1
|
Huang Q, Zhang J, Dong S, Hu B. Migration of Soluble Polymers in Human Saliva during Swabbing Characterized by Direct Electrospray Ionization Mass Spectrometry. Chem Res Toxicol 2025. [PMID: 40331372 DOI: 10.1021/acs.chemrestox.5c00004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Medical swabs are commonly used in routine medical sampling and testing of human body fluids, such as saliva and sputum. Many medical swabs are made of plastic polymers. Exposure to plastic medical swabs containing many free soluble polymers and residual monomers could increase the potential health risk. Conventional analytical methods for assessing personal exposure to polymers usually require complex sample preparation and time-consuming analytical procedures. In this study, we established a direct electrospray ionization mass spectrometry method to investigate the occurrence and species of soluble polymers in different medical swabs. The migration of typical soluble polymers, i.e., PA6 and PEG, was found in medical swabs and human saliva after swabbing within seconds. The amounts of PA6 and PEG were found to be nanograms per swab. Trace polymer could rapidly reside in saliva within seconds (e.g., 3 s). The exposure level of polymer residual was evaluated during different swabbing times and saliva volumes, showing the concentration of soluble polymers in saliva at the ng/mL level. Despite the low concentration and low toxicity of soluble polymers in saliva, it is anticipated that this method could offer a convenient and simple way to evaluate polymer exposures rapidly. We also hope our findings will attract more attention to the health risks of ubiquitous plastic materials in daily life and propose an efficient strategy to eliminate saliva polymers.
Collapse
Affiliation(s)
- Qiaoyun Huang
- College of Environment and Climate, Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, and Guangdong Provincial Key Laboratory of Speed Capability, Jinan University, Guangzhou 510632, China
| | - Jianfeng Zhang
- College of Environment and Climate, Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, and Guangdong Provincial Key Laboratory of Speed Capability, Jinan University, Guangzhou 510632, China
| | - Songbin Dong
- College of Environment and Climate, Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, and Guangdong Provincial Key Laboratory of Speed Capability, Jinan University, Guangzhou 510632, China
| | - Bin Hu
- College of Environment and Climate, Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, and Guangdong Provincial Key Laboratory of Speed Capability, Jinan University, Guangzhou 510632, China
| |
Collapse
|
2
|
Toma L, Piergiovanni M, Gentili S, Mattarozzi M, Careri M, Moyano E. An expanded framework for Swab Touch Spray-Mass Spectrometry towards the detection of allergenic protein residues on food preparation surfaces. Anal Chim Acta 2025; 1349:343818. [PMID: 40074453 DOI: 10.1016/j.aca.2025.343818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/14/2025] [Accepted: 02/18/2025] [Indexed: 03/14/2025]
Abstract
BACKGROUND Ambient Mass Spectrometry (AMS) encompasses a group of techniques that have emerged as powerful strategies for direct, in-situ and high-throughput analysis, also in compliance with the principles of green analytical chemistry. Swab Touch Spray-Mass Spectrometry (Swab TS-MS) is a home-made AMS technique that involves the use of a medical swab as sampling tool and electrospray probe. To date, Swab TS-MS has been applied only for the analysis of small molecules, especially in forensic and medical fields, leaving the analysis of peptides and proteins still unexplored. RESULTS In the present study, the application framework of Swab TS-MS was expanded towards the detection of proteins, focusing on residues of allergenic ingredients as contaminants of food preparation surfaces. Lysozyme from chicken egg white was selected as case study of allergenic protein. Since none of the experimental conditions explored allowed the detection of intact lysozyme, a bottom-up procedure based on tryptic digestion for lysozyme detection by Swab TS-MS, operating in MS/high resolution (HR)MS tandem mode, was investigated. In parallel, liquid chromatography-tandem mass spectrometry was used to develop and characterize an in-situ digestion/swabbing strategy, allowing to reach a LOD value of 0.003 μg/cm2 of egg white powder consistent with that of lateral flow immunoassay technique. Finally, the developed in-situ digestion/swabbing procedure was coupled to the Swab TS-MS/HRMS method, permitting the direct analysis of egg white powder residues on stainless steel surfaces, reaching a LOD of 68 μg/cm2 egg white powder, corresponding to 2.4 μg/cm2 of lysozyme. SIGNIFICANCE This study should be intended as a first step for the application of Swab TS-MS technique in protein analysis: the developed in-situ digestion and sampling strategy suitable for Swab TS-MS direct analysis of food allergen has a valuable impact towards the availability of MS-based multiplexed detection tool useful for the development of efficient surface cleaning procedures.
Collapse
Affiliation(s)
- Lorenzo Toma
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 17/A, 43124, Parma, Italy
| | - Maurizio Piergiovanni
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 17/A, 43124, Parma, Italy
| | - Silvia Gentili
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 17/A, 43124, Parma, Italy
| | - Monica Mattarozzi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 17/A, 43124, Parma, Italy; Interdepartmental Center on Safety, Technologies and Agri-Food Innovation (SITEIA.PARMA), University of Parma, Parco Area Delle Scienze 181/A, 43124, Parma, Italy
| | - Maria Careri
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 17/A, 43124, Parma, Italy; Interdepartmental Center on Safety, Technologies and Agri-Food Innovation (SITEIA.PARMA), University of Parma, Parco Area Delle Scienze 181/A, 43124, Parma, Italy
| | - Encarnación Moyano
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Av. Diagonal 645, Barcelona, E-08028, Spain
| |
Collapse
|
3
|
Basuri P, Safferthal M, Kovacevic B, Schorr P, Riedel J, Pagel K, Volmer DA. Characterization of Anticancer Drug Protomers Using Electrospray Ionization and Ion Mobility Spectrometry-Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:2869-2876. [PMID: 39355976 PMCID: PMC11622236 DOI: 10.1021/jasms.4c00233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 10/03/2024]
Abstract
We used electrospray ionization and ion mobility spectrometry-mass spectrometry to detect and characterize the three anticancer drugs palbociclib, copanlisib, and olaparib. Ion mobility-mass spectrometry and density functional theory revealed that these compounds generate isomers during ionization (protomers) due to the presence of multiple protonation sites within their chemical structures. Our work has implications for understanding the solution- and gas-phase chemistry of these molecules during spray-based ionization processes.
Collapse
Affiliation(s)
- Pallab Basuri
- Institute
of Chemistry, Humboldt-Universität
zu Berlin, 12489 Berlin, Germany
| | - Marc Safferthal
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, 14195 Berlin, Germany
| | - Borislav Kovacevic
- Division
of Physical Chemistry, Ruđer Bošković
Institute, 10000 Zagreb, Croatia
| | - Pascal Schorr
- Institute
of Chemistry, Humboldt-Universität
zu Berlin, 12489 Berlin, Germany
| | - Jerome Riedel
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, 14195 Berlin, Germany
| | - Kevin Pagel
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, 14195 Berlin, Germany
| | - Dietrich A. Volmer
- Institute
of Chemistry, Humboldt-Universität
zu Berlin, 12489 Berlin, Germany
| |
Collapse
|
4
|
Conway C, Weber M, Ferranti A, Wolf JC, Haisch C. Rapid desorption and analysis for illicit drugs and chemical profiling of fingerprints by SICRIT ion source. Drug Test Anal 2024; 16:1094-1101. [PMID: 38155431 DOI: 10.1002/dta.3623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/26/2023] [Accepted: 11/10/2023] [Indexed: 12/30/2023]
Abstract
Forensic analysis can encompass a wide variety of analytes from biological samples including DNA, blood, serum, and fingerprints to synthetic samples like drugs and explosives. In order to analyze this variety, there are various sample preparation techniques, which can be time-consuming and require multiple analytical instruments. With recent advancements in ambient ionization mass spectrometry (MS), plasma-based dielectric barrier discharge ionization (DBDI) sources have demonstrated to cover a wide range of these analytes. The flow-through design of this source also allows for easy connection to a thermal desorption type of sample introduction. We present an in-house built thermal desorption device where the sample is introduced via a glass slide, which gets heated and transferred to the DBDI-MS with nitrogen for identification and semi-quantification. Using a glass slide as an inexpensive sampling device, detection limits as low as 20 pg for fentanyl are demonstrated. Additionally, a very precise (>96% accuracy) identification of persons based on the chemical profile of their fingerprints is possible, establishing a direct analytical link of the drug trace to the individual in one measurement. We compared the DAG, TAG, sterol, and (semi-)volatile region of the averaged fingerprint spectra over multiple days, showing the best model accuracy for identification based on the DAG region. The combination of thermal desorption and DBDI-MS minimized sample preparation, leading to an ultrasensitive and rapid analysis of illicit drug traces and the identification of underlying personas based on fingerprints.
Collapse
Affiliation(s)
- Ciara Conway
- Department of Analytical Chemistry and Water Chemistry, Technical University of Munich, Garching, Germany
- Plasmion GmbH, Augsburg, Germany
| | | | | | | | - Christoph Haisch
- Department of Analytical Chemistry and Water Chemistry, Technical University of Munich, Garching, Germany
| |
Collapse
|
5
|
Muggli TM, Schürch S. Influence of Solvent Relative Permittivity in Swab Spray Mass Spectrometry. Molecules 2024; 29:4274. [PMID: 39275121 PMCID: PMC11397147 DOI: 10.3390/molecules29174274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/29/2024] [Accepted: 09/06/2024] [Indexed: 09/16/2024] Open
Abstract
The influence of solvent properties on ion generation by swab spray ionization was investigated. The ability of a variety of solvents of different relative permittivity, surface tension, and viscosity to form a stable and reproducible electrospray was examined. It is demonstrated that in swab spray ionization, a crucial balance between solvent composition, applied potential, and the solvent flow fed to the swab head must be maintained. The solvent composition was found to significantly affect the shape of the Taylor cone and the emerging cone jet, which eventually have an impact on the resulting ion yield. The results indicate that the relative permittivity of solvents measured under standard conditions is the main factor governing jet shaping, and consequently, the ionization efficacy. Short jets, which are required for maximum ion yield, were observed for solvents with relative permittivity εr higher than 25. Solvents exhibiting lower relative permittivity required the addition of 20% to 60% methanol to limit the jet length and to avoid the ineffective dripping pulsation. The observed effects were compared to conventional electrospray ionization and paper spray ionization.
Collapse
Affiliation(s)
- Thomas Michael Muggli
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Stefan Schürch
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
6
|
Ledergerber TD, Feeney W, Arroyo L, Trejos T. A feasibility study of direct analysis in real time-mass spectrometry for screening organic gunshot residues from various substrates. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4744-4757. [PMID: 37694390 DOI: 10.1039/d3ay01258a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
This study reports the use of direct analysis in real time-mass spectrometry (DART-MS) for the detection of organic gunshot residues (OGSR) in a variety of matrices of interest for forensics, customs, and homeland security. Detection limits ranged from (0.075 to 12) ng, with intra- and inter-day reproducibility below 0.0012% CV. The collection of mass spectra at multiple in-source collision-induced dissociation (is-CID) voltages produced distinctive mass spectral signatures with varying levels of fragmentation and allowed differentiation of isomers. To test method performance, a collection of 330 authentic specimens from various substrates were analyzed - (1) neat smokeless powders, (2) spent cartridge cases, (3) burnt particles removed from clothing via carbon stubs or (4) with tweezers, and hand samples from (5) non-shooters, and (6) shooters. A subset of hand specimens (n = 80) was further analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) for confirmation and comparison. Seven types of ammunition from five manufacturers and two calibers were monitored for OGSR profiles with similar compositions observed for paired sets (e.g., unburnt smokeless powder and the respective residues on spent cartridges, clothing, and hands). No false positives were observed across all datasets. A 100% true positive rate (TPR) was observed for all substrates except the shooters' hands. Depending on the ammunition type and classification criteria, the shooters' hands exhibited a TPR ranging from 19% to 73%. The results show that DART-MS is feasible and versatile for fast screening of OGSR across various substrates but may benefit from alternative approaches to improve detection at trace levels.
Collapse
Affiliation(s)
| | - William Feeney
- National Institute of Standards and Technology, 100 Bureau Dr, Gaithersburg, MD 20899, USA
| | - Luis Arroyo
- Department of Chemistry, West Virginia University, Morgantown, WV 26506, USA.
- Department of Forensic and Investigative Science, West Virginia University, Morgantown, WV 26506, USA
| | - Tatiana Trejos
- Department of Chemistry, West Virginia University, Morgantown, WV 26506, USA.
- Department of Forensic and Investigative Science, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
7
|
Muggli TM, Schürch S. Analysis of Pesticide Residues on Fruit Using Swab Spray Ionization Mass Spectrometry. Molecules 2023; 28:6611. [PMID: 37764387 PMCID: PMC10537605 DOI: 10.3390/molecules28186611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/06/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
The vast quantity and high variety of pesticides globally used in agriculture entails considerable risks for the environment and requires ensuring the safety of food products. Therefore, powerful analytical tools are needed to acquire qualitative and quantitative data for monitoring pesticide residues. The development of ambient ionization mass spectrometry methods in the past two decades has demonstrated numerous ways to generate ions under atmospheric conditions and simultaneously to reduce the need for extended sample preparation and circumvent chromatographic separation prior to mass analysis. Swab spray ionization enables the generation of ions directly from swabs via the application of high voltage and solvent flow. In this study, swab sampling of fruit surfaces and subsequent ionization directly from the swab in a modified electrospray ion source was employed for the screening and quantitation of pesticide residues. Aspects regarding sample collection, sampling efficacy on different surfaces, and swab background are discussed. The effect of solvent composition on pesticide-sodium adduct formation and the suppression of ionization by the background matrix have been investigated. Furthermore, a novel approach for the quantitation of pesticide residues based on depletion curve areas is presented. It is demonstrated that swab spray ionization is an effective and quick method for spectral library-based identification and the quantitative analysis of polar contact pesticide residues on food.
Collapse
Affiliation(s)
| | - Stefan Schürch
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland;
| |
Collapse
|
8
|
Fedick PW, Thoreson KM, Wilkins BP, Papenmeier DM, Bohrer BC, Dilger JM. From the laboratory to the field: Chemical analysis of colored smoke pyrotechnic formulations via mass spectrometry techniques. JOURNAL OF MASS SPECTROMETRY : JMS 2023; 58:e4917. [PMID: 37130581 DOI: 10.1002/jms.4917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 05/04/2023]
Abstract
Smoke dyes are complex molecular systems that have the potential to form many molecular derivatives and fragments when deployed. The chemical analysis of smoke samples is challenging due to the adiabatic temperature of the pyrotechnic combustion and the molecular complexity of the physically dispersed reaction products. Presented here is the characterization of the reaction byproducts of a simulant Mk124 smoke signal on a multigram scale, which contain the dye disperse red 9 (1-(methylamino)anthraquinone), by ambient ionization mass spectrometry. Our previous work has examined the thermal decomposition of a simplified smoke system consisting of disperse red 9, potassium chlorate, and sucrose by anaerobic pyrolysis gas chromatography mass spectrometry performed at the laboratory milligram scale. The results from the lab scale test were compared with a fully functioned Mk124 in the field. To achieve this, Mk124 smokes were functioned in the presence of sampling swabs that collected byproduct residues from the smoke plume in the ambient environment. These swabs were then analyzed using ambient ionization mass spectrometry to identify the expended pyrotechnic residues, with particular interest in halogenated species. Previous work determined the toxicity of unforeseen byproducts identified on the laboratory scale, which were also detected in the field demonstrating the correlation of the laboratory testing to the fielded systems. By understanding the chemical composition of smokes and their reaction products, potential toxicity effects can be easily assessed, leading to safer formulations with improved performance. These results can help assess how smoke byproducts may impact Warfighter performance, personnel health, and the environment.
Collapse
Affiliation(s)
- Patrick W Fedick
- Chemistry Division, Research Department, Naval Air Warfare Center Weapons Division, 1900 N. Knox Road, China Lake, California, 93555, USA
| | - Kelly M Thoreson
- Naval Surface Warfare Center, Crane Division, 300 Highway 361, Crane, Indiana, 47522, USA
| | - Benjamin P Wilkins
- Naval Surface Warfare Center, Crane Division, 300 Highway 361, Crane, Indiana, 47522, USA
| | - Douglas M Papenmeier
- Naval Surface Warfare Center, Crane Division, 300 Highway 361, Crane, Indiana, 47522, USA
| | - Brian C Bohrer
- Naval Surface Warfare Center, Crane Division, 300 Highway 361, Crane, Indiana, 47522, USA
- Chemistry and Biochemistry Department, University of Southern Indiana, 8600 University Blvd., Evansville, Indiana, 47712, USA
| | - Jonathan M Dilger
- Naval Surface Warfare Center, Crane Division, 300 Highway 361, Crane, Indiana, 47522, USA
| |
Collapse
|
9
|
Manchanda A, Gupta V, Wu L, Paull B. A thread-based electrofluidic platform for direct transfer, separation, and pre-concentration of materials from sample swabs. Analyst 2023; 148:1543-1551. [PMID: 36880438 DOI: 10.1039/d2an01856j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
A new method and platform has been developed for direct transfer, electrophoretic separation, and pre-concentration of swabbed samples using the principles of thread-based electrofluidics. A direct electrokinetic injection has been observed for a variety of analytes ranging from small molecules to proteins. The effect of physicochemical interactions of the analyte with the swab and the thread on the transfer efficiency has been studied by exploring different swab and thread combinations. For fluorescein, using a polyurethane swab, 98% and 94% transfer efficiencies were observed on mercerised cotton and nylon thread, while only 80% transfer efficiency was observed on polyester thread, respectively. A 97% transfer of fluorescein was observed on the nylon thread when a flocked nylon swab was used, while only 47% transfer was observed when a cotton swab was used. A successful transfer has been observed for both liquid and dry samples from either pre-wetted or dry swabs in both the presence and absence of any surrounding electrolytes. The platform has been further adapted for multiplexed analysis, where a sample from a single swab was transferred onto two parallel thread systems with ca. 50% distribution between them. The method has been validated for transfer, separation, and pre-concentration of DNA from blood. It has also been successfully used to directly analyse dried blood samples using a commercial sampling device, Neoteryx Mitra.
Collapse
Affiliation(s)
- Arushi Manchanda
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences, University of Tasmania, Hobart 7001, Australia. .,ARC Centre of Excellence for Electromaterials Sciences (ACES), School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Vipul Gupta
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences, University of Tasmania, Hobart 7001, Australia. .,ARC Centre of Excellence for Electromaterials Sciences (ACES), School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Liang Wu
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences, University of Tasmania, Hobart 7001, Australia. .,ARC Centre of Excellence for Electromaterials Sciences (ACES), School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Brett Paull
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences, University of Tasmania, Hobart 7001, Australia. .,ARC Centre of Excellence for Electromaterials Sciences (ACES), School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia
| |
Collapse
|
10
|
A spotlight on analytical prospects in food allergens: From emerging allergens and novel foods to bioplastics and plant-based sustainable food contact materials. Food Chem 2022; 388:132951. [PMID: 35447585 DOI: 10.1016/j.foodchem.2022.132951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 04/06/2022] [Accepted: 04/09/2022] [Indexed: 11/21/2022]
Abstract
The present review throws a spotlight on new and emerging food safety concerns in view of a well-established food allergen risk arising from global socio-economic changes, international trade, circular economy, environmental sustainability, and upcycling. Food culture globalization needs harmonization of regulations, technical specifications, and reference materials towards mutually recognised results. In parallel, routine laboratories require high-throughput reliable analytical strategies, even in-situ testing devices, to test both food products and food contact surfaces for residual allergens. Finally, the currently neglected safety issues associated to possible allergen exposure due to the newly proposed bio- and plant-based sustainable food contact materials require an in-depth investigation.
Collapse
|
11
|
Spherical Sampler Probes Enhance the Robustness of Ambient Ionization Mass Spectrometry for Rapid Drugs Screening. Molecules 2022; 27:molecules27030945. [PMID: 35164211 PMCID: PMC8840626 DOI: 10.3390/molecules27030945] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 02/06/2023] Open
Abstract
Ambient ionization mass spectrometry has become one of the most promising approaches for rapid and high-throughput screening of small molecules in complex biological matrices for emergency medicine, forensics, and food and agriculture applications. The simple procedures for sample collection and ionization without additional pretreatment are vital in these fields. Many efforts have been devoted to modifying various ambient ionization techniques to simplify the procedures and improve the robustness and sensitivity of the methods. Here, we demonstrate the implementation of rigid spherical sampler probes to improve the robustness of touch spray ionization mass spectrometry. The sphericity of the probes increases the stability of the cone-jet mode of electrospray, reduces the requirements for fine positioning of a sampler in the ion source, and decreases the possibility of corona discharge occurrence. The utilization of spherical sampler probes allows fast, non-invasive sampling, followed by rapid analysis for various drugs of different chemical classes in complex biological matrices, such as the whole blood or sebum collected from the skin surface. The linearity of the analytical signal response from drug concentration confirms the possibility of creating a simple semiquantitative method for small molecules monitoring using spherical sampler probes.
Collapse
|
12
|
Evans-Nguyen K, Stelmack AR, Clowser PC, Holtz JM, Mulligan CC. FIELDABLE MASS SPECTROMETRY FOR FORENSIC SCIENCE, HOMELAND SECURITY, AND DEFENSE APPLICATIONS. MASS SPECTROMETRY REVIEWS 2021; 40:628-646. [PMID: 32722885 DOI: 10.1002/mas.21646] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 02/24/2020] [Indexed: 05/26/2023]
Abstract
Mass spectrometry is commonly used in forensic chemistry laboratories for sensitive, definitive analysis. There have been significant efforts to bring mass spectrometry analysis on-site through the development of ruggedized, fieldable instruments. Testing samples in the field is of particular interest in forensic science, homeland security, and defense applications. In forensic chemistry, testing seized drugs in the field can significantly improve efficiencies in processing of related criminal cases. The screening of passengers and luggage at transportation hubs is a critical need for homeland security for which mass spectrometry is well suited to provide definitive answers with low false positive rates. Mass spectrometry can yield reliable data for military personnel testing sites for potential chemical weapons release. To meet the needs of the forensic and security communities fieldable mass spectrometers based on membrane inlet systems and hybrid gas chromatography systems have been developed and commercialized. More recently developed ambient ionization mass spectrometry methods can eliminate the time, equipment, and expertise associated with sample preparation, and so are especially appealing for on-site analysis. We describe the development of fieldable mass spectrometry systems, with emphasis on commercially available systems that have been deployed for on-site analysis of seized drugs, chemical warfare agents, explosives, and other analytes of interest to the forensic and security communities. © 2020 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Kenyon Evans-Nguyen
- Department of Chemistry, Biochemistry and Physics, University of Tampa, Tampa, FL
| | | | | | - Jessica M Holtz
- Department of Chemistry, Illinois State University, Normal, IL
| | | |
Collapse
|
13
|
Lee S, Chintalapudi K, Badu-Tawiah AK. Clinical Chemistry for Developing Countries: Mass Spectrometry. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2021; 14:437-465. [PMID: 33979544 PMCID: PMC8932337 DOI: 10.1146/annurev-anchem-091520-085936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Early disease diagnosis is necessary to enable timely interventions. Implementation of this vital task in the developing world is challenging owing to limited resources. Diagnostic approaches developed for resource-limited settings have often involved colorimetric tests (based on immunoassays) due to their low cost. Unfortunately, the performance/sensitivity of such simplistic tests are often limited and significantly hinder opportunities for early disease detection. A new criterion for selecting diagnostic tests in low- and middle-income countries is proposed here that is based on performance-to-cost ratio. For example, modern mass spectrometry (MS) now involves analysis of the native sample in the open laboratory environment, enabling applications in many fields, including clinical research, forensic science, environmental analysis, and agriculture. In this critical review, we summarize recent developments in chemistry that enable MS to be applied effectively in developing countries. In particular, we argue that closed automated analytical systems may not offer the analytical flexibility needed in resource-limited settings. Alternative strategies proposed here have potential to be widely accepted in low- and middle-income countries through the utilization of the open-source ambient MS platform that enables microsampling techniques such as dried blood spot to be coupled with miniature mass spectrometers in a centralized analytical platform. Consequently, costs associated with sample handling and maintenance can be reduced by >50% of the total ownership cost, permitting analytical measurements to be operated at high performance-to-cost ratios in the developing world.
Collapse
Affiliation(s)
- Suji Lee
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA;
| | - Kavyasree Chintalapudi
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA;
| | - Abraham K Badu-Tawiah
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA;
| |
Collapse
|
14
|
Brown HM, Fedick PW. Rapid, low-cost, and in-situ analysis of per- and polyfluoroalkyl substances in soils and sediments by ambient 3D-printed cone spray ionization mass spectrometry. CHEMOSPHERE 2021; 272:129708. [PMID: 35534952 DOI: 10.1016/j.chemosphere.2021.129708] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/13/2021] [Accepted: 01/17/2021] [Indexed: 06/14/2023]
Abstract
A rapid method to empirically determine the presence of trace per- and polyfluoroalkyl substances (PFAS) in solid media, such as soils, sands, and sediments, without any sample preparation, through ambient ionization mass spectrometry (MS), is described. 3D-printed cone spray ionization (3D-PCSI) is an ambient ionization technique that employs a 3D-printed conductive plastic cone to perform both sampling and ionization. The 3D-PCSI sources are fabricated in the shape of a hollowed square pyramid to hold bulk matrices, and consist of rigid walls to aid in the uniformity and consistency of sampling and ionization. Solid samples are placed within the hollowed pyramid and a solvent is added to perform an in-situ extraction, followed by spray-based ionization when a voltage is applied. The low cost of 3D-printing, its reproducibility at scale, and lack of sample preparation, enables 3D-PCSI-MS to rapidly and efficiently screen for trace PFAS, in-situ, in bulk samples. Demonstrated here is the detection of trace PFAS that were doped into six different soil and sediment matrices, by 3D-PCSI-MS, to validate the universality of the method, irrespective of matrix composition. All PFAS were identified by their indicative MS3 spectra and ranged in detection limits from 100 ppt to 10 ppb depending on the compound and soil classification. Legacy aqueous film forming foams (AFFF) were analyzed in soil by 3D-PCSI-MS, as were soil samples collected around an AFFF testing facility. The sampling rate for 3D-PCSI-MS was less than 2 min per sample, demonstrating the applicability to high-throughput mapping of a contaminated area.
Collapse
Affiliation(s)
- Hilary M Brown
- Research Department, Chemistry Division, United States Navy - Naval Air Systems Command (NAVAIR). Naval Air Warfare Center, Weapons Division (NAWCWD), 1900 N. Knox Road, China Lake, California, 93555, United States
| | - Patrick W Fedick
- Research Department, Chemistry Division, United States Navy - Naval Air Systems Command (NAVAIR). Naval Air Warfare Center, Weapons Division (NAWCWD), 1900 N. Knox Road, China Lake, California, 93555, United States.
| |
Collapse
|
15
|
Brown HM, McDaniel TJ, Doppalapudi KR, Mulligan CC, Fedick PW. Rapid, in situ detection of chemical warfare agent simulants and hydrolysis products in bulk soils by low-cost 3D-printed cone spray ionization mass spectrometry. Analyst 2021; 146:3127-3136. [PMID: 33999086 DOI: 10.1039/d1an00255d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chemical warfare agents (CWAs) are toxic chemicals that have been used as disabling or lethal weapons in war, terrorist attacks, and assasinations. The Chemical Weapons Convention (CWC) has prohibited the use, development, production, and stockpiling of CWAs since its initiation in 1997, however, the threat of deployment still looms. Detection of trace CWAs post-deployment or post-remediation, in bulk matrices such as soil, often requires lengthy sample preparation steps or extensive chromatographic separation times. 3D-printed cone spray ionization (3D-PCSI), an ambient ionization mass spectrometric (MS) technique, provides a rapid, simple, and low-cost method for trace CWA analysis in soil matrices for both in-laboratory and in-field detection. Described here is the utilization of conductive 3D-printed cones to perform both rapid sampling and ionization for CWA simulants and hydrolysis products in eight solid matrices. The analysis of trace quantities of CWA simulants and hydrolysis products by 3D-PCSI-MS coupled to both a commercial benchtop system and a field-portable MS system is detailed. Empirical limits of detection (LOD) for CWA simulants on the benchtop MS ranged from 100 ppt to 750 ppb and were highly dependant on solid matrix composition, with the portable system yielding similar spectral data from alike matrices, albeit with lower sensitivity.
Collapse
Affiliation(s)
- Hilary M Brown
- Chemistry Division, Research Department, Naval Air Warfare Center, Weapons Division (NAWCWD), United States Navy Naval Air Systems Command (NAVAIR), China Lake, California 93555, USA.
| | - Trevor J McDaniel
- Department of Chemistry, Illinois State University, Normal, Illinois 61790, USA.
| | - Karan R Doppalapudi
- Chemistry Division, Research Department, Naval Air Warfare Center, Weapons Division (NAWCWD), United States Navy Naval Air Systems Command (NAVAIR), China Lake, California 93555, USA.
| | | | - Patrick W Fedick
- Chemistry Division, Research Department, Naval Air Warfare Center, Weapons Division (NAWCWD), United States Navy Naval Air Systems Command (NAVAIR), China Lake, California 93555, USA.
| |
Collapse
|
16
|
Charles S, Geusens N, Vergalito E, Nys B. Interpol review of gunshot residue 2016-2019. Forensic Sci Int Synerg 2021; 2:416-428. [PMID: 33385140 PMCID: PMC7770441 DOI: 10.1016/j.fsisyn.2020.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 01/16/2020] [Indexed: 02/07/2023]
Abstract
This review paper covers the forensic-relevant literature in gunshot residue analysis from 2016 to 2019 as a part of the 19th Interpol International Forensic Science Managers Symposium. The review papers are also available at the Interpol website at: https://www.interpol.int/content/download/14458/file/Interpol%20Review%20Papers%202019.pdf.
Collapse
Affiliation(s)
| | - Nadia Geusens
- INCC-NICC, Chaussée de Vilvorde 100, B-1120, Brussels, Belgium
| | | | - Bart Nys
- INCC-NICC, Chaussée de Vilvorde 100, B-1120, Brussels, Belgium
| |
Collapse
|
17
|
Evans-Nguyen KM, Rivera A, Fontanez-Adames J, Li F, Musselman B. Solvent-free, Noncontact Electrostatic Sampling for Rapid Analysis with Mass Spectrometry: Application to Drugs and Explosives. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:2237-2242. [PMID: 33107742 DOI: 10.1021/jasms.0c00286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A hand-held Van de Graaf generator is used to apply a high voltage, negligible current electrostatic potential to a wire mesh positioned in close proximity to a particle-laden surface in order to collect those particles for analysis. The electrostatic field effects transfer particles to the mesh without a requirement for mechanical contact between mesh and surface. Analysis of chemicals present in the sampled particles is completed by thermal desorption electrospray ionization. The utility of the method for noncontact sampling is demonstrated using solid drug powder samples, and inorganic explosives dispersed either on solid surfaces or in sand/soil in order to simulate common interfering matrices that might be encountered in the forensic environment. A metal mesh sampling substrate is utilized instead of traditional polymer-based swabs in order to permit thermal desorption at higher temperatures. The method leaves no visible trace of sampling leaving details such as a fingerprint image unperturbed, as demonstrated using fluorescence photography. Direct sampling of trace particles from hard surfaces and skin documents flexibility in the choice of sampling substrates, desorption temperatures, and sampling times. The potential of the device for use in forensic analyses is detailed.
Collapse
Affiliation(s)
- Kenyon M Evans-Nguyen
- The Department of Chemistry, Biochemistry, and Physics, The University of Tampa, Tampa, Florida 33606, United States
| | - Amanda Rivera
- The Department of Chemistry, Biochemistry, and Physics, The University of Tampa, Tampa, Florida 33606, United States
| | - Jannelys Fontanez-Adames
- The Department of Chemistry, Biochemistry, and Physics, The University of Tampa, Tampa, Florida 33606, United States
| | - Frederick Li
- Ionsense, Inc., Saugus, Massachussetts 01906, United States
| | | |
Collapse
|
18
|
Bonnar C, Popelka-Filcoff R, Kirkbride KP. Armed with the Facts: A Method for the Analysis of Smokeless Powders by Ambient Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:1943-1956. [PMID: 32872785 DOI: 10.1021/jasms.0c00193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The work presented here follows several others in investigating what capabilities, if any, ambient mass spectrometry might have toward the analysis of compounds commonly associated with smokeless propellant powders. This family of instrumental techniques has attracted curiosity from the field of forensic science due to its desirable properties such as rapid collection of information-rich data, combined with minimal requirements for sample mass and preparation. Experiments were conducted with a "Direct Sample Analysis" ion source integrated with a time-of-flight mass spectrometer. The ionization behaviors of nitroglycerin, methyl and ethyl centralite, akardite, diphenylamine, nitrosodiphenylamine, and nitrated diphenylamine derivatives were investigated specifically, with accurate-mass data presented for each. Diphenylamine standards were used to demonstrate the performance of this instrument, which exhibited good response linearity across 1 order of magnitude and sub-nanogram detection limits. Thirty smokeless powder extracts, recovered from ammunition potentially in circulation within Australia, were analyzed to determine whether the technique is appropriate for rapid analysis of smokeless powder particles. Results demonstrated that the technique might be applied to compare individual particles with each other or to a database. Such a capability may be of value in the examination of explosive devices containing smokeless powder, postblast residues therefrom, or muzzle discharge from a close-range shooting. However, when efforts were made to detect residues from the hands of a volunteer shooter, only some returned positive results, and a high background signal from the sample collection stub indicates that detection using this instrument is thus far insufficiently reliable.
Collapse
Affiliation(s)
- Callum Bonnar
- College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Rachel Popelka-Filcoff
- College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
- School of Earth Sciences, Faculty of Science, The University of Melbourne, Melbourne, Victoria 3053, Australia
| | - K Paul Kirkbride
- College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| |
Collapse
|
19
|
Brown HM, McDaniel TJ, Fedick PW, Mulligan CC. The current role of mass spectrometry in forensics and future prospects. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:3974-3997. [PMID: 32720670 DOI: 10.1039/d0ay01113d] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Mass spectrometry (MS) techniques are highly prevalent in crime laboratories, particularly those coupled to chromatographic separations like gas chromatography (GC) and liquid chromatography (LC). These methods are considered "gold standard" analytical techniques for forensic analysis and have been extensively validated for producing prosecutorial evidentiary data. However, factors such as growing evidence backlogs and problematic evidence types (e.g., novel psychoactive substance (NPS) classes) have exposed limitations of these stalwart techniques. This critical review serves to delineate the current role of MS methods across the broad sub-disciplines of forensic science, providing insight on how governmental steering committees guide their implementation. Novel, developing techniques that seek to broaden applicability and enhance performance will also be highlighted, from unique modifications to traditional hyphenated MS methods to the newer "ambient" MS techniques that show promise for forensic analysis, but need further validation before incorporation into routine forensic workflows. This review also expounds on how recent improvements to MS instrumental design, scan modes, and data processing could cause a paradigm shift in how the future forensic practitioner collects and processes target evidence.
Collapse
Affiliation(s)
- Hilary M Brown
- Chemistry Division, Research Department, Naval Air Warfare Center, Weapons Division (NAWCWD), United States Navy Naval Air Systems Command (NAVAIR), China Lake, California 93555, USA.
| | | | | | | |
Collapse
|
20
|
Fedick PW, Pu F, Morato NM, Cooks RG. Identification and Confirmation of Fentanyls on Paper using Portable Surface Enhanced Raman Spectroscopy and Paper Spray Ionization Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:735-741. [PMID: 32126777 DOI: 10.1021/jasms.0c00004] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Fentanyl and its analogues play a major role in the current opioid epidemic. In particular, these highly potent opioids have become a health hazard due to their use as additives in street drugs. Consequently, rapid on-site procedures for the analysis of this class of seized drugs are needed, especially considering the reported backlog of drug samples, which must undergo identification and confirmation tests to validate the presence of an illicit substance. Paper based devices are cheap sampling and analysis vehicles that have been shown capable of allowing rapid identification and confirmation of drugs of abuse. Modifying paper substrates by imprinting nanoparticles enables surface enhanced Raman spectroscopy (SERS) as well as a second analysis from the same substrate, namely paper spray ionization mass spectrometry. While such a procedure has been described for laboratory use, these illicit drug samples are typically collected in the field and this is where testing should be done. We combine paper SERS and paper spray MS on field-portable and commercial off-the-shelf (COTS) devices for the rapid and low-cost identification and confirmation of fentanyl and its analogues, enabling in situ analysis at the point of seizure of suspect samples. The commercial nature of both instruments moves this technology from the academic realm to a setting where the criminal justice system can realistically utilize it. The capabilities of this single-substrate dual-analyzer technique are further examined by sampling a variety of surfaces of forensic interest.
Collapse
Affiliation(s)
- Patrick W Fedick
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Research Department, Chemistry Division, United States Navy-Naval Air Systems Command (NAVAIR), Naval Air Warfare Center, Weapons Division (NAWCWD), China Lake, California 93555, United States
| | - Fan Pu
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Nicolás M Morato
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - R Graham Cooks
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
21
|
Fatigante WL, Mukta S, Lawton ZE, Bruno AM, Traub A, Gasa AJ, Stelmack AR, Wilson-Frank CR, Mulligan CC. Filter Cone Spray Ionization Coupled to a Portable MS System: Application to On-Site Forensic Evidence and Environmental Sample Analysis. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:336-346. [PMID: 32031391 DOI: 10.1021/jasms.9b00098] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The complexity of field-borne sample matrices and the instrumental constraints of portable mass spectrometers (MS) often necessitate that preparative steps are added prior to ambient MS methods when operated on-site, but the corresponding decrease in throughput and experimental simplicity can make field operation impractical. To this end, we report a modified ambient MS method, filter cone spray ionization (FCSI), specifically designed for simple, yet robust, processing of bulk forensic evidence and environmental samples using a fieldable MS system. This paper-crafted source utilizes low-cost laboratory consumables to produce a conical structure that serves as a disposable, spray-based ionization source. Integrated extraction and filtration capabilities mitigate sample heterogeneity and carryover concerns and expedite sample processing, as characterized through the analysis of a variety of authentic forensic evidence types (e.g., abused pharma tablets, counterfeit/adulterated tablets, crystal-based drugs, synthetic marijuana, toxicological specimens) and contaminated soil samples. The data presented herein suggests that the FCSI-MS design could prove robust to the rigors of field-borne, bulk sample screening, overcoming the inefficiencies of other ambient MS methods for these sample classes. Novel applications of FCSI-MS are also examined, such as the coupling to trace evidence vacuum filtration media.
Collapse
Affiliation(s)
- William L Fatigante
- Department of Chemistry , Illinois State University , Normal , Illinois 61790 , United States
| | - Shahnaz Mukta
- Department of Chemistry , Illinois State University , Normal , Illinois 61790 , United States
| | - Zachary E Lawton
- Department of Chemistry , Illinois State University , Normal , Illinois 61790 , United States
| | - Alessandra M Bruno
- Department of Chemistry , Illinois State University , Normal , Illinois 61790 , United States
| | - Angelica Traub
- Department of Chemistry , Illinois State University , Normal , Illinois 61790 , United States
| | - Alyssa J Gasa
- Department of Chemistry , Illinois State University , Normal , Illinois 61790 , United States
| | - Ashley R Stelmack
- Department of Chemistry , Illinois State University , Normal , Illinois 61790 , United States
| | - Christina R Wilson-Frank
- Department of Comparative Pathobiology , Purdue University , West Lafayette , Indiana 47907 , United States
- Animal Disease Diagnostic Laboratory , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Christopher C Mulligan
- Department of Chemistry , Illinois State University , Normal , Illinois 61790 , United States
| |
Collapse
|
22
|
Black C, D'Souza T, Smith JC, Hearns NG. Identification of post-blast explosive residues using direct-analysis-in-real-time and mass spectrometry (DART-MS). Forensic Chem 2019. [DOI: 10.1016/j.forc.2019.100185] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
23
|
Morato NM, Pirro V, Fedick PW, Cooks RG. Quantitative Swab Touch Spray Mass Spectrometry for Oral Fluid Drug Testing. Anal Chem 2019; 91:7450-7457. [PMID: 31074613 DOI: 10.1021/acs.analchem.9b01637] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Nicolás M. Morato
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Valentina Pirro
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Patrick W. Fedick
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - R. Graham Cooks
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
24
|
Feider CL, Krieger A, DeHoog RJ, Eberlin LS. Ambient Ionization Mass Spectrometry: Recent Developments and Applications. Anal Chem 2019; 91:4266-4290. [PMID: 30790515 PMCID: PMC7444024 DOI: 10.1021/acs.analchem.9b00807] [Citation(s) in RCA: 305] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Clara L. Feider
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Anna Krieger
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Rachel J. DeHoog
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Livia S. Eberlin
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
25
|
Redox titration on foldable paper-based analytical devices for the visual determination of alcohol content in whiskey samples. Talanta 2019; 194:363-369. [DOI: 10.1016/j.talanta.2018.10.036] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/09/2018] [Accepted: 10/09/2018] [Indexed: 12/28/2022]
|
26
|
de Araujo WR, Cardoso TM, da Rocha RG, Santana MH, Muñoz RA, Richter EM, Paixão TR, Coltro WK. Portable analytical platforms for forensic chemistry: A review. Anal Chim Acta 2018; 1034:1-21. [DOI: 10.1016/j.aca.2018.06.014] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 05/18/2018] [Accepted: 06/07/2018] [Indexed: 01/28/2023]
|
27
|
Bain RM, Fedick PW, Dilger JM, Cooks RG. Analysis of Residual Explosives by Swab Touch Spray Ionization Mass Spectrometry. PROPELLANTS EXPLOSIVES PYROTECHNICS 2018. [DOI: 10.1002/prep.201800122] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Ryan M. Bain
- Department of Chemistry Purdue University West Lafayette, Indiana 47907 United States
| | - Patrick W. Fedick
- Department of Chemistry Purdue University West Lafayette, Indiana 47907 United States
| | - Jonathan M. Dilger
- Naval Surface Warfare Center Crane Division Crane, Indiana 47522 United States
| | - R. Graham Cooks
- Department of Chemistry Purdue University West Lafayette, Indiana 47907 United States
| |
Collapse
|
28
|
Direct ion generation from swabs. Talanta 2018; 184:356-363. [PMID: 29674054 DOI: 10.1016/j.talanta.2018.02.105] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 02/25/2018] [Accepted: 02/26/2018] [Indexed: 12/30/2022]
Abstract
Medical swabs are used for biofluid and tissue sampling in clinical applications. The use of medical swabs as electrospray ionization probes for direct mass spectrometric analysis is a novel and potentially widely applicable development. Here we discuss ion generation, characterize ionization behavior via microscopic videography and describe some illustrative examples of applications.
Collapse
|