1
|
Hernández-Varela JD, Gallegos-Cerda SD, Chanona-Pérez JJ, Rojas Candelas LE, Martínez-Mercado E. Comparison of the SMLM technique and the MSSR algorithm in confocal microscopy for super-resolved imaging of cellulose fibres. J Microsc 2024; 296:184-198. [PMID: 38420882 DOI: 10.1111/jmi.13287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 01/31/2024] [Accepted: 02/19/2024] [Indexed: 03/02/2024]
Abstract
Nowadays, the use of super-resolution microscopy (SRM) is increasing globally due to its potential application in several fields of life sciences. However, a detailed and comprehensive guide is necessary for understanding a single-frame image's resolution limit. This study was performed to provide information about the structural organisation of isolated cellulose fibres from garlic and agave wastes through fluorophore-based techniques and image analysis algorithms. Confocal microscopy provided overall information on the cellulose fibres' microstructure, while techniques such as total internal reflection fluorescence microscopy facilitated the study of the plant fibres' surface structures at a sub-micrometric scale. Furthermore, SIM and single-molecule localisation microscopy (SMLM) using the PALM reconstruction wizard can resolve the network of cellulose fibres at the nanometric level. In contrast, the mean shift super-resolution (MSSR) algorithm successfully determined nanometric structures from confocal microscopy images. Atomic force microscopy was used as a microscopy technique for measuring the size of the fibres. Similar fibre sizes to those evaluated with SIM and SMLM were found using the MSSR algorithm and AFM. However, the MSSR algorithm must be cautiously applied because the selection of thresholding parameters still depends on human visual perception. Therefore, this contribution provides a comparative study of SRM techniques and MSSR algorithm using cellulose fibres as reference material to evaluate the performance of a mathematical algorithm for image processing of bioimages at a nanometric scale. In addition, this work could act as a simple guide for improving the lateral resolution of single-frame fluorescence bioimages when SRM facilities are unavailable.
Collapse
Affiliation(s)
- Josué David Hernández-Varela
- Departamento de Ingeniería Bioquímica, Instituto Politécnico Nacional, Mexico, Escuela Nacional de Ciencias Biológicas, Mexico City, Mexico
| | - Susana Dianey Gallegos-Cerda
- Departamento de Ingeniería Bioquímica, Instituto Politécnico Nacional, Mexico, Escuela Nacional de Ciencias Biológicas, Mexico City, Mexico
| | - José Jorge Chanona-Pérez
- Departamento de Ingeniería Bioquímica, Instituto Politécnico Nacional, Mexico, Escuela Nacional de Ciencias Biológicas, Mexico City, Mexico
| | - Liliana Edith Rojas Candelas
- Departamento de Ingeniería Bioquímica, Instituto Politécnico Nacional, Mexico, Escuela Nacional de Ciencias Biológicas, Mexico City, Mexico
| | - Eduardo Martínez-Mercado
- Departamento de Ingeniería Química Industrial y de Alimentos, Universidad Iberoamericana, Mexico City, Mexico
| |
Collapse
|
2
|
Yang S, Ten Klooster S, Nguyen KA, Hennebelle M, Berton-Carabin C, Schroën K, van Duynhoven JPM, Hohlbein J. Droplet size dependency and spatial heterogeneity of lipid oxidation in whey protein isolate-stabilized emulsions. Food Res Int 2024; 188:114341. [PMID: 38823851 DOI: 10.1016/j.foodres.2024.114341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/30/2024] [Accepted: 04/17/2024] [Indexed: 06/03/2024]
Abstract
Spatiotemporal assessment of lipid and protein oxidation is key for understanding quality deterioration in emulsified food products containing polyunsaturated fatty acids. In this work, we first mechanistically validated the use of the lipid oxidation-sensitive fluorophore BODIPY 665/676 as a semi-quantitative marker for local peroxyl radical formation. Next, we assessed the impact of microfluidic and colloid mill emulsification (respectively producing mono- and polydisperse droplets) on local protein and lipid oxidation kinetics in whey protein isolate (WPI)-stabilized emulsions. We further used BODIPY 581/591 C11 and CAMPO-AFDye 647 as colocalisation markers for lipid and protein oxidation. The polydisperse emulsions showed an inverse relation between droplet size and lipid oxidation rate. Further, we observed less protein and lipid oxidation occurring in similar sized droplets in monodisperse emulsions. This observation was linked to more heterogeneous protein packing at the droplet surface during colloid mill emulsification, resulting in larger inter-droplet heterogeneity in both protein and lipid oxidation. Our findings indicate the critical roles of emulsification methods and droplet sizes in understanding and managing lipid oxidation.
Collapse
Affiliation(s)
- Suyeon Yang
- Laboratory of Biophysics, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Sten Ten Klooster
- Laboratory of Food Process Engineering, Wageningen University & Research, 6708 WG Wageningen, the Netherlands
| | - Khoa A Nguyen
- Laboratory of Food Chemistry, Wageningen University & Research, 6708 WG Wageningen, the Netherlands
| | - Marie Hennebelle
- Laboratory of Food Chemistry, Wageningen University & Research, 6708 WG Wageningen, the Netherlands
| | - Claire Berton-Carabin
- Laboratory of Food Process Engineering, Wageningen University & Research, 6708 WG Wageningen, the Netherlands; INRAE, UR BIA, 44300 Nantes, France
| | - Karin Schroën
- Laboratory of Food Process Engineering, Wageningen University & Research, 6708 WG Wageningen, the Netherlands
| | - John P M van Duynhoven
- Laboratory of Biophysics, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, the Netherlands; Unilever Global Foods Innovation Centre, Plantage 14, 6708 WJ Wageningen, the Netherlands.
| | - Johannes Hohlbein
- Laboratory of Biophysics, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, the Netherlands; Microspectroscopy Research Facility, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, the Netherlands.
| |
Collapse
|
3
|
Hennebelle M, Villeneuve P, Durand E, Lecomte J, van Duynhoven J, Meynier A, Yesiltas B, Jacobsen C, Berton-Carabin C. Lipid oxidation in emulsions: New insights from the past two decades. Prog Lipid Res 2024; 94:101275. [PMID: 38280491 DOI: 10.1016/j.plipres.2024.101275] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 01/29/2024]
Abstract
Lipid oxidation constitutes the main source of degradation of lipid-rich foods, including food emulsions. The complexity of the reactions at play combined with the increased demand from consumers for less processed and more natural foods result in additional challenges in controlling this phenomenon. This review provides an overview of the insights acquired over the past two decades on the understanding of lipid oxidation in oil-in-water (O/W) emulsions. After introducing the general structure of O/W emulsions and the classical mechanisms of lipid oxidation, the contribution of less studied oxidation products and the spatiotemporal resolution of these reactions will be discussed. We then highlight the impact of emulsion formulation on the mechanisms, taking into consideration the new trends in terms of emulsifiers as well as their own sensitivity to oxidation. Finally, novel antioxidant strategies that have emerged to meet the recent consumer's demand will be detailed. In an era defined by the pursuit of healthier, more natural, and sustainable food choices, a comprehensive understanding of lipid oxidation in emulsions is not only an academic quest, but also a crucial step towards meeting the evolving expectations of consumers and ensuring the quality and stability of lipid-rich food products.
Collapse
Affiliation(s)
- Marie Hennebelle
- Laboratory of Food Chemistry, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, Netherlands.
| | - Pierre Villeneuve
- CIRAD, UMR Qualisud, Montpellier F34398, France; Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| | - Erwann Durand
- CIRAD, UMR Qualisud, Montpellier F34398, France; Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| | - Jérôme Lecomte
- CIRAD, UMR Qualisud, Montpellier F34398, France; Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| | - John van Duynhoven
- Laboratory of Biophysics, Wageningen University & Research, Wageningen, the Netherlands; Unilever Food Innovation Centre, Wageningen, the Netherlands
| | | | - Betül Yesiltas
- Research group for Bioactives - Analysis and Application, Technical University of Denmark, National Food Institute, Kgs. Lyngby DK-2800, Denmark
| | - Charlotte Jacobsen
- Research group for Bioactives - Analysis and Application, Technical University of Denmark, National Food Institute, Kgs. Lyngby DK-2800, Denmark
| | - Claire Berton-Carabin
- INRAE, UR BIA, Nantes 44300, France; Laboratory of Food Process Engineering, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
4
|
Unravelling mechanisms of protein and lipid oxidation in mayonnaise at multiple length scales. Food Chem 2022; 402:134417. [DOI: 10.1016/j.foodchem.2022.134417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 09/09/2022] [Accepted: 09/25/2022] [Indexed: 11/19/2022]
|
5
|
Super-Resolution Microscopy and Their Applications in Food Materials: Beyond the Resolution Limits of Fluorescence Microscopy. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02883-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
6
|
Hinderink EB, Meinders MB, Miller R, Sagis L, Schroën K, Berton-Carabin CC. Interfacial protein-protein displacement at fluid interfaces. Adv Colloid Interface Sci 2022; 305:102691. [PMID: 35533557 DOI: 10.1016/j.cis.2022.102691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/24/2022] [Accepted: 04/30/2022] [Indexed: 11/01/2022]
Abstract
Protein blends are used to stabilise many traditional and emerging emulsion products, resulting in complex, non-equilibrated interfacial structures. The interface composition just after emulsification is dependent on the competitive adsorption between proteins. Over time, non-adsorbed proteins are capable of displacing the initially adsorbed ones. Such rearrangements are important to consider, since the integrity of the interfacial film could be compromised after partial displacement, which may result in the physical destabilisation of emulsions. In the present review, we critically describe various experimental techniques to assess the interfacial composition, properties and mechanisms of protein displacement. The type of information that can be obtained from the different techniques is described, from which we comment on their suitability for displacement studies. Comparative studies between model interfaces and emulsions allow for evaluating the impact of minor components and the different fluid dynamics during interface formation. We extensively discuss available mechanistic physical models that describe interfacial properties and the dynamics of complex mixed systems, with a focus on protein in-plane and bulk-interface interactions. The potential of Brownian dynamic simulations to describe the parameters that govern interfacial displacement is also addressed. This review thus provides ample information for characterising the interfacial properties over time in protein blend-stabilised emulsions, based on both experimental and modelling approaches.
Collapse
|
7
|
Jabermoradi A, Yang S, Gobes MI, van Duynhoven JPM, Hohlbein J. Enabling single-molecule localization microscopy in turbid food emulsions. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A: MATHEMATICAL, PHYSICAL AND ENGINEERING SCIENCES 2022; 380:20200164. [PMID: 0 DOI: 10.1098/rsta.2020.0164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 08/20/2021] [Indexed: 05/19/2023]
Abstract
Turbidity poses a major challenge for the microscopic characterization of food systems. Local mismatches in refractive indices, for example, lead to significant image deterioration along sample depth. To mitigate the issue of turbidity and to increase the accessible optical resolution in food microscopy, we added adaptive optics (AO) and flat-field illumination to our previously published open microscopy framework, the miCube. In the detection path, we implemented AO via a deformable mirror to compensate aberrations and to modulate the emission wavefront enabling the engineering of point spread functions (PSFs) for single-molecule localization microscopy (SMLM) in three dimensions. As a model system for a non-transparent food colloid such as mayonnaise, we designed an oil-in-water emulsion containing the ferric ion binding protein phosvitin commonly present in egg yolk. We targeted phosvitin with fluorescently labelled primary antibodies and used PSF engineering to obtain two- and three-dimensional images of phosvitin covered oil droplets with sub 100 nm resolution. Our data indicated that phosvitin is homogeneously distributed at the interface. With the possibility to obtain super-resolved images in depth, our work paves the way for localizing biomacromolecules at heterogeneous colloidal interfaces in food emulsions.
This article is part of the Theo Murphy meeting issue ‘Super-resolution structured illumination microscopy (part 2)’.
Collapse
Affiliation(s)
- Abbas Jabermoradi
- Laboratory of Biophysics, Wageningen University and Research, Stippeneng 4, Wageningen 6708, The Netherlands
| | - Suyeon Yang
- Laboratory of Biophysics, Wageningen University and Research, Stippeneng 4, Wageningen 6708, The Netherlands
| | - Martijn I. Gobes
- Laboratory of Biophysics, Wageningen University and Research, Stippeneng 4, Wageningen 6708, The Netherlands
| | - John P. M. van Duynhoven
- Laboratory of Biophysics, Wageningen University and Research, Stippeneng 4, Wageningen 6708, The Netherlands
- Unilever Global Foods Innovation Centre, Bronland 14, Wageningen 6708, The Netherlands
| | - Johannes Hohlbein
- Laboratory of Biophysics, Wageningen University and Research, Stippeneng 4, Wageningen 6708, The Netherlands
- Microspectroscopy Research Facility, Wageningen University and Research, Stippeneng 4, Wageningen 6708, The Netherlands
| |
Collapse
|
8
|
Super resolution microscopy imaging of pH induced changes in the microstructure of casein micelles. FOOD STRUCTURE 2021. [DOI: 10.1016/j.foostr.2021.100231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|