breakdown mechanisms (texture, dry matter loss, moisture, and acid uptake) during digestion. This study confirmed that hybrid protein gels were comparable to commercial protein-based foods and the limiting factor driving gastric breakdown is unique to different foods incorporating proteins.
Collapse
Affiliation(s)
- Alisha Kar
- Department of Food Science and Technology, University of California, Davis, CA, USA
| | - Gail M Bornhorst
- Department of Food Science and Technology, University of California, Davis, CA, USA; Department of Biological and Agricultural Engineering, University of California, Davis, CA, USA; Riddet Institute, Palmerston North, New Zealand.
| |
Collapse
|
3
|
Ramanan M, Gielens DRS, de Schepper CF, Courtin CM, Diepenbrock C, Fox GP. Environment found to explain the largest variance in physical and compositional traits in malting barley grain. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:8780-8790. [PMID: 38963165 DOI: 10.1002/jsfa.13704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/28/2024] [Accepted: 06/02/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND Starch is the most abundant constituent (dry weight) in the barley endosperm, followed by protein. Variability of compositional and potentially related physical traits due to genotype and environment can have important implications for the malting and brewing industry. This was the first study to assess the effects of genotype, environment, and their interaction (G × E) on endosperm texture, protein content, and starch traits corresponding to granule size, gelatinization, content, and composition, using a multi-environment variety trial in California, USA. RESULTS Overall, environment explained the largest variance for all traits (ranging from 23.2% to 76.5%), except the endosperm texture traits wherein the G × E term explained the largest variance (45.0-86.5%). Our unique method to quantify the proportion of fine and coarse milled barley particles using laser diffraction showed a binomial distribution of endosperm texture. The number of small starch granules varied significantly (P-value < 0.05) across genotypes and environments. We observed negative correlations between total protein content and each of enthalpy (-0.70), total starch content (-0.54), and difference between offset and onset gelatinization temperature (-0.52). Furthermore, amylose to amylopectin ratio was positively correlated to volume of small starch granules (0.36). CONCLUSION Our findings indicate that environment played a larger role in influencing the majority of starch-related physical and compositional traits. In contrast, variance in endosperm texture was largely explained by G × E. Maltsters would benefit from accounting for environmental contributions in addition to solely genotype when making sourcing decisions, especially with regards to total protein, total starch, enthalpy, and difference between offset and onset gelatinization temperature. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Maany Ramanan
- Department of Food Science and Technology, University of California Davis, Davis, CA, USA
| | - Daan R S Gielens
- Department of Microbial and Molecular Systems, Laboratory of Food Chemistry and Biochemistry, Leuven, Belgium
| | - Charlotte F de Schepper
- Department of Microbial and Molecular Systems, Laboratory of Food Chemistry and Biochemistry, Leuven, Belgium
| | - Christophe M Courtin
- Department of Microbial and Molecular Systems, Laboratory of Food Chemistry and Biochemistry, Leuven, Belgium
| | | | - Glen Patrick Fox
- Department of Food Science and Technology, University of California Davis, Davis, CA, USA
| |
Collapse
|
4
|
Nadia J, Roy D, Montoya CA, Singh H, Acevedo-Fani A, Bornhorst GM. A proposed framework to establish in vitro- in vivo relationships using gastric digestion models for food research. Food Funct 2024; 15:10233-10261. [PMID: 39302221 DOI: 10.1039/d3fo05663e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
In vitro digestion methods have been utilized in food research to reduce in vivo studies. Although previous studies have related in vitro and in vivo data, there is no consensus on how to establish an in vitro-in vivo relationship (IVIVR) for food digestion. A framework that serves as a tool to evaluate the utility and limitations of in vitro approaches in simulating in vivo processes is proposed to develop IVIVRs for food digestion, with a focus on the gastric phase as the main location of food structural breakdown during digestion. The IVIVR consists of three quantitative levels (A, B, and C) and a qualitative level (D), which relate gastric digestion kinetic data on a point-to-point basis, parameters derived from gastric digestion kinetic data, in vitro gastric digestion parameters with in vivo absorption or appearance parameters, and in vitro and in vivo trends, respectively. Level A, B, and C IVIVRs can be used to statistically determine the agreement between in vitro and in vivo data. Level A and B IVIVRs can be utilized further evaluate the accuracy of the in vitro approach to mimic in vivo processes. To exemplify the utilization of this framework, case studies are provided using previously published static and dynamic gastric in vitro digestion data and in vivo animal study data. Future food digestion studies designed to establish IVIVRs should be conducted to refine and improve the current framework, and to improve in vitro digestion approaches to better mimic in vivo phenomena.
Collapse
Affiliation(s)
- Joanna Nadia
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North, New Zealand.
| | - Debashree Roy
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North, New Zealand.
| | - Carlos A Montoya
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North, New Zealand.
- Smart Foods & Bioproducts, AgResearch, Te Ohu Rangahau Kai Facility, Palmerston North 4474, New Zealand
| | - Harjinder Singh
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North, New Zealand.
| | | | - Gail M Bornhorst
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North, New Zealand.
- Department of Biological and Agricultural Engineering, University of California, Davis, CA, USA
| |
Collapse
|
5
|
Morote L, Martínez Fajardo C, Parreño E, López Jiménez AJ, Santiago A, Ahrazem O, Rubio-Moraga Á, Gómez-Gómez L. Evaluation of Verbascum flower extracts as a natural source of pigments with potential health benefits. Food Funct 2024; 15:5921-5928. [PMID: 38738496 DOI: 10.1039/d4fo00075g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Crocins are bioactive glucosylated apocarotenoids that confer a yellow pigmentation. In addition to their coloring ability, crocins offer potential health benefits because of their antioxidant and anti-inflammatory properties. These compounds are present in the flowers and fruits of a few plant species, including saffron, gardenia, Buddleja and Verbascum species. Saffron extracts have been used for the formulation of functional foods. However, there is no evidence of the use of the other plants producing crocins in the food industry. This study evaluated the effect of the addition of ground dry flowers of two Verbascum species, with antioxidant activity, as well as dry fruit powder, from a recently engineered tomato plant producing fruits that accumulate high levels of crocins, as functional ingredients during the processing of rice, wheat cous-cous and maize noodles, providing a yellow pigmentation. Correlation analyses revealed that the increased antioxidant activity in the three food matrices was due to the presence of crocins, which showed no toxicity. Furthermore, in vitro digestion showed that crocins were more bioaccessible from rice than from cous-cous or maize noodles, inferring the importance of the food matrix in bio accessibility. The obtained results showed the commercial potential of Verbascum's flowers, as a source of crocins, natural pigments with antioxidant activities.
Collapse
Affiliation(s)
- Lucía Morote
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain.
| | - Cristian Martínez Fajardo
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain.
| | - Eduardo Parreño
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain.
| | - Alberto José López Jiménez
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain.
- Escuela Técnica Superior de Ingenieros Agrónomos y de Montes y Biotecnología, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain
| | - Alejandro Santiago
- Jardín Botánico de Castilla-La Mancha, Av. de la Mancha s/n, 02006 Albacete, Spain
| | - Oussama Ahrazem
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain.
- Escuela Técnica Superior de Ingenieros Agrónomos y de Montes y Biotecnología, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain
| | - Ángela Rubio-Moraga
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain.
- Escuela Técnica Superior de Ingenieros Agrónomos y de Montes y Biotecnología, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain
| | - Lourdes Gómez-Gómez
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain.
- Facultad de Farmacia, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain
| |
Collapse
|
6
|
Xu C, Cheng K, Kang Y, Cheng C, Zhang C, Shang L. Deacetylated Konjac Glucomannan with a Slower Hydration Rate Delays Rice Digestion and Weakens Appetite Response. Molecules 2024; 29:1681. [PMID: 38611960 PMCID: PMC11013606 DOI: 10.3390/molecules29071681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/31/2024] [Accepted: 04/06/2024] [Indexed: 04/14/2024] Open
Abstract
The physical characteristics of chyme during gastrointestinal digestion are considered to significantly affect nutrient digestion and absorption (such as glucose diffusion), which has an impact on postprandial satiety. The present study aims to analyze the hydration rate (HR) and rheological properties of deacetylated konjac glucomannan (DKGM) at different degrees and then explore their effects on rice texture, digestive properties, and the subjects' post-meal appetite. The present results show that, as the deacetylation degree (DD) of KGM increased, the intersection point of the viscoelastic modulus shifted to a high shear rate frequency, and as the swelling time of the DKGM was prolonged, its HR decreased significantly. The results of the in vitro gastrointestinal digestion tests show that the hardness and chewability of the rice in the fast-hydration group (MK1) were remarkably reduced. In contrast, the slow-hydration group (MK5) exhibited an outstanding ability to resist digestion. The kinetics of starch hydrolysis revealed that the HR of the rice in the fast-hydration group was 1.8 times faster than that of the slow-hydration group. Moreover, it was found that the subjects' appetite after the meal was highly related to the HR of the MK. Their hunger (p < 0.001), desire to eat (p < 0.001), and prospective food consumption (p < 0.001) were significantly inhibited in the slow-hydration group (MK5) compared to the control. This study explored the nutritional effects of the hydration properties derived from the DKGM, which may contribute to modifying the high glycemic index food and provide ideas for the fabrication of food with enhanced satiating capacity.
Collapse
Affiliation(s)
- Chenfeng Xu
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445002, China; (C.X.); (K.C.); (C.C.); (C.Z.)
- Hubei Key Laboratory of Selenium Resource Research and Biological Application, Hubei Minzu University, Enshi 445002, China
| | - Kaixuan Cheng
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445002, China; (C.X.); (K.C.); (C.C.); (C.Z.)
- Hubei Key Laboratory of Selenium Resource Research and Biological Application, Hubei Minzu University, Enshi 445002, China
| | - Yu Kang
- Enshi Tujia and Miao Autonomous Prefecture Academy of Agricultural Sciences, Hubei Minzu University, Enshi 445002, China;
| | - Chao Cheng
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445002, China; (C.X.); (K.C.); (C.C.); (C.Z.)
- Hubei Key Laboratory of Selenium Resource Research and Biological Application, Hubei Minzu University, Enshi 445002, China
| | - Chi Zhang
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445002, China; (C.X.); (K.C.); (C.C.); (C.Z.)
- Hubei Key Laboratory of Selenium Resource Research and Biological Application, Hubei Minzu University, Enshi 445002, China
| | - Longchen Shang
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445002, China; (C.X.); (K.C.); (C.C.); (C.Z.)
- Hubei Key Laboratory of Selenium Resource Research and Biological Application, Hubei Minzu University, Enshi 445002, China
- Enshi Tujia and Miao Autonomous Prefecture Academy of Agricultural Sciences, Hubei Minzu University, Enshi 445002, China;
| |
Collapse
|
7
|
Dávila León R, González‐Vázquez M, Lima‐Villegas KE, Mora‐Escobedo R, Calderón‐Domínguez G. In vitro gastrointestinal digestion methods of carbohydrate-rich foods. Food Sci Nutr 2024; 12:722-733. [PMID: 38370076 PMCID: PMC10867469 DOI: 10.1002/fsn3.3841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 10/02/2023] [Accepted: 11/03/2023] [Indexed: 02/20/2024] Open
Abstract
The trend toward healthier food products has led to an increase in the research of in vitro gastrointestinal digestion methods. Among the most used models, static models are the simplest. Most static models have three stages: oral, gastric, and intestinal, simulating the enzymatic, electrolyte, pH, temperature, and bile salt conditions. The studies that have taken the most notice are those related to antioxidant activity, followed by those dealing with proteins and carbohydrates using most of them static in vitro digestion models. The number of these studies has increased over the years, passing from 45 to 415 in a 10-year period (2012-2023) and showing an interest in knowing the impact of food on human health. Nevertheless, published papers report different methodologies and analytical approaches. This review discusses the similarities and differences between the published static in vitro gastrointestinal digestion methods, with a focus on carbohydrates, finding that the most used protocol is Infogest, but with differences, mainly in the type of enzymes and their activity. Regarding in vitro gastrointestinal digestion of carbohydrates, many of the published studies are related to food and biomacromolecules, being the oral phase the most omitted, while the intestinal phase in the most diverse. Other methodologies to study the intestinal phase have been recommended, but the number of in vitro digestion studies using these methodologies (RSIE and BBMV) is still scarce but could represent a good alternative to analyze carbohydrates foods when combining with Infogest. More studies are required in this area.
Collapse
Affiliation(s)
- Rebeca Dávila León
- Escuela Nacional de Ciencias BiológicasInstituto Politécnico NacionalCiudad de MéxicoMexico
| | | | | | - Rosalva Mora‐Escobedo
- Escuela Nacional de Ciencias BiológicasInstituto Politécnico NacionalCiudad de MéxicoMexico
| | | |
Collapse
|
8
|
Zambrano Y, Bornhorst GM, Bouchon P. Understanding the physical breakdown and catechin bioaccessibility of third generation extruded snacks enriched with catechin using the human gastric simulator. Food Funct 2024; 15:930-952. [PMID: 38170559 DOI: 10.1039/d3fo03857b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The nutritional quality of third-generation snacks prepared from rice flour by extrusion can be improved by the addition of polyphenols such as catechins, which are known to be more stable at high temperatures. However, the extrusion parameters can impact the breakdown and release of bioactive compounds and decrease the catechin bioaccessibility. Accordingly, this study investigated the impact of different extrusion parameters, including different extrusion temperatures (110, 135, and 150 °C) and moisture content prior to extrusion (27 and 31%), on the breakdown and bioaccessibility of catechin-enriched snacks during in vitro dynamic digestion using the Human Gastric Simulator (HGS). The extrusion parameters did not significantly impact most measured variables by themselves, indicating that within the tested ranges, any of the processing conditions could be used to produce a product with similar digestive behavior. However, the interaction of extrusion parameters (temperature and moisture content) played a significant role in the snack behavior during digestion. For example, the combination of 27% moisture content and 150 °C extrusion temperature had higher catechin bioaccessibility and higher starch hydrolysis than the other treatments. Overall, these findings suggest that the processing conditions of third generation snacks enriched with catechin can be optimized within certain ranges with limited modifications in the digestive properties.
Collapse
Affiliation(s)
- Yadira Zambrano
- Department of Chemical and Bioprocess Engineering, Faculty of Engineering, Pontificia Universidad Católica de Chile, Macul 6904411, Chile.
| | - Gail M Bornhorst
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North, New Zealand
- Department of Biological and Agricultural Engineering, University of California, Davis, CA 95618, USA.
| | - Pedro Bouchon
- Department of Chemical and Bioprocess Engineering, Faculty of Engineering, Pontificia Universidad Católica de Chile, Macul 6904411, Chile.
| |
Collapse
|
9
|
Kar A, Olenskyj AG, Garcia Guerrero M, Graham R, Bornhorst GM. Interplay of egg white gel pH and intragastric pH: Impact on breakdown kinetics and mass transport processes. Food Res Int 2023; 173:113290. [PMID: 37803603 DOI: 10.1016/j.foodres.2023.113290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/13/2023] [Accepted: 07/16/2023] [Indexed: 10/08/2023]
Abstract
Egg white gels have been utilized as a model system to study protein breakdown kinetics based on physical and biochemical breakdown processes during in vitro gastric digestion. Additionally, the impact of regulating intragastric pH on the breakdown kinetic processes was investigated. The present study evaluated the impact of gel pH (based on the pH of protein dispersion prepared at pH 3, 5 and 7.5) and intragastric pH regulation (with or without adjustment to pH 2 during in vitro gastric digestion) on the effective diffusion of gastric juice components (water and HCl), gel softening kinetics during gastric digestion, microstructural analysis using micro- computed tomography and protein hydrolysis in the liquid and solid fraction of egg white gel digesta. Egg white gels were subjected to 30 s oral digestion and 15, 30, 60, 120, 180 or 240 min gastric digestion in a static in vitro gastric digestion model, with or without gastric pH adjustment to pH 2. The gel pH affected all the properties measured during gastric digestion and each gel pH represented a specific driving mechanism for protein breakdown. A lower gel pH (pH 3) demonstrated a higher diffusion of moisture and acid, resulting in faster softening (p < 0.05). An intermediate pH (pH 5) showed greater protein-protein interactions due to the proximity to the isoelectric point of egg white proteins, resulting in very slow softening during digestion (p < 0.05), and a higher pH (pH 7) resulted in higher acid diffusion, intermediate gel hardness and very slow softening kinetics (p < 0.05). The gastric pH adjustment during digestion of egg protein gels affected (p < 0.05) the equilibrium moisture and acid contents as well as protein hydrolysis. The study confirmed that there is an interplay between initial gel pH and the intragastric pH which affected the breakdown kinetics of egg white gels during the gastric digestion process.
Collapse
Affiliation(s)
| | | | | | | | - Gail M Bornhorst
- University of California, Davis, USA; Riddet Institute, Palmerston North, New Zealand.
| |
Collapse
|
10
|
Subramanian P, Nadia J, Paul Singh R, Bornhorst GM. Comparison of four digestion protocols on the physical characteristics of gastric digesta from cooked couscous using the Human Gastric Simulator. Food Funct 2023; 14:8229-8247. [PMID: 37674386 DOI: 10.1039/d3fo01920a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
In vitro digestion is widely employed in food, nutraceutical and pharmaceutical research, and numerous in vitro gastric digestion protocols have been proposed, with a wide range of experimental conditions. Differences in the simulated gastric fluids (pH, mineral content, enzyme type and enzyme activity) of different digestion protocols may alter the results for the digestion of the same meal. This study aimed to investigate how variations in the gastric secretion rate and composition in four in vitro digestion protocols (Infogest Riddet, Infogest Semi-dynamic, UC Davis and United States Pharmacopeia) impacted the physical properties of the emptied gastric digesta. Cooked couscous was used as a model meal and subjected to simulated gastric digestion using a dynamic gastric model, the Human Gastric Simulator (HGS). The digesta were collected from the outlet of the HGS after 15, 30, 60, 90, 120, 150, or 180 min. The gastric emptying of dry matter, pH, rheological properties, and particle size were evaluated. The digestion protocol significantly influenced the solid content and moisture content of the digesta (p < 0.001), particles per gram of dry matter (p < 0.0001), gastric emptying of dry matter (p < 0.003), shear stress at 0.45 s-1 and consistency coefficient (p < 0.0001). The presence of NaHCO3 in the Infogest Riddet and Infogest Semi-dynamic gastric secretions provided an additional buffering effect and increased the digesta pH during gastric digestion. Similarly, the inclusion of mucin in the UC Davis protocol resulted in a higher flow and viscoelastic properties of the emptied digesta. The highest dilution of gastric content in the United States Pharmacopeia (USP) protocol resulted in larger particles emptied from the HGS and the longest gastric emptying half-time of all digestion protocols. These findings provide new insights into the impact of digestion protocols on the digesta properties, which can be beneficial for the design and standardization of in vitro digestion models.
Collapse
Affiliation(s)
| | - Joanna Nadia
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| | - R Paul Singh
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
- Department of Biological and Agricultural Engineering, University of California, Davis, CA 95618, USA.
| | - Gail M Bornhorst
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
- Department of Biological and Agricultural Engineering, University of California, Davis, CA 95618, USA.
| |
Collapse
|
11
|
Nadia J, Singh H, Bornhorst GM. Evaluation of the performance of the human gastric simulator using durum wheat-based foods of contrasting food structure. Food Funct 2023. [PMID: 37427445 DOI: 10.1039/d3fo00740e] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The selection of gastric digestion parameters in food digestion studies using in vitro models is critical to properly represent structural changes in the stomach. This study aimed to evaluate the performance of digestion in the human gastric simulator (HGS) using generalized in vitro gastric digestion parameters (secretion rate of 4.1 mL min-1, gastric emptying rate of 5.68 g min-1) that were derived from a previous in vivo study using six starch-rich foods. Two of the six foods used in the in vivo study (cooked durum wheat porridge/semolina and pasta) were digested in the HGS for up to 240 min, then the properties of the emptied and remaining digesta were measured. The properties of the in vitro remaining digesta were compared to those measured in vivo (growing pig stomach). The trends in the gastric breakdown rate and mechanisms, dry matter emptying kinetics, and starch hydrolysis of pasta and semolina were similar to those of in vivo. Gastric breakdown and dilution kinetics in vitro and in vivo were well-related but did not have a 1 : 1 correlation, whereas gastric acidification kinetics in the HGS deviated from that observed in vivo. The results suggest that generalized digestion parameters could be used to predict the effect of food structure on in vivo gastric breakdown and emptying, but care should be taken in interpretation of results, as the gastric acidification process was different from what was observed in vivo. This information will help refine in vitro digestion model parameters to provide more physiologically-relevant data in future studies.
Collapse
Affiliation(s)
- Joanna Nadia
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North, New Zealand.
| | - Harjinder Singh
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North, New Zealand.
| | - Gail M Bornhorst
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North, New Zealand.
- Department of Biological and Agricultural Engineering, University of California, Davis, CA 95618, USA
| |
Collapse
|
12
|
Wang R, Li M, Brennan MA, Kulasiri D, Guo B, Brennan CS. Phenolic Release during In Vitro Digestion of Cold and Hot Extruded Noodles Supplemented with Starch and Phenolic Extracts. Nutrients 2022; 14:nu14183864. [PMID: 36145240 PMCID: PMC9504551 DOI: 10.3390/nu14183864] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Dietary phenolic compounds must be released from the food matrix in the gastrointestinal tract to play a bioactive role, the release of which is interfered with by food structure. The release of phenolics (unbound and bound) of cold and hot extruded noodles enriched with phenolics (2.0%) during simulated in vitro gastrointestinal digestion was investigated. Bound phenolic content and X-ray diffraction (XRD) analysis were utilized to characterize the intensity and manner of starch-phenolic complexation during the preparation of extruded noodles. Hot extrusion induced the formation of more complexes, especially the V-type inclusion complexes, with a higher proportion of bound phenolics than cold extrusion, contributing to a more controlled release of phenolics along with slower starch digestion. For instance, during simulated small intestinal digestion, less unbound phenolics (59.4%) were released from hot extruded phenolic-enhanced noodles than from the corresponding cold extruded noodles (68.2%). This is similar to the release behavior of bound phenolics, that cold extruded noodles released more bound phenolics (56.5%) than hot extruded noodles (41.9%). For noodles extruded with rutin, the release of unbound rutin from hot extruded noodles and cold extruded noodles was 63.6% and 79.0%, respectively, in the small intestine phase, and bound rutin was released at a much lower amount from the hot extruded noodles (55.8%) than from the cold extruded noodles (89.7%). Hot extrusion may allow more potential bioaccessible phenolics (such as rutin), further improving the development of starchy foods enriched with controlled phenolics.
Collapse
Affiliation(s)
- Ruibin Wang
- Key Laboratory of Agro-Products Processing, Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture & Life Sciences, Lincoln University, Lincoln 7647, New Zealand
- Riddet Institute, Massey University, Palmerston North 4474, New Zealand
| | - Ming Li
- Key Laboratory of Agro-Products Processing, Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Margaret Anne Brennan
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture & Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - Don Kulasiri
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture & Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - Boli Guo
- Key Laboratory of Agro-Products Processing, Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
- Correspondence: (B.G.); (C.S.B.)
| | - Charles Stephen Brennan
- Riddet Institute, Massey University, Palmerston North 4474, New Zealand
- School of Science, Royal Melbourne Institute of Technology University, Melbourne, VIC 3000, Australia
- Correspondence: (B.G.); (C.S.B.)
| |
Collapse
|
13
|
Influence of food macrostructure on the kinetics of acidification in the pig stomach after the consumption of rice- and wheat-based foods: implications for starch hydrolysis and starch emptying rate. Food Chem 2022; 394:133410. [DOI: 10.1016/j.foodchem.2022.133410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 05/30/2022] [Accepted: 06/04/2022] [Indexed: 11/18/2022]
|