1
|
Liu C, Wang R, Wang T, Gu C, Zhang L, Meng D, Pan M, Yang R. The Whey-Plant Protein Heteroprotein Systems with Synergistic Properties and Versatile Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:4440-4454. [PMID: 39895259 DOI: 10.1021/acs.jafc.4c10736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Combining animal protein with plant protein is a feasible approach to provide heteroprotein formulations with versatile properties. This review introduces the interactions of typical protein whey protein (WP) from milk with soy protein (SP), pea protein (PP), rapeseed protein (RAP), lupine protein (LP), and rice protein (RIP) through physical and chemical methods. The characteristics of whey-plant protein complexes are described with particular emphasis on the protein types, structures, and properties. In addition, the factors that influence the formation of whey-plant complexes are reviewed. The potential food applications of whey-plant protein complexes are reviewed. Overcoming the shortcomings and future challenges for applications of the heteroprotein in the food field are highlighted. This review will fill the gap of whey protein and are important for the development of more versatile properties of whey proteins as well as a systematic understanding of the synergistic biological roles of these active proteins.
Collapse
Affiliation(s)
- Chang Liu
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ruhua Wang
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Tianyang Wang
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chunkai Gu
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Lingling Zhang
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Demei Meng
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Mingfei Pan
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Rui Yang
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
2
|
Sridhar K, Hamon P, Ossemond J, Bouhallab S, Croguennec T, Renard D, Lechevalier V. Plant and animal protein mixed systems as wall material for microencapsulation of Mānuka essential Oil: Characterization and in vitro release kinetics. Food Res Int 2024; 187:114419. [PMID: 38763669 DOI: 10.1016/j.foodres.2024.114419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/21/2024]
Abstract
Combination of plant and animal protein diet is becoming a valuable source of nutrition in the modern diet due to the synergistic functional properties inherent in these protein complexes. Moreover, the synergy between animal and plant proteins can contribute to the high stability and improved solubility of the encapsulated bioactive ingredients (e.g., essential oils). Therefore, the study was designed to evaluate the plant (pea protein (PP) and lupine protein (LP)) and animal protein (whey protein, WP) mixed systems as a wall material for microencapsulation of mānuka essential oil, as an example of bioactive compound. Moreover, physicochemical properties and in vitro release profile of encapsulated mānuka essential oil were studied. Mānuka essential oil microcapsules exhibited low moisture content (5.3-7.1 %) and low water activity (0.33-0.37) with a solubility of 53.7-68.1 %. Change in wall material ratio significantly affected the color of microcapsules, while microcapsules prepared with 1:1 protein/oil ratio demonstrated a high encapsulation efficiency (90.4 % and 89.4 %) for protein mixed systems (PP + WP and LP + WP), respectively. Microcapsules further showed low values for lipid oxidation with a high oxidative stability and antioxidant activity (62.1-87.0 %). The zero order and Korsmeyer-Peppas models clearly explained the release mechanism of encapsulated oil, which was dependent on the type and concentration of the protein mixed used. The findings demonstrated that the protein mixed systems successfully encapsulated the mānuka essential oil with controlled release and high oxidative stability, indicating the suitability of the protein mixed systems as a carrier in encapsulation and application potential in development of encapsulated functional foods.
Collapse
Affiliation(s)
- Kandi Sridhar
- INRAE, STLO, Institut Agro Rennes Angers, Rennes 35000, France
| | - Pascaline Hamon
- INRAE, STLO, Institut Agro Rennes Angers, Rennes 35000, France
| | | | - Saïd Bouhallab
- INRAE, STLO, Institut Agro Rennes Angers, Rennes 35000, France
| | | | - Denis Renard
- INRAE, Biopolymères Interactions Assemblages, Nantes 44300, France
| | | |
Collapse
|
3
|
Masiá C, Ong L, Logan A, Stockmann R, Gambetta J, Jensen PE, Rahimi Yazdi S, Gras S. Enhancing the textural and rheological properties of fermentation-induced pea protein emulsion gels with transglutaminase. SOFT MATTER 2023; 20:133-143. [PMID: 38054382 DOI: 10.1039/d3sm01001e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
The aim of this study was to assess how transglutaminase (TG) impacts the microstructure, texture, and rheological properties of fermentation-induced pea protein emulsion gels. Additionally, the study examined the influence of storage time on the functional properties of these gels. Fermentation-induced pea protein gels were produced in the presence or absence of TG and stored for 1, 4, 8, 12, and 16 weeks. Texture analysis, rheological measurements, moisture content and microstructure evaluation with confocal laser scanning microscopy (CLSM) and 3D image analysis were conducted to explore the effects of TG on the structural and rheological properties of the fermented samples. The porosity of the protein networks in the pea gels decreased in the presence of TG, the storage modulus increased and the textural characteristics were significantly improved, resulting in harder and more springy gels. The gel porosity increased in gels with and without TG after storage but the effect of storage on textural and rheological properties was limited, indicating limited structural rearrangement once the fermentation-induced pea protein emulsion gels are formed. Greater coalescence was observed for oil droplets within the gel matrix after 16 weeks of storage in the absence of TG, consistent with these protein structures being weaker than the more structurally stable TG-treated gels. This study shows that TG treatment is a powerful tool to enhance the textural and rheological properties of fermentation-induced pea protein emulsion gels.
Collapse
Affiliation(s)
- Carmen Masiá
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg, Denmark.
- Plant Based Application Department, Chr. Hansen A/S, Bøge Alle 10-12, 2970 Hørsholm, Denmark
- The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia
- CSIRO Agriculture and Food, 671 Sneydes Road, Werribee, Victoria 3030, Australia
| | - Lydia Ong
- The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Amy Logan
- CSIRO Agriculture and Food, 671 Sneydes Road, Werribee, Victoria 3030, Australia
| | - Regine Stockmann
- CSIRO Agriculture and Food, 671 Sneydes Road, Werribee, Victoria 3030, Australia
| | - Joanna Gambetta
- CSIRO Agriculture and Food, 671 Sneydes Road, Werribee, Victoria 3030, Australia
| | - Poul Erik Jensen
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg, Denmark.
| | - Saeed Rahimi Yazdi
- Plant Based Application Department, Chr. Hansen A/S, Bøge Alle 10-12, 2970 Hørsholm, Denmark
| | - Sally Gras
- The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
4
|
Nunes L, Hashemi N, Gregersen SB, Tavares GM, Corredig M. Compartmentalization of lutein in simple and double emulsions containing protein nanoparticles: Effects on stability and bioaccessibility. Food Res Int 2023; 173:113404. [PMID: 37803740 DOI: 10.1016/j.foodres.2023.113404] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 10/08/2023]
Abstract
Delivery systems designed through protein stabilized emulsions are promising for incorporating carotenoids in different products. Nevertheless, the versatility in structures of such systems raises questions regarding the effect of the bioactive compound localization on their bio-efficacy, in particular for double emulsions. In this context, the aims of this study were to determine the impact of the localization of lutein in different water/oil/water double emulsions versus a single oil/water emulsion on the stability and in vitro bioaccessibility of lutein, a lipophilic carotenoid. The inner aqueous phase, which contained whey protein isolate (WPI) nanoparticles obtained by desolvation, was emulsified in sunflower oil stabilized by polyglycerol polyricinoleate (PGPR). The primary emulsion was then emulsified in a continuous aqueous phase containing whey protein isolate (WPI) and xanthan gum, the latter to increase the viscosity of the outer phase and delay creaming. Lutein was incorporated using different strategies: (1) lutein entrapped by WPI nanoparticles within the inner water phase of a double emulsion (W-L/O/W); (2) lutein incorporated into the oil phase of the double emulsion (W/O-L/W); (3) lutein incorporated in the oil phase of a single emulsion (O-L/W). All systems contained similar whey protein concentrations, as well as all other stabilizers. W-L/O/W sample showed the lowest lutein stability against light exposure during storage, and the highest lutein bioaccessibility after in vitro digestion, for freshly made samples. Furthermore, the in vitro bioaccessibility of lutein incorporated into the single emulsion was considerably lower than those observed for the double emulsions. The results reinforce the importance of designing appropriate structures for delivering improved stability and bioaccessibility of bioactive compounds.
Collapse
Affiliation(s)
- Lauane Nunes
- CiFOOD, Food Science Department, Aarhus University, Aarhus N 9200, Denmark; Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Campinas, São Paulo 13083-862, Brazil
| | - Negin Hashemi
- CiFOOD, Food Science Department, Aarhus University, Aarhus N 9200, Denmark
| | | | - Guilherme M Tavares
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Campinas, São Paulo 13083-862, Brazil.
| | - Milena Corredig
- CiFOOD, Food Science Department, Aarhus University, Aarhus N 9200, Denmark
| |
Collapse
|
5
|
Kuang J, Hamon P, Lechevalier V, Saurel R. Thermal Behavior of Pea and Egg White Protein Mixtures. Foods 2023; 12:2528. [PMID: 37444266 DOI: 10.3390/foods12132528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
The partial substitution of animal protein by plant protein is a new opportunity to produce sustainable food. Hence, to control the heat treatment of a composite protein ingredient, this work investigated the thermal behavior of mixtures of raw egg white (EW) and a laboratory-prepared pea protein isolate (PPI). Ten-percentage-by-weight protein suspensions prepared with different PPI/EW weight ratios (100/0, 75/25, 50/50, 25/75, 0/100) at pH 7.5 and 9.0 were analyzed by differential scanning calorimetry (DSC) and dynamic rheology in temperature sweep mode (T < 100 °C). The DSC data revealed changes in the thermal denaturation temperatures (Td) of ovotransferrin, lysozyme, and pea legumin, supposing interactions between proteins. Denaturation enthalpy (∆H) showed a high pH dependence related to pea protein unfolding in alkaline conditions and solubility loss of some proteins in admixture. Upon temperature sweeps (25-95 °C), the elastic modulus (G') of the mixtures increased significantly with the EW content, indicating that the gel formation was governed by the EW protein. Two thermal sol-gel transitions were found in EW-containing systems. In particular, the first sol-gel transition shifted by approximately +2-3 °C at pH 9.0, probably by a steric hindering effect due to the presence of denatured and non-associated pea globulins at this pH.
Collapse
Affiliation(s)
- Jian Kuang
- PAM UMR A 02.102, L'Institut Agro Dijon, Université Bourgogne Franche-Comté, F-21000 Dijon, France
- INRAE, L'Institut Agro Rennes-Angers, UMR STLO, F-35042 Rennes, France
| | - Pascaline Hamon
- INRAE, L'Institut Agro Rennes-Angers, UMR STLO, F-35042 Rennes, France
| | | | - Rémi Saurel
- PAM UMR A 02.102, L'Institut Agro Dijon, Université Bourgogne Franche-Comté, F-21000 Dijon, France
| |
Collapse
|
6
|
Structural Modification of Jackfruit Leaf Protein Concentrate by Enzymatic Hydrolysis and Their Effect on the Emulsifier Properties. COLLOIDS AND INTERFACES 2022. [DOI: 10.3390/colloids6040052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Jackfruit leaf protein concentrate (LPC) was hydrolyzed by pepsin (H–Pep) and pancreatin (H–Pan) at different hydrolysis times (30–240 min). The effect of the enzyme type and hydrolysis time of the LPC on the amino acid composition, structure, and thermal properties and its relationship with the formation of O/W emulsions were investigated. The highest release of amino acids (AA) occurred at 240 min for both enzymes. H–Pan showed the greatest content of essential and hydrophobic amino acids. Low β-sheet fractions and high β-turn contents had a greater influence on the emulsifier properties. In H–Pep, the β-sheet fraction increased, while in H–Pan it decreased as a function of hydrolysis time. The temperatures of glass transition and decomposition were highest in H–Pep due to the high content of β-sheets. The stabilized emulsions with H–Pan (180 min of hydrolysis) showed homogeneous distributions and smaller particle sizes. The changes in the secondary structure and AA composition of the protein hydrolysates by the effect of enzyme type and hydrolysis time influenced the emulsifying properties. However, further research is needed to explore the use of H–Pan as an alternative to conventional emulsifiers or ingredients in functional foods.
Collapse
|
7
|
Colloidal and Acid Gelling Properties of Mixed Milk and Pea Protein Suspensions. Foods 2022; 11:foods11101383. [PMID: 35626953 PMCID: PMC9140544 DOI: 10.3390/foods11101383] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 02/01/2023] Open
Abstract
The present study aims to describe colloidal and acid gelling properties of mixed suspensions of pea and milk proteins. Mixed protein suspensions were prepared by adding pea protein isolate to rehydrated skimmed milk (3% w/w protein) to generate four mixed samples at 5, 7, 9, and 11% w/w total protein. Skimmed milk powder was also used to prepare four pure milk samples at the same protein concentrations. The samples were analyzed in regard to their pH, viscosity, color, percentage of sedimentable material, heat and ethanol stabilities, and acid gelling properties. Mixed suspensions were darker and presented higher pH, viscosity, and percentage of sedimentable material than milk samples. Heat and ethanol stabilities were similar for both systems and were reduced as a function of total protein concentration. Small oscillation rheology and induced syneresis data showed that the presence of pea proteins accelerated acid gel formation but weakened the final structure of the gels. In this context, the results found in the present work contributed to a better understanding of mixed dairy/plant protein functionalities and the development of new food products.
Collapse
|
8
|
Hinderink EB, Boire A, Renard D, Riaublanc A, Sagis LM, Schroën K, Bouhallab S, Famelart MH, Gagnaire V, Guyomarc'h F, Berton-Carabin CC. Combining plant and dairy proteins in food colloid design. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2021.101507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|