1
|
Rutschmann A, Perry C, Le Galliard JF, Dupoué A, Lourdais O, Guillon M, Brusch G, Cote J, Richard M, Clobert J, Miles DB. Ecological responses of squamate reptiles to nocturnal warming. Biol Rev Camb Philos Soc 2024; 99:598-621. [PMID: 38062628 DOI: 10.1111/brv.13037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 03/06/2024]
Abstract
Nocturnal temperatures are increasing at a pace exceeding diurnal temperatures in most parts of the world. The role of warmer nocturnal temperatures in animal ecology has received scant attention and most studies focus on diurnal or daily descriptors of thermal environments' temporal trends. Yet, available evidence from plant and insect studies suggests that organisms can exhibit contrasting physiological responses to diurnal and nocturnal warming. Limiting studies to diurnal trends can thus result in incomplete and misleading interpretations of the ability of species to cope with global warming. Although they are expected to be impacted by warmer nocturnal temperatures, insufficient data are available regarding the night-time ecology of vertebrate ectotherms. Here, we illustrate the complex effects of nocturnal warming on squamate reptiles, a keystone group of vertebrate ectotherms. Our review includes discussion of diurnal and nocturnal ectotherms, but we mainly focus on diurnal species for which nocturnal warming affects a period dedicated to physiological recovery, and thus may perturb activity patterns and energy balance. We first summarise the physical consequences of nocturnal warming on habitats used by squamate reptiles. Second, we describe how such changes can alter the energy balance of diurnal species. We illustrate this with empirical data from the asp viper (Vipera aspis) and common wall lizard (Podarcis muralis), two diurnal species found throughout western Europe. Third, we make use of a mechanistic approach based on an energy-balance model to draw general conclusions about the effects of nocturnal temperatures. Fourth, we examine how warmer nights may affect squamates over their lifetime, with potential consequences on individual fitness and population dynamics. We review quantitative evidence for such lifetime effects using recent data derived from a range of studies on the European common lizard (Zootoca vivipara). Finally, we consider the broader eco-evolutionary ramifications of nocturnal warming and highlight several research questions that require future attention. Our work emphasises the importance of considering the joint influence of diurnal and nocturnal warming on the responses of vertebrate ectotherms to climate warming.
Collapse
Affiliation(s)
- Alexis Rutschmann
- Station d'Ecologie Théorique et Expérimentale de Moulis, CNRS UAR2029, 02 route du CNRS, Moulis, 09200, France
| | - Constant Perry
- Station d'Ecologie Théorique et Expérimentale de Moulis, CNRS UAR2029, 02 route du CNRS, Moulis, 09200, France
| | - Jean-François Le Galliard
- Sorbonne Université, CNRS, UMR 7618, IRD, INRAE, Institut d'écologie et des sciences de l'environnement (iEES Paris), Tours 44-45, 4 Place Jussieu, Paris, 75005, France
- Département de Biologie, Ecole Normale Supérieure, PSL Research University, CNRS, UMS 3194, Centre de Recherche en écologie expérimentale et Prédictive (CEREEP-Ecotron IleDeFrance), 78 rue du château, Saint-Pierre-Lès-Nemours, 77140, France
| | - Andréaz Dupoué
- Ifremer, Univ Brest, CNRS, IRD, UMR 6539, LEMAR, 1625 Rte de Sainte-Anne, Plouzané, 29280, France
| | - Olivier Lourdais
- Centre d'Etudes Biologiques de Chizé, CNRS UMR 7372-Université de La Rochelle, 405 Route de Prissé la Charrière, Villiers-en-Bois, 79630, France
- School of Life Sciences, Arizona State University, Life Sciences Center Building, 427E Tyler Mall, Tempe, AZ, 85281, USA
| | - Michaël Guillon
- Centre d'Etudes Biologiques de Chizé, CNRS UMR 7372-Université de La Rochelle, 405 Route de Prissé la Charrière, Villiers-en-Bois, 79630, France
- Cistude Nature, Chemin du Moulinat-33185, Le Haillan, France
| | - George Brusch
- Department of Biological Sciences, California State University San Marcos, 333 S. Twin Oaks Valley Rd., San Marcos, CA, 92096, USA
| | - Julien Cote
- Laboratoire Evolution et Diversité Biologique (EDB), UMR5174, Université Toulouse 3 Paul Sabatier, CNRS, IRD, 118 Rte de Narbonne, Toulouse, 31077, France
| | - Murielle Richard
- Station d'Ecologie Théorique et Expérimentale de Moulis, CNRS UAR2029, 02 route du CNRS, Moulis, 09200, France
| | - Jean Clobert
- Station d'Ecologie Théorique et Expérimentale de Moulis, CNRS UAR2029, 02 route du CNRS, Moulis, 09200, France
| | - Donald B Miles
- Department of Biological Sciences, 131 Life Science Building, Ohio University, Athens, OH, 45701, USA
| |
Collapse
|
2
|
Alma AM, Buteler M, Martinez A, Corley J. Wind disrupts trail pheromone communication in the leaf-cutting ant Acromyrmex lobicornis. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
3
|
Rutschmann A, Dupoué A, Miles DB, Megía-Palma R, Lauden C, Richard M, Badiane A, Rozen-Rechels D, Brevet M, Blaimont P, Meylan S, Clobert J, Le Galliard JF. Intense nocturnal warming alters growth strategies, colouration and parasite load in a diurnal lizard. J Anim Ecol 2021; 90:1864-1877. [PMID: 33884616 DOI: 10.1111/1365-2656.13502] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 04/06/2021] [Indexed: 11/27/2022]
Abstract
In the past decades, nocturnal temperatures have been playing a disproportionate role in the global warming of the planet. Yet, they remain a neglected factor in studies assessing the impact of global warming on natural populations. Here, we question whether an intense augmentation of nocturnal temperatures is beneficial or deleterious to ectotherms. Physiological performance is influenced by thermal conditions in ectotherms and an increase in temperature by only 2°C is sufficient to induce a disproportionate increase in metabolic expenditure. Warmer nights may expand ectotherms' species thermal niche and open new opportunities for prolonged activities and improve foraging efficiency. However, increased activity may also have deleterious effects on energy balance if exposure to warmer nights reduces resting periods and elevates resting metabolic rate. We assessed whether warmer nights affected an individual's growth, dorsal skin colouration, thermoregulation behaviour, oxidative stress status and parasite load by exposing yearling common lizards (Zootoca vivipara) from four populations to either ambient or high nocturnal temperatures for approximately 5 weeks. Warmer nocturnal temperatures increased the prevalence of ectoparasitic infestation and altered allocation of resources towards structural growth rather than storage. We found no change in markers for oxidative stress. The thermal treatment did not influence thermal preferences, but influenced dorsal skin brightness and luminance, in line with a predicted acclimation response in colder environments to enhance heat gain from solar radiation. Altogether, our results highlight the importance of considering nocturnal warming as an independent factor affecting ectotherms' life history in the context of global climate change. .
Collapse
Affiliation(s)
- Alexis Rutschmann
- USR5321, CNRS, Station d'Ecologie Théorique et Expérimentale (SETE), Moulis, France.,School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Andréaz Dupoué
- INRA, IRD, CNRS, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES)-Paris, Sorbonne Université, Paris, France
| | - Donald B Miles
- USR5321, CNRS, Station d'Ecologie Théorique et Expérimentale (SETE), Moulis, France.,Department of Biological Sciences, Ohio University, Athens, OH, USA
| | - Rodrigo Megía-Palma
- CIBIO, InBIO - Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Vairão, Portugal.,School of Pharmacy, Department of Biomedicine and Biotechnology, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Clémence Lauden
- USR5321, CNRS, Station d'Ecologie Théorique et Expérimentale (SETE), Moulis, France
| | - Murielle Richard
- USR5321, CNRS, Station d'Ecologie Théorique et Expérimentale (SETE), Moulis, France
| | - Arnaud Badiane
- INRA, IRD, CNRS, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES)-Paris, Sorbonne Université, Paris, France
| | - David Rozen-Rechels
- INRA, IRD, CNRS, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES)-Paris, Sorbonne Université, Paris, France.,Centre d'Études Biologiques de Chizé, CNRS, La Rochelle Université, Villiers-en-Bois, France
| | - Mathieu Brevet
- USR5321, CNRS, Station d'Ecologie Théorique et Expérimentale (SETE), Moulis, France
| | | | - Sandrine Meylan
- INRA, IRD, CNRS, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES)-Paris, Sorbonne Université, Paris, France
| | - Jean Clobert
- USR5321, CNRS, Station d'Ecologie Théorique et Expérimentale (SETE), Moulis, France
| | - Jean-François Le Galliard
- INRA, IRD, CNRS, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES)-Paris, Sorbonne Université, Paris, France.,Centre de Recherche en Écologie Expérimentale et Prédictive (CEREEP-Ecotron Ile De France), Département de Biologie, Ecole Normale Supérieure, CNRS, PSL University, Saint-Pierre-lès-Nemours, France
| |
Collapse
|
4
|
Speights CJ, Barton BT. Timing is everything: Effects of day and night warming on predator functional traits. FOOD WEBS 2019. [DOI: 10.1016/j.fooweb.2019.e00130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
5
|
Devegili AM, Alma AM, Lescano MN, Farji-Brener AG. Wind matters: Asymmetric distribution of aphids on host plants can be explained by stems functioning as windbreaks. AUSTRAL ECOL 2019. [DOI: 10.1111/aec.12796] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Andrés M. Devegili
- LIHO (Lab. Investigaciones en Hormigas); Laboratorio Ecotono; INIBIOMA-CONICET-UNCOMA; Bariloche Argentina
| | - Andrea Marina Alma
- LIHO (Lab. Investigaciones en Hormigas); Laboratorio Ecotono; INIBIOMA-CONICET-UNCOMA; Bariloche Argentina
| | - Maria Natalia Lescano
- LIHO (Lab. Investigaciones en Hormigas); Laboratorio Ecotono; INIBIOMA-CONICET-UNCOMA; Bariloche Argentina
| | - Alejandro G. Farji-Brener
- LIHO (Lab. Investigaciones en Hormigas); Laboratorio Ecotono; INIBIOMA-CONICET-UNCOMA; Bariloche Argentina
| |
Collapse
|
6
|
Barton BT, Hodge ME, Speights CJ, Autrey AM, Lashley MA, Klink VP. Testing the AC/DC hypothesis: Rock and roll is noise pollution and weakens a trophic cascade. Ecol Evol 2018; 8:7649-7656. [PMID: 30151178 PMCID: PMC6106185 DOI: 10.1002/ece3.4273] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 04/20/2018] [Accepted: 05/19/2018] [Indexed: 11/07/2022] Open
Abstract
Anthropogenic sound is increasingly considered a major environmental issue, but its effects are relatively unstudied. Organisms may be directly affected by anthropogenic sound in many ways, including interference with their ability to detect mates, predators, or food, and disturbances that directly affect one organism may in turn have indirect effects on others. Thus, to fully appreciate the net effect of anthropogenic sound, it may be important to consider both direct and indirect effects. We report here on a series of experiments to test the hypothesis that anthropogenic sound can generate cascading indirect effects within a community. We used a study system of lady beetles, soybean aphids, and soybean plants, which are a useful model for studying the direct and indirect effects of global change on food webs. For sound treatments, we used several types of music, as well as a mix of urban sounds (e.g., sirens, vehicles, and construction equipment), each at volumes comparable to a busy city street or farm tractor. In 18-hr feeding trials, rock music and urban sounds caused lady beetles to consume fewer aphids, but other types of music had no effect even at the same volume. We then tested the effect of rock music on the strength of trophic cascades in a 2-week experiment in plant growth chambers. When exposed to music by AC/DC, who articulated the null hypothesis that "rock and roll ain't noise pollution" in a song of the same name, lady beetles were less effective predators, resulting in higher aphid density and reduced final plant biomass relative to control (no music) treatments. While it is unclear what characteristics of sound generate these effects, our results reject the AC/DC hypothesis and demonstrate that altered interspecific interactions can transmit the indirect effects of anthropogenic noise through a community.
Collapse
Affiliation(s)
- Brandon T. Barton
- Department of Biological SciencesMississippi State UniversityMississippi StateMississippi
| | - Mariah E. Hodge
- Department of Biological SciencesMississippi State UniversityMississippi StateMississippi
| | - Cori J. Speights
- Department of Biological SciencesMississippi State UniversityMississippi StateMississippi
| | - Anna M. Autrey
- Department of Biological SciencesMississippi State UniversityMississippi StateMississippi
| | - Marcus A. Lashley
- Department of Wildlife, Fisheries, and AquacultureMississippi State UniversityMississippi StateMississippi
| | - Vincent P. Klink
- Department of Biological SciencesMississippi State UniversityMississippi StateMississippi
| |
Collapse
|
7
|
Barton BT, Schmitz OJ. Opposite effects of daytime and nighttime warming on top‐down control of plant diversity. Ecology 2017; 99:13-20. [DOI: 10.1002/ecy.2062] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/29/2017] [Accepted: 10/16/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Brandon T. Barton
- Department of Biological Sciences Mississippi State University Mississippi State Mississippi 39762 USA
| | - Oswald J. Schmitz
- School of Forestry and Environmental Studies Yale University New Haven Connecticut 06511 USA
| |
Collapse
|
8
|
Speights CJ, Harmon JP, Barton BT. Contrasting the potential effects of daytime versus nighttime warming on insects. CURRENT OPINION IN INSECT SCIENCE 2017; 23:1-6. [PMID: 29129273 DOI: 10.1016/j.cois.2017.06.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 06/14/2017] [Indexed: 06/07/2023]
Abstract
Mean increases in temperatures associated with climate change are largely driven by increases in minimum (nighttime) temperatures; however, most climate change studies disproportionately increase maximum (daytime) temperatures. We review current literature to compare the potential effects of increasing daytime and nighttime temperatures on insects and their interactions within ecological communities. Although few studies have explicitly addressed the effects of nighttime warming, we draw from broader literature on how insects are affected by temperature to identify possible mechanisms that the timing (day or night) of warming may affect insects. Specifically, we discuss daily temperature variation, thermal performance curves, behaviour and activity patterns, nighttime recovery from hot days, and bottom-up effects mediated by plants. Although limited, the existing evidence suggests nighttime and daytime warming can have different effects, and thus we encourage scientists to use the most realistic warming treatments possible to truly understand how insects and their communities will be affected by climate change.
Collapse
Affiliation(s)
- Cori J Speights
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, United States
| | - Jason P Harmon
- Department of Entomology, North Dakota State University, Fargo, ND 58108, United States
| | - Brandon T Barton
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, United States.
| |
Collapse
|
9
|
Barton BT, Harmon JP. Editorial overview: Global change biology: everything connects to everything else. CURRENT OPINION IN INSECT SCIENCE 2017; 23:v-vii. [PMID: 29129290 DOI: 10.1016/j.cois.2017.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Affiliation(s)
- Brandon T Barton
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, United States.
| | - Jason P Harmon
- Department of Entomology, North Dakota State University, Fargo, ND 58108, United States
| |
Collapse
|