1
|
Pawlak K, Kruszyna Ł, Miecznikowska M, Karaźniewicz-Łada M. Application of a Novel UPLC-MS/MS Method for Analysis of Rivaroxaban Concentrations in Dried Blood Spot and Plasma Samples Collected from Patients with Venous Thrombosis. Molecules 2024; 29:4140. [PMID: 39274988 PMCID: PMC11397208 DOI: 10.3390/molecules29174140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/24/2024] [Accepted: 08/28/2024] [Indexed: 09/16/2024] Open
Abstract
Despite a higher safety profile compared to vitamin K antagonists, rivaroxaban therapy is still connected with multiple adverse effects, such as a high risk of bleeding. Thus, therapeutic drug monitoring (TDM) of rivaroxaban concentrations is suggested. An alternative to plasma samples can be dried blood spots (DBS), which minimize the cost of sample storage and transport. In this study, we developed a UPLC-MS/MS method for the analysis of rivaroxaban in DBS and plasma samples. Chromatographic separation was achieved on a Zorbax Eclipse Plus C18 column (2.1 × 100 mm; 3.5 µm, Agilent Technologies Inc., Santa Clara, CA, USA) with a mobile phase consisting of water and acetonitrile, both containing 0.1% formic acid. The analytes were detected using a positive ionization mode by multiple reaction monitoring. We validated the method according to ICH guidelines. The precision and accuracy were satisfactory. Extraction recovery was approximately 57% and 66% for DBS and plasma samples, respectively. A high correlation between rivaroxaban concentrations in plasma and DBS samples collected from patients was confirmed with Deming regression. The suitability of both sampling techniques for the rivaroxaban TDM was also verified by Bland-Altman plots based on DBS-predicted and observed plasma concentrations. In addition, we found a significant relationship between rivaroxaban concentrations and coagulation parameters, including prothrombin time (PT) and international normalized ratio (INR).
Collapse
Affiliation(s)
- Kornel Pawlak
- Department of Physical Pharmacy & Pharmacokinetics, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
- Doctoral School, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Łukasz Kruszyna
- Department of Vascular & Endovascular Surgery, Angiology and Phlebology, Poznan University of Medical Sciences, Dluga St 1/2., 61-848 Poznan, Poland
| | - Marta Miecznikowska
- Department of Physical Pharmacy & Pharmacokinetics, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Marta Karaźniewicz-Łada
- Department of Physical Pharmacy & Pharmacokinetics, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| |
Collapse
|
2
|
Fernández-López L, Rodríguez S, Cánovas-Cabanes A, Teruel-Fernández FJ, Almela P, del Rincón JPH, Navarro-Zaragoza J, Falcón M. Identification of Benzodiazepine Use Based on Dried Blood Stains Analysis. Pharmaceuticals (Basel) 2024; 17:799. [PMID: 38931466 PMCID: PMC11206677 DOI: 10.3390/ph17060799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Biological matrices are typically used in forensic toxicological or pharmacological analysis: mainly blood, vitreous humor or urine. However, there are many cases in which crimes are a consequence of drug intoxication or drug abuse and they are not closed because over the months or years the samples become altered or decomposed. A dried blood stains test (DBS-MS) has recently been proposed to be used in drug toxicology when blood is found at a crime scene. This test could help an investigator to reveal what a person had consumed before the perpetration of the crime. In order to check the possibilities of this test, we analyzed several dried blood stains located on a cotton fabric. Therefore, the aim of this study was to determine if the analysis of a dried blood spot located on a cotton fabric could be an alternate source of obtaining toxicological results, particularly regarding benzodiazepines. We splashed blood stains on cotton fabric with different concentrations of the following benzodiazepines: alprazolam, bromazepam, clonazepam, diazepam and lorazepam, which were dried for 96 h and subsequently quantified by high-performance liquid chromatography coupled mass spectrometry (HPLC-MS). Our results show that it is possible to identify several benzodiazepines contained in a cotton fabric blood stain; consequently, this method may add another sample option to the toxicological analysis of biological vestiges found at a crime scene.
Collapse
Affiliation(s)
- Lucía Fernández-López
- Department of Pharmacology, Faculty of Medicine, University of Murcia, 30120 Murcia, Spain; (L.F.-L.); (P.A.)
- IMIB-Arrixaca, Instituto Murciano de Investigación Biosanitaria, 30120 Murcia, Spain (J.-P.H.d.R.); (M.F.)
| | - Sandra Rodríguez
- IMIB-Arrixaca, Instituto Murciano de Investigación Biosanitaria, 30120 Murcia, Spain (J.-P.H.d.R.); (M.F.)
- Forensic and Legal Medicine, Faculty of Medicine, University of Murcia, 30120 Murcia, Spain
| | - Alberto Cánovas-Cabanes
- Department of Pharmacology, Faculty of Medicine, University of Murcia, 30120 Murcia, Spain; (L.F.-L.); (P.A.)
- IMIB-Arrixaca, Instituto Murciano de Investigación Biosanitaria, 30120 Murcia, Spain (J.-P.H.d.R.); (M.F.)
| | - Francisco-Javier Teruel-Fernández
- Department of Pharmacology, Faculty of Medicine, University of Murcia, 30120 Murcia, Spain; (L.F.-L.); (P.A.)
- IMIB-Arrixaca, Instituto Murciano de Investigación Biosanitaria, 30120 Murcia, Spain (J.-P.H.d.R.); (M.F.)
| | - Pilar Almela
- Department of Pharmacology, Faculty of Medicine, University of Murcia, 30120 Murcia, Spain; (L.F.-L.); (P.A.)
- IMIB-Arrixaca, Instituto Murciano de Investigación Biosanitaria, 30120 Murcia, Spain (J.-P.H.d.R.); (M.F.)
| | - Juan-Pedro Hernández del Rincón
- IMIB-Arrixaca, Instituto Murciano de Investigación Biosanitaria, 30120 Murcia, Spain (J.-P.H.d.R.); (M.F.)
- Forensic and Legal Medicine, Faculty of Medicine, University of Murcia, 30120 Murcia, Spain
| | - Javier Navarro-Zaragoza
- Department of Pharmacology, Faculty of Medicine, University of Murcia, 30120 Murcia, Spain; (L.F.-L.); (P.A.)
- IMIB-Arrixaca, Instituto Murciano de Investigación Biosanitaria, 30120 Murcia, Spain (J.-P.H.d.R.); (M.F.)
| | - María Falcón
- IMIB-Arrixaca, Instituto Murciano de Investigación Biosanitaria, 30120 Murcia, Spain (J.-P.H.d.R.); (M.F.)
- Forensic and Legal Medicine, Faculty of Medicine, University of Murcia, 30120 Murcia, Spain
| |
Collapse
|
3
|
Wang L, Wang X, Li W, Liu J, Yao X, Wei Z, Yun K. Stability of diazepam's phase II metabolites in dried blood spots on filter paper. J Pharm Biomed Anal 2024; 240:115921. [PMID: 38157738 DOI: 10.1016/j.jpba.2023.115921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024]
Abstract
Phase II metabolites play an important role in diazepam-related cases. The study aimed to assess the stability of diazepam's phase II metabolites in dried blood spots on filter paper. METHODS A piece of filter paper was spotted with 100 µL of whole blood (added 1% sodium fluoride as needed) obtained from participant who received 5 mg diazepam orally, air dried for 2 h at room temperature, and then stored at different conditions. Whole spots were cut at 0.1 cm from the outer edge of blood spots at post-consumption time-points of prior (zero), 5, 16, 35, 61, 120 days and 1, 1.5 years. Analytes were extracted with methanol/water mixture (8:2, v/v) and determined using HPLC-MS/MS. Decomposition rules were analyzed by a statistical software "SPSS". RESULTS Temazepam glucuronide remained stable (0.5-18.6% loss) at 20 ℃ and at 20 ℃ with 1% sodium fluoride for 16 days, while it was unstable after 5 days at 4 ℃ (21.1-26.2% loss) and - 20 ℃ (28.9 - 34.4% loss). After 35 days, temazepam glucuronide concentrations began to fluctuate significantly under all conditions, and an obvious increase (290.4-355.1%) was observed in 1.5 years. Oxazepam glucuronide was always unstable after 5 days, the percentage loss was even 100% when it was stored for 61 days and 1.5 years. CONCLUSIONS Dried blood spots on ordinary filter paper are recommended to be stored at 20 ℃ or 20 ℃ with 1% sodium fluoride within 16 days. Samples should be analyzed immediately or stored in sterile and dry media.
Collapse
Affiliation(s)
- Lele Wang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030600, Shanxi, China; Key Laboratory of Forensic Medicine in Shanxi Province, Jinzhong 030600, Shanxi, China; Key Laboratory of Forensic Toxicology of Ministry of Public Security, Jinzhong 030600, Shanxi, China
| | - Xuezhi Wang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030600, Shanxi, China; Key Laboratory of Forensic Medicine in Shanxi Province, Jinzhong 030600, Shanxi, China; Key Laboratory of Forensic Toxicology of Ministry of Public Security, Jinzhong 030600, Shanxi, China; Department of Pathology, Air Force Medical Center, PLA, 100142, Beijing, China
| | - Wenyue Li
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030600, Shanxi, China; Key Laboratory of Forensic Medicine in Shanxi Province, Jinzhong 030600, Shanxi, China; Key Laboratory of Forensic Toxicology of Ministry of Public Security, Jinzhong 030600, Shanxi, China; Guangdong Nantian Institute of Forensic Science, 518003 Shenzhen, Beijing, China
| | - Jiajia Liu
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030600, Shanxi, China; Key Laboratory of Forensic Medicine in Shanxi Province, Jinzhong 030600, Shanxi, China; Key Laboratory of Forensic Toxicology of Ministry of Public Security, Jinzhong 030600, Shanxi, China
| | - Xiukun Yao
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030600, Shanxi, China; Key Laboratory of Forensic Medicine in Shanxi Province, Jinzhong 030600, Shanxi, China; Key Laboratory of Forensic Toxicology of Ministry of Public Security, Jinzhong 030600, Shanxi, China
| | - Zhiwen Wei
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030600, Shanxi, China; Key Laboratory of Forensic Medicine in Shanxi Province, Jinzhong 030600, Shanxi, China; Key Laboratory of Forensic Toxicology of Ministry of Public Security, Jinzhong 030600, Shanxi, China.
| | - Keming Yun
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030600, Shanxi, China; Key Laboratory of Forensic Medicine in Shanxi Province, Jinzhong 030600, Shanxi, China; Key Laboratory of Forensic Toxicology of Ministry of Public Security, Jinzhong 030600, Shanxi, China.
| |
Collapse
|
4
|
Meikopoulos T, Gika H, Theodoridis G, Begou O. Detection of 26 Drugs of Abuse and Metabolites in Quantitative Dried Blood Spots by Liquid Chromatography-Mass Spectrometry. Molecules 2024; 29:975. [PMID: 38474487 DOI: 10.3390/molecules29050975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/11/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
A method was developed for the determination of 26 drugs of abuse from different classes, including illicit drugs in quantitative dried blood spots (qDBSs), with the aim to provide a convenient method for drug testing by using only 10 μL of capillary blood. A satisfactory limit of quantification (LOQ) of 2.5 ng/mL for 9 of the compounds and 5 ng/mL for 17 of the compounds and a limit of detection (LOD) of 0.75 ng/mL for 9 of the compounds and 1.5 ng/mL for 17 of the compounds were achieved for all analytes. Reversed-phase liquid chromatography was applied on a C18 column coupled to MS, providing selective detections with both +ESI and -ESI modes. Extraction from the qDBS was performed using AcN-MeOH, 1:1 (v/v), with recovery ranging from 84.6% to 106%, while no significant effect of the hematocrit was observed. The studied drugs of abuse were found to be stable over five days under three different storage conditions (at ambient temperature 21 °C, at -20 °C, and at 35 °C), thus offering a highly attractive approach for drug screening by minimally invasive sampling for individuals that could find application in forensic toxicology analysis.
Collapse
Affiliation(s)
- Thomas Meikopoulos
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- BIOMIC_Auth, Center for Interdisciplinary Research, and Innovation (CIRI-AUTH), 57001 Thessaloniki, Greece
| | - Helen Gika
- BIOMIC_Auth, Center for Interdisciplinary Research, and Innovation (CIRI-AUTH), 57001 Thessaloniki, Greece
- Laboratory of Forensic Medicine & Toxicology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Georgios Theodoridis
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- BIOMIC_Auth, Center for Interdisciplinary Research, and Innovation (CIRI-AUTH), 57001 Thessaloniki, Greece
- ThetaBiomarkers, Center for Interdisciplinary Research, and Innovation (CIRI-AUTH), Balkan Center, 10th Km Thessaloniki-Thermi Rd., P.O. Box 8318, 57001 Thessaloniki, Greece
| | - Olga Begou
- BIOMIC_Auth, Center for Interdisciplinary Research, and Innovation (CIRI-AUTH), 57001 Thessaloniki, Greece
- ThetaBiomarkers, Center for Interdisciplinary Research, and Innovation (CIRI-AUTH), Balkan Center, 10th Km Thessaloniki-Thermi Rd., P.O. Box 8318, 57001 Thessaloniki, Greece
| |
Collapse
|
5
|
Świądro-Piętoń M, Dudek D, Wietecha-Posłuszny R. Direct Immersion-Solid Phase Microextraction for Therapeutic Drug Monitoring of Patients with Mood Disorders. Molecules 2024; 29:676. [PMID: 38338419 PMCID: PMC10856736 DOI: 10.3390/molecules29030676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
This article discusses a new method for monitoring drug concentrations in blood samples from patients with mood disorders. The method uses solid-phase microextraction to extract analytes directly from blood samples. It has been adapted to identify the most commonly used drugs in mood disorders, including amitriptyline, citalopram, fluoxetine, paroxetine, sertraline, trazodone, duloxetine, venlafaxine, lamotrigine, quetiapine, olanzapine, and mirtazapine. The analysis is carried out using high-performance liquid chromatography coupled with mass spectroscopy. The proposed DI-SPME/LC-MS method allows for a simple and quick screening analysis while minimizing the volume of the tested sample and solvent, in line with the principles of green analytical chemistry. The method was used to analyze 38 blood samples taken from patients with mood disorders, and drug concentrations were determined and compared with therapeutic and toxic dose ranges. This allowed for better control of the course of treatment.
Collapse
Affiliation(s)
- Magdalena Świądro-Piętoń
- Laboratory for Forensic Chemistry, Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, 2, Gronostajowa St., 30-387 Kraków, Poland;
| | - Dominika Dudek
- Department of Adult Psychiatry, Medical College, Jagiellonian University, 21a, Mikołaja Kopernika St., 31-387 Kraków, Poland;
| | - Renata Wietecha-Posłuszny
- Laboratory for Forensic Chemistry, Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, 2, Gronostajowa St., 30-387 Kraków, Poland;
| |
Collapse
|
6
|
Bossi E, Limo E, Pagani L, Monza N, Serrao S, Denti V, Astarita G, Paglia G. Revolutionizing Blood Collection: Innovations, Applications, and the Potential of Microsampling Technologies for Monitoring Metabolites and Lipids. Metabolites 2024; 14:46. [PMID: 38248849 PMCID: PMC10818866 DOI: 10.3390/metabo14010046] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
Blood serves as the primary global biological matrix for health surveillance, disease diagnosis, and response to drug treatment, holding significant promise for personalized medicine. The diverse array of lipids and metabolites in the blood provides a snapshot of both physiological and pathological processes, with many routinely monitored during conventional wellness checks. The conventional method involves intravenous blood collection, extracting a few milliliters via venipuncture, a technique limited to clinical settings due to its dependence on trained personnel. Microsampling methods have evolved to be less invasive (collecting ≤150 µL of capillary blood), user-friendly (enabling self-collection), and suitable for remote collection in longitudinal studies. Dried blood spot (DBS), a pioneering microsampling technique, dominates clinical and research domains. Recent advancements in device technology address critical limitations of classical DBS, specifically variations in hematocrit and volume. This review presents a comprehensive overview of state-of-the-art microsampling devices, emphasizing their applications and potential for monitoring metabolites and lipids in blood. The scope extends to diverse areas, encompassing population studies, nutritional investigations, drug discovery, sports medicine, and multi-omics research.
Collapse
Affiliation(s)
- Eleonora Bossi
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy; (E.B.); (E.L.); (L.P.); (N.M.); (V.D.)
| | - Elena Limo
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy; (E.B.); (E.L.); (L.P.); (N.M.); (V.D.)
| | - Lisa Pagani
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy; (E.B.); (E.L.); (L.P.); (N.M.); (V.D.)
| | - Nicole Monza
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy; (E.B.); (E.L.); (L.P.); (N.M.); (V.D.)
| | - Simone Serrao
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy; (E.B.); (E.L.); (L.P.); (N.M.); (V.D.)
| | - Vanna Denti
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy; (E.B.); (E.L.); (L.P.); (N.M.); (V.D.)
| | - Giuseppe Astarita
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC 20057, USA;
| | - Giuseppe Paglia
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy; (E.B.); (E.L.); (L.P.); (N.M.); (V.D.)
| |
Collapse
|
7
|
Cafaro A, Conti M, Pigliasco F, Barco S, Bandettini R, Cangemi G. Biological Fluid Microsampling for Therapeutic Drug Monitoring: A Narrative Review. Biomedicines 2023; 11:1962. [PMID: 37509602 PMCID: PMC10377272 DOI: 10.3390/biomedicines11071962] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Therapeutic drug monitoring (TDM) is a specialized area of laboratory medicine which involves the measurement of drug concentrations in biological fluids with the aim of optimizing efficacy and reducing side effects, possibly modifying the drug dose to keep the plasma concentration within the therapeutic range. Plasma and/or whole blood, usually obtained by venipuncture, are the "gold standard" matrices for TDM. Microsampling, commonly used for newborn screening, could also be a convenient alternative to traditional sampling techniques for pharmacokinetics (PK) studies and TDM, helping to overcome practical problems and offering less invasive options to patients. Although technical limitations have hampered the use of microsampling in these fields, innovative techniques such as 3-D dried blood spheroids, volumetric absorptive microsampling (VAMS), dried plasma spots (DPS), and various microfluidic devices (MDS) can now offer reliable alternatives to traditional samples. The application of microsampling in routine clinical pharmacology is also hampered by the need for instrumentation capable of quantifying analytes in small volumes with sufficient sensitivity. The combination of microsampling with high-sensitivity analytical techniques, such as liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS), is particularly effective in ensuring high accuracy and sensitivity from very small sample volumes. This manuscript provides a critical review of the currently available microsampling devices for both whole blood and other biological fluids, such as plasma, urine, breast milk, and saliva. The purpose is to provide useful information in the scientific community to laboratory personnel, clinicians, and researchers interested in implementing the use of microsampling in their routine clinical practice.
Collapse
Affiliation(s)
- Alessia Cafaro
- Chromatography and Mass Spectrometry Section, Central Laboratory of Analysis, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Matteo Conti
- Public Health Department, Imola Local Unit, Regione Emilia-Romagna Healthcare Service, 40026 Imola, Italy
| | - Federica Pigliasco
- Chromatography and Mass Spectrometry Section, Central Laboratory of Analysis, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Sebastiano Barco
- Chromatography and Mass Spectrometry Section, Central Laboratory of Analysis, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Roberto Bandettini
- Chromatography and Mass Spectrometry Section, Central Laboratory of Analysis, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Giuliana Cangemi
- Chromatography and Mass Spectrometry Section, Central Laboratory of Analysis, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| |
Collapse
|
8
|
Nishio T, Toukairin Y, Hoshi T, Arai T, Nogami M. Quantification of nine psychotropic drugs in postmortem dried blood spot samples by liquid chromatography-tandem mass spectrometry for simple toxicological analysis. J Pharm Biomed Anal 2023; 233:115438. [PMID: 37167768 DOI: 10.1016/j.jpba.2023.115438] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/25/2023] [Accepted: 05/01/2023] [Indexed: 05/13/2023]
Abstract
Dried blood spot (DBS) sampling has evolved to become the method of choice for collecting samples for newborn screening and therapeutic drug monitoring worldwide. The major advantage of this approach is that it requires only a small amount of blood. In addition, the collection of DBSs on filter paper is simple, sample storage costs are small, and the process deactivates microorganisms and viruses. However, despite these advantages, DBS sampling is seldom used in forensic toxicological analyses. Here, we developed and validated an approach that uses liquid chromatography coupled with electrospray ionization-tandem mass spectrometry for quantifying nine psychotropic drugs (citalopram, duloxetine, mirtazapine, olanzapine, paroxetine, quetiapine, sertraline, zolpidem and zopiclone) in cadaveric DBS samples. Most of them are frequently used by self-harm but are not already targeted by an existing drug screening kit. Our method use only one 3-mm disk excised from each DBS and does not require the troublesome purification process. The linearities of the calibration curves were good in the concentration range of 0.05-1.0 μg/mL. Our method allows for repeatable and accurate quantification with intra- and inter-assay coefficients of variation of below 11.9% and below 12.5%, respectively, for each of the target drugs. In addition, the target drug concentrations in the DBSs remained stable for at least one month when stored at - 80 °C. Compared with our institute's routine method for cadaveric blood sampling, the QuEChERS method, quantifiable concentrations showed a good positive correlation for each of the target drugs. In addition, the concentrations of almost all the target drugs obtained with DBS sampling method were comparable with those obtained with the QuEChERS sampling method. Thus, the present findings extend the possible uses of DBS sampling to the quantification of multiple psychotropic drugs in the field of forensic toxicological testing.
Collapse
Affiliation(s)
- Tadashi Nishio
- Department of Legal Medicine, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo 173-8605, Japan.
| | - Yoko Toukairin
- Department of Legal Medicine, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Tomoaki Hoshi
- Department of Legal Medicine, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Tomomi Arai
- Department of Legal Medicine, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Makoto Nogami
- Department of Legal Medicine, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| |
Collapse
|
9
|
Abarca R, Gerona R. Development and validation of an LC-MS/MS assay for the quantitative analysis of alprazolam, α-hydroxyalprazolam and hydrocodone in dried blood spots. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1220:123639. [PMID: 36906954 DOI: 10.1016/j.jchromb.2023.123639] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/03/2023] [Accepted: 02/14/2023] [Indexed: 03/07/2023]
Abstract
Dried blood spot (DBS) has been used as an alternative matrix in drug testing. In forensic testing it offers enhanced stability of analytes and ease of storage that requires minimal space. This is compatible with long term archiving of large numbers of samples for future investigation. We employed liquid chromatography-tandem mass spectrometry (LC-MS/MS) to quantify alprazolam, α-hydroxyalprazolam, and hydrocodone in a DBS sample that has been stored for 17 years. We achieved linear dynamic ranges (0.1-50 ng/mL) that capture wide ranges of concentration of the analytes below and above their reported reference ranges, and limits of detection (0.05 ng/mL) of 40-100X lower than the lower limit of the analyte's reference ranges. The method was validated according to FDA and CLSI guidelines and successfully confirmed and quantified alprazolam and α-hydroxyalprazolam in a forensic DBS sample.
Collapse
Affiliation(s)
- Radek Abarca
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, USA
| | - Roy Gerona
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, USA.
| |
Collapse
|
10
|
Quantification of cyanide metabolite 2-aminothiazoline-4-carboxylic acid in postmortem dried blood spot samples by liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1215:123580. [PMID: 36580818 DOI: 10.1016/j.jchromb.2022.123580] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/11/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
2-Aminothiazoline-4-carboxylic acid (ATCA), which is produced by the reaction of cyanide with endogenous cystine, is a promising biomarker of cyanide exposure because of its physicochemical stability. Analysis of more stable metabolite than the toxic gas itself is sometimes useful for postmortem diagnosis of gas poisoning. Here, we developed and validated an approach that uses liquid chromatography coupled with electrospray ionization-tandem mass spectrometry for quantifying ATCA in dried blood spot (DBS) samples. The linearity of the calibration curve was good in the concentration range of 20-1500 ng/mL. Our method allows for repeatable and the accurate quantification of ATCA, with intra- and inter assay coefficients of variation of below 7.8 % and below 9.3 %, respectively. In addition, the concentration of ATCA in DBSs remained stable for at least one month when stored at -20°C. Our results indicated that our analytical approach can be used to determine past exposure to higher doses of cyanide. In a comparison of ATCA concentrations in DBSs obtained from cadavers with various causes of death, significantly higher ATCA concentrations were observed in fire victims than in non-fire victims, confirming that fire victims inhale large amounts of cyanide gas. Thus, here we extended the possible uses of DBS for quantification of ATCA to forensic toxicological testing for cyanide poisoning.
Collapse
|
11
|
Han Y, Li XL, Zhang M, Wang J, Zeng S, Min JZ. Potential use of a dried saliva spot (DSS) in therapeutic drug monitoring and disease diagnosis. J Pharm Anal 2022; 12:815-823. [PMID: 36605582 PMCID: PMC9805949 DOI: 10.1016/j.jpha.2021.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 10/28/2021] [Accepted: 11/03/2021] [Indexed: 01/07/2023] Open
Abstract
In recent years, scientific researchers have increasingly become interested in noninvasive sampling methods for therapeutic drug monitoring and disease diagnosis. As a result, dried saliva spot (DSS), which is a sampling technique for collecting dried saliva samples, has been widely used as an alternative matrix to serum for the detection of target molecules. Coupling the DSS method with a highly sensitive detection instrument improves the efficiency of the preparation and analysis of biological samples. Furthermore, dried blood spots, dried plasma spots, and dried matrix spots, which are similar to those of the DSS method, are discussed. Compared with alternative biological fluids used in dried spot methods, including serum, tears, urine, and plasma, saliva has the advantage of convenience in terms of sample collection from children or persons with disabilities. This review aims to provide integral strategies and guidelines for dried spot methods to analyze biological samples by illustrating several dried spot methods. Herein, we summarize recent advancements in DSS methods from June 2014 to March 2021 and discuss the advantages and disadvantages of the key aspects of this method, including sample preparation and method validation. Finally, we outline the challenges and prospects of such methods in practical applications.
Collapse
Affiliation(s)
- Yu Han
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Xi-Ling Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Minghui Zhang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Jing Wang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Corresponding author.
| | - Jun Zhe Min
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
- Corresponding author.
| |
Collapse
|
12
|
The Double Face of Ketamine-The Possibility of Its Identification in Blood and Beverages. Molecules 2021; 26:molecules26040813. [PMID: 33557268 PMCID: PMC7915646 DOI: 10.3390/molecules26040813] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 11/25/2022] Open
Abstract
The purpose of this study was to develop and validate a high-sensitivity methodology for identifying one of the most used drugs—ketamine. Ketamine is used medicinally to treat depression, alcoholism, and heroin addiction. Moreover, ketamine is the main ingredient used in so-called “date-rape” pills (DRP). This study presents a novel methodology for the simultaneous determination of ketamine based on the Dried Blood Spot (DBS) method, in combination with capillary electrophoresis coupled with a mass spectrometer (CE-TOF-MS). Then, 6-mm circles were punched out from DBS collected on Whatman DMPK-C paper and extracted using microwave-assisted extraction (MAE). The assay was linear in the range of 25–300 ng/mL. Values of limits of detection (LOD = 6.0 ng/mL) and quantification (LOQ = 19.8 ng/mL) were determined based on the signal to noise ratio. Intra-day precision at each determined concentration level was in the range of 6.1–11.1%, and inter-day between 7.9–13.1%. The obtained precision was under 15.0% (for medium and high concentrations) and lower than 20.0% (for low concentrations), which are in accordance with acceptance criteria. Therefore, the DBS/MAE/CE-TOF-MS method was successfully checked for analysis of ketamine in matrices other than blood, i.e., rose wine and orange juice. Moreover, it is possible to identify ketamine in the presence of flunitrazepam, which is the other most popular ingredient used in DRP. Based on this information, the selectivity of the proposed methodology for identifying ketamine in the presence of other components of rape pills was checked.
Collapse
|
13
|
Moretti M, Manfredi A, Freni F, Previderé C, Osculati AMM, Grignani P, Tronconi L, Carelli C, Vignali C, Morini L. A comparison between two different dried blood substrates in determination of psychoactive substances in postmortem samples. Forensic Toxicol 2021; 39:385-393. [PMID: 33488834 PMCID: PMC7812343 DOI: 10.1007/s11419-020-00567-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/20/2020] [Indexed: 11/01/2022]
Abstract
Purpose Whatman™ 903 cards represent a valid type of support for collection, storage, and analysis of dried blood spots (DBS). Whatman™ FTA (Flinders Technology Associates) are a type of cards soaked in chemicals that cause denaturation of proteins, while preserving DNA and ensuring the safe handling of DBS; to date, these cards are still rarely employed in forensic toxicology. The aim of this study was to analyze several psychoactive substances on not-dried blood on the two different cards and to compare the qualitative and quantitative results. Methods Twenty cardiac postmortem blood samples were collected and deposed on Whatman™ 903 and Whatman™ FTA cards. Spots and not-dried blood were analyzed following our validated and previously published liquid chromatography-mass spectrometry methods. Results We were able to identify: eight drugs of abuse and their metabolites (15 cases), five benzodiazepines and their metabolites (3 cases), six antidepressants (6 cases) and two antipsychotics (3 cases). We observed a perfect qualitative correspondence and a general good quantitative correlation between data obtained from not-dried blood and the two different DBS cards, except for alprazolam, diazepam, desmethyldiazepam, fluoxetine and sertraline, that showed a lower concentration on FTA. Additional experiments suggest that the chemicals, adsorbed on FTA, are not the cause of the loss of signal observed for the substances previously mentioned and that methanol should be preferred as extraction solvent. Conclusions This study proved that FTA cards are a good and a hazard-free alternative sample storage method for analysis of several psychoactive substances in postmortem blood. Supplementary Information The online version contains supplementary material available at 10.1007/s11419-020-00567-2.
Collapse
Affiliation(s)
- Matteo Moretti
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, via Forlanini 12, Pavia, Italy
| | - Alessandro Manfredi
- Department of Medicine, Surgery and Health, University of Trieste, Piazzale Europa 1, Trieste, Italy
| | - Francesca Freni
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, via Forlanini 12, Pavia, Italy
| | - Carlo Previderé
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, via Forlanini 12, Pavia, Italy
| | - Antonio Marco Maria Osculati
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, via Forlanini 12, Pavia, Italy.,Legal Medicine Operative Unit, IRCCS Fondazione Mondino, Pavia, Via Mondino 2, 27100 Pavia, PV Italy
| | - Pierangela Grignani
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, via Forlanini 12, Pavia, Italy
| | - Livio Tronconi
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, via Forlanini 12, Pavia, Italy.,Legal Medicine Operative Unit, IRCCS Fondazione Mondino, Pavia, Via Mondino 2, 27100 Pavia, PV Italy
| | - Claudia Carelli
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, via Forlanini 12, Pavia, Italy
| | - Claudia Vignali
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, via Forlanini 12, Pavia, Italy
| | - Luca Morini
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, via Forlanini 12, Pavia, Italy
| |
Collapse
|
14
|
A review of recent advances in microsampling techniques of biological fluids for therapeutic drug monitoring. J Chromatogr A 2020; 1635:461731. [PMID: 33285415 DOI: 10.1016/j.chroma.2020.461731] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022]
Abstract
Conventional sampling of biological fluids often involves a bulk quantity of samples that are tedious to collect, deliver and process. Miniaturized sampling approaches have emerged as promising tools for sample collection due to numerous advantages such as minute sample size, patient friendliness and ease of shipment. This article reviews the applications and advances of microsampling techniques in therapeutic drug monitoring (TDM), covering the period January 2015 - August 2020. As whole blood is the gold standard sampling matrix for TDM, this article comprehensively highlights the most historical microsampling technique, the dried blood spot (DBS), and its development. Advanced developments of DBS, ranging from various automation DBS, paper spray mass spectrometry (PS-MS), 3D dried blood spheroids and volumetric absorptive paper disc (VAPD) and mini-disc (VAPDmini) are discussed. The volumetric absorptive microsampling (VAMS) approach, which overcomes the hematocrit effect associated with the DBS sample, has been employed in recent TDM. The sample collection and sample preparation details in DBS and VAMS are outlined and summarized. This review also delineates the involvement of other biological fluids (plasma, urine, breast milk and saliva) and their miniaturized dried matrix forms in TDM. Specific features and challenges of each microsampling technique are identified and comparison studies are reviewed.
Collapse
|
15
|
Świądro M, Stelmaszczyk P, Wietecha-Posłuszny R, Dudek D. Development of a new method for drug detection based on a combination of the dried blood spot method and capillary electrophoresis. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1157:122339. [PMID: 32877802 DOI: 10.1016/j.jchromb.2020.122339] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 08/05/2020] [Accepted: 08/18/2020] [Indexed: 12/18/2022]
Abstract
The aim of this study was to develop a new approach to sample preparation of biological material based on a combination of the Dried Blood Spot (DBS) method and capillary electrophoresis coupled with mass spectrometry (CE-MS) for the analysis of blood samples collected in vivo or post-mortem. The proposed approach allowed the identification of typical drugs from different groups, such as tricyclic antidepressants (amitriptyline, imipramine), selective serotonin reuptake inhibitors (citalopram), benzodiazepines (tetrazepam) and hypnotics (zolpidem). In this study, a blood sample was spotted on FTA DMPK C cards, then dried, and 6-mm discs were cut out. The sample preparation procedure involved microwave-assisted extraction (MAE). Various extraction agents, temperatures and durations of extraction were examined in order to achieve the highest efficiency of the process. The method was subjected to a validation procedure. Limits of detection (LOD = 1.76 - 14.7 ng/mL) and quantification (LOQ = 5.25 - 49.0 ng/mL), inter- (CV = 1.31 - 9.43%) and intra- (CV = 3.26 - 18.52%) day precision of the determinations, recovery (RE = 85.0-105.4%) and matrix effect on ionization of analytes (ME = 98.6-105.5%) were determined. Furthermore, the developed DBS/MAE/CM-MS method was selective and analytes present in the blood applied on DBS cards were found to be stable after 7 and after 14 days. Moreover, the developed method was successfully applied to the analysis of both post-mortem samples and blood samples taken from patients treated with the analyzed drugs.
Collapse
Affiliation(s)
- Magdalena Świądro
- Laboratory for Forensic Chemistry, Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, 2, Gronostajowa St., 30-387 Kraków, Poland
| | - Paweł Stelmaszczyk
- Laboratory for Forensic Chemistry, Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, 2, Gronostajowa St., 30-387 Kraków, Poland
| | - Renata Wietecha-Posłuszny
- Laboratory for Forensic Chemistry, Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, 2, Gronostajowa St., 30-387 Kraków, Poland.
| | - Dominika Dudek
- Department of Adult Psychiatry, Jagiellonian University Medical College, 21a, Mikołaja Kopernika St., 31-000 Kraków, Poland
| |
Collapse
|
16
|
Presoaking dried blood spot with water improves efficiency for small-molecule analysis. Biotechniques 2019; 67:219-228. [PMID: 31631689 DOI: 10.2144/btn-2019-0043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The current method of extracting small molecules from dried blood spots (DBSs) and liquid blood is similar. However, owing to their different physical characteristics, a modification of the extraction process for DBS is required. We propose a modified method involving presoaking in water that results in better extraction efficiency for small-molecule analysis than the conventional protein precipitation method. Using blood and DBSs from eight subjects, the similarities, recovery rates and extraction efficiencies of both methods were compared. Quantitative analysis showed that seven and six out of ten conditions for the modified method group exhibited almost 100% recovery and extraction efficiency rates, respectively, compared with the conventional method group. Taken together, the results suggest that a presoaking step is needed for efficient DBS analysis.
Collapse
|
17
|
Majda A, Wietecha-Posłuszny R, Świądro M, Mrochem K, Kościelniak P. Dried blood spots sampling in case samples deprived of hematocrit level information - Investigation and calculation strategy. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1124:308-312. [PMID: 31265992 DOI: 10.1016/j.jchromb.2019.06.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 11/19/2022]
Abstract
The application of a new calculation strategy for the psychotropic drug concentration in blood and bone marrow samples in the form of dried blood spots (DBS) was the main aim of the study. The standard DBS method consists of the deposition of the capillary blood onto the dedicated paper cards. Nowadays, the DBS technique is seen as a fast and partly superior microsampling alternative methodology replacing the conventional venous blood and plasma collection. The calculation approach to drug concentration in the limited volume of the case sample, where the hematocrit level cannot be determined, constitutes an important step of this method. The method has been validated and the results of the determination of alprazolam and diazepam previously spiked in the post-mortem blood and bone marrow sample have been satisfactory.
Collapse
Affiliation(s)
- Alicja Majda
- Laboratory for Forensic Chemistry, Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Renata Wietecha-Posłuszny
- Laboratory for Forensic Chemistry, Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland.
| | - Magdalena Świądro
- Laboratory for Forensic Chemistry, Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Karolina Mrochem
- Laboratory for Forensic Chemistry, Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Paweł Kościelniak
- Laboratory for Forensic Chemistry, Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| |
Collapse
|
18
|
Moretti M, Freni F, Tomaciello I, Vignali C, Groppi A, Visonà SD, Tajana L, Osculati AMM, Morini L. Determination of benzodiazepines in blood and in dried blood spots collected from post-mortem samples and evaluation of the stability over a three-month period. Drug Test Anal 2019; 11:1403-1411. [PMID: 31125516 DOI: 10.1002/dta.2653] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/19/2019] [Accepted: 05/20/2019] [Indexed: 12/22/2022]
Abstract
We successfully developed and validated an LC-MS/MS method for the identification of 27 and quantification of 9 benzodiazepines and metabolites in whole blood and DBSs. The results provided a good qualitative and quantitative correlation between DBSs stored at room temperature and whole blood stored at -20°C. A good stability for a three-month period was observed for most of the compounds detected in real post-mortem samples.
Collapse
Affiliation(s)
- Matteo Moretti
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Francesca Freni
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Ilaria Tomaciello
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Claudia Vignali
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Angelo Groppi
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Silvia Damiana Visonà
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Luca Tajana
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | | | - Luca Morini
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|
19
|
Liquid chromatography-high resolution mass spectrometry for broad-spectrum drug screening of dried blood spot as microsampling procedure. Anal Chim Acta 2019; 1063:110-116. [PMID: 30967174 DOI: 10.1016/j.aca.2019.02.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/28/2019] [Accepted: 02/04/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Hyphenation of liquid chromatography (LC) with high-resolution mass spectrometry (HRMS) offers the potential to develop broad-spectrum screening procedures from low volumes of biological matrices. In parallel, dried blood spot (DBS) has become a valuable tool in the bioanalysis landscape to overcome conventional blood collection issues. Herein, we demonstrated the applicability of DBS as micro-sampling procedure for broad-spectrum toxicological screening. METHODS A method was developed on a HRMS system in data dependant acquisition (DDA) mode using an extensive inclusion list to promote collection of relevant data. 104 real toxicology cases were analysed, and the results were cross-validated with one published and one commercial screening procedures. Quantitative MRM analyses were also performed on identified substances on a triple quadrupole instrument as a complementary confirmation procedure. RESULTS The method showed limits of identification (LOIs) in appropriateness with therapeutic ranges for all the classes of interest. Applying the three screening approaches on 104 real cases, 271 identifications were performed including 14 and 6 classes of prescribed and illicit drugs, respectively. Among the detected substances, 23% were only detected by the proposed method. Based on confirmatory analyses, we demonstrated that the use of blood micro-samples did not impair the sensitivity allowing more identifications in the low concentration ranges. CONCLUSION A LC-HRMS assay was successfully developed for toxicological screening of blood microsamples demonstrating a high identification power at low concentration ranges. The validation procedure and the analysis of real cases demonstrated the potential of this assay by supplementing screening approaches of reference.
Collapse
|
20
|
Kim E, Park Y, Ha H, Chung H. Patterns of drugs & poisons in southern area of South Korea in 2014. Forensic Sci Int 2016; 269:50-55. [PMID: 27866061 DOI: 10.1016/j.forsciint.2016.10.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/26/2016] [Accepted: 10/30/2016] [Indexed: 11/18/2022]
Abstract
The southern area of South Korea consists of three parts; Busan, Ulsan and Gyeongsangnam-do. Busan Institute of National Forensic Service (NFS) performed about 50,000 cases throughout the southern area in 2014, occupying over 15% of total cases covered by NFS. In this study, patterns of drugs and poisons in the southern area of South Korea were investigated. The investigation was carried out by the laboratory information management system of NFS between January and December of 2014. As results, a total of 606 autopsy cases were performed by Busan Institute of NFS in 2014. Among them, 15 cases were determined as drug intoxication or poisons as the cause of death, taking up 2.5% of total cases: 5 cases of intoxication by drugs, 5 by agricultural pesticides, 3 by illicit drugs, and 1 each by detergents and chemical substances. A total of 108 drugs in postmortem bloods were detected from the autopsy cases, and the top 5 drugs were chlorpheniramine, tramadol, diazepam, zolpidem and lidocaine. Meanwhile, a total of 1,728 cases were submitted for illicit drug testing in 2014. Among them, hair was the most common type of specimens, and the rate of positive detection of methamphetamine from the hair, urine, and seized materials in the southern area was over 50% in all cases, indicating that this is the most commonly abused drug in South Korea. A total of 12 types of novel psychoactive substances (NPSs) were detected in the southern area in 2014; 10 were identified as synthetic cannabinoids and 2 as alkyl nitrites.
Collapse
Affiliation(s)
- Eunmi Kim
- National Forensic Service, 10 Ipchoon-ro, Wonju, Gangwon-do, South Korea.
| | - Yonghoon Park
- Daejeon Institute, National Forensic Service, 1524 Yuseong-ro, Yuseong-gu, Daejeon, South Korea.
| | - Hongil Ha
- Busan Institute, National Forensic Service, 50 Geumoh-ro, Mulgeum-eup, Yangsan, South Korea.
| | - Heesun Chung
- Graduate School of Analytical Science and Technology, Chungnam National University, South Korea.
| |
Collapse
|
21
|
Samiec P, Navrátilová Z. Electrochemical behaviour of bromazepam and alprazolam and their determination in the pharmaceutical tablets Lexaurin and Xanax on carbon paste electrode. MONATSHEFTE FUR CHEMIE 2016. [DOI: 10.1007/s00706-016-1859-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
22
|
Remane D, Wissenbach DK, Peters FT. Recent advances of liquid chromatography–(tandem) mass spectrometry in clinical and forensic toxicology — An update. Clin Biochem 2016; 49:1051-71. [DOI: 10.1016/j.clinbiochem.2016.07.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/04/2016] [Accepted: 07/17/2016] [Indexed: 12/21/2022]
|