1
|
Funes DSH, Bonilla K, Baudelet M, Bridge C. Morphological and chemical profiling for forensic hair examination: A review of quantitative methods. Forensic Sci Int 2023; 346:111622. [PMID: 37001429 DOI: 10.1016/j.forsciint.2023.111622] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 12/19/2022] [Accepted: 02/25/2023] [Indexed: 03/06/2023]
Abstract
Within the past two decades, there have been many studies for quantitative analysis on human hair samples. Microscopical and chemical analysis techniques have been used to analyze various aspects of hair regarding biological, chemical, anthropological, cosmetic, and forensic applications. Studies have attempted to develop quantification methods to increase the evidentiary value of hair in forensic casework. The literature reviewed in this paper provides some of the current techniques used for forensic examinations and quantitative methods. Although microscopical analysis has been scrutinized in the past, using chemical and microscopical techniques can provide a myriad of information. The extraction of DNA from hair provides high-value evidence; however, it may not be readily available and may yield inconclusive results. Hair analysis can be used for many forensic applications such as comparison, toxicology, and exposure analysis. In this article, we will review published research material regarding chemical and microscopical techniques for human hair analysis. Aspects considered for this review were the sample size requirement for analysis and the destructive nature of the instrumental method. This review will focus on both macro and micro quantitative methods for human hair analysis.
Collapse
Affiliation(s)
- David S H Funes
- Department of Chemistry, University of Central Florida, Orlando, FL, USA
| | - Kaitlyn Bonilla
- Department of Chemistry, University of Central Florida, Orlando, FL, USA
| | - Mathieu Baudelet
- Department of Chemistry, University of Central Florida, Orlando, FL, USA; National Center for Forensic Science, University of Central Florida, Orlando, FL, USA; CREOL - The College of Optics and Photonics, University of Central Florida, Orlando, FL, USA.
| | - Candice Bridge
- Department of Chemistry, University of Central Florida, Orlando, FL, USA; National Center for Forensic Science, University of Central Florida, Orlando, FL, USA.
| |
Collapse
|
2
|
Díez-Pascual AM, Cruz DL, Redondo AL. Advanced Carbon-Based Polymeric Nanocomposites for Forensic Analysis. Polymers (Basel) 2022; 14:3598. [PMID: 36080673 PMCID: PMC9460265 DOI: 10.3390/polym14173598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/28/2022] Open
Abstract
Nanotechnology is a powerful tool and fast-growing research area in many novel arenas, ranging from biomedicine to engineering and energy storage. Nanotechnology has great potential to make a significant positive contribution in forensic science, which deals with the identification and investigation of crimes, finding relationships between pieces of evidence and perpetrators. Nano-forensics is related to the development of nanosensors for crime investigations and inspection of terrorist activity by analyzing the presence of illicit drugs, explosives, toxic gases, biological agents, and so forth. In this regard, carbon nanomaterials have huge potential for next-generation nanosensors due to their outstanding properties, including strength combined with flexibility, large specific surface area, high electrical conductivity, and little noise. Moreover, their combination with polymers can provide nanocomposites with novel and enhanced performance owed to synergy between the composite components. This review concisely recapitulates up-to-date advances in the development of polymer composites incorporating carbon-based nanomaterials for forensic science. The properties of the different carbon nanomaterials, several methods used to analyze functional polymeric nanocomposites, and their applications in forensic investigation are discussed. Furthermore, present challenges and forthcoming outlooks on the design of new polymer/carbon nanomaterial composites for crime prevention are highlighted.
Collapse
Affiliation(s)
- Ana M. Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain
| | - Daniel Lechuga Cruz
- Departamento de Química Inorgánica y Orgánica, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071 Jaén, Spain
| | - Alba Lomas Redondo
- Universidad de Alcalá, Departamento de Teoría de la Señal y Comunicaciones, Ctra. Madrid-Barcelona Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
3
|
Deviterne-Lapeyre CM. Interpol review of questioned documents 2016-2019. Forensic Sci Int Synerg 2021; 2:429-441. [PMID: 33385141 PMCID: PMC7770439 DOI: 10.1016/j.fsisyn.2020.01.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 01/16/2020] [Indexed: 11/28/2022]
Abstract
This review paper covers the forensic-relevant literature in questioned documents from 2016 to 2019 as a part of the 19th Interpol International Forensic Science Managers Symposium. The review papers are also available at the Interpol website at: https://www.interpol.int/content/download/14458/file/Interpol Review Papers 2019.pdf.
Collapse
|
4
|
Yadavalli VK, Ehrhardt CJ. Atomic force microscopy as a biophysical tool for nanoscale forensic investigations. Sci Justice 2020; 61:1-12. [PMID: 33357821 DOI: 10.1016/j.scijus.2020.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/30/2020] [Accepted: 10/04/2020] [Indexed: 01/23/2023]
Abstract
The atomic force microscope (AFM) has found its way to the arsenal of tools available to the forensic practitioner for the analysis of samples at the nano and microscales. As a non-destructive probing tool that requires minimal sample preparation, the AFM is very attractive, particularly in the case of minimal or precious sample. To date, the use of the AFM has primarily been in the arena of imaging where it has been complementary to other microscopic examination tools. Forensic applications in the visual examination of evidence such as blood stains, questioned documents, and hair samples have been reported. While a number of reviews have focused on the use of AFM as an imaging tool for forensic analyses, here we not only discuss these works, but also point to a versatile enhancement in the capabilities of this nanoscale tool - namely its use for force spectroscopy. In this mode, the AFM can determine elastic moduli, adhesion forces, energy dissipation, and the interaction forces between cognate ligands, that can be spatially mapped to provide a unique spatial visualization of properties. Our goals in this review are to provide a context for this capability of the AFM, explain its workings, cover some exemplary works pertaining to forensic sciences, and present a critical analysis on the advantages and disadvantages of this modality. Equipped with this high-resolution tool, imaging and biophysical analysis by the AFM can provide a unique complement to other tools available to the researcher for the analysis and characterization of forensic evidence.
Collapse
Affiliation(s)
- Vamsi K Yadavalli
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA.
| | - Christopher J Ehrhardt
- Department of Forensic Science, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
5
|
Olsen A, Ehrhardt CJ, Yadavalli VK. Nanoscale visualization of extracellular DNA on cell surfaces. ANALYTICAL SCIENCE ADVANCES 2020; 1:194-202. [PMID: 38716132 PMCID: PMC10989130 DOI: 10.1002/ansa.202000095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 11/17/2024]
Abstract
Nanoscale analysis of extracellular DNA (eDNA) that is present on the surface of cells in trace biological samples can provide insight into the understanding of DNA transfer through touch, and thereby, the role of eDNA is a biologically and forensically relevant phenomenon. While various bulk scale tools and DNA analysis can be used to quantitatively obtain this information, obtaining a three dimensional (3D) visualization of the eDNA can provide a unique look into the spatial and temporal dynamics at the cellular level. In this study, we show how atomic force microscopy (AFM) can be integrated with optical microscopy to visualize the distribution of surface associate eDNA at a single cell level. Using a nucleic acid fluorophore such as Diamond™ Dye, the surface eDNA can be observed and quantified using fluorescence microscopy. This informational channel can then be overlaid with surface topography and cellular elasticity to provide structural visualization. Finally, chemical force spectroscopy can be used to obtain the distribution of surface-associated eDNA on the cell surface at the molecular level. Such integrated techniques can enhance understanding of the biological role of eDNA, and can also be potentially valuable for investigating challenging trace samples, containing very few cells for various analyses.
Collapse
Affiliation(s)
- Anita Olsen
- Department of Chemical and Life Science EngineeringVirginia Commonwealth UniversityRichmondVirginiaUSA
| | | | - Vamsi K Yadavalli
- Department of Chemical and Life Science EngineeringVirginia Commonwealth UniversityRichmondVirginiaUSA
| |
Collapse
|
6
|
Klapec DJ, Czarnopys G, Pannuto J. Interpol review of detection and characterization of explosives and explosives residues 2016-2019. Forensic Sci Int Synerg 2020; 2:670-700. [PMID: 33385149 PMCID: PMC7770463 DOI: 10.1016/j.fsisyn.2020.01.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 01/23/2020] [Indexed: 02/06/2023]
Abstract
This review paper covers the forensic-relevant literature for the analysis and detection of explosives and explosives residues from 2016-2019 as a part of the 19th Interpol International Forensic Science Managers Symposium. The review papers are also available at the Interpol website at: https://www.interpol.int/Resources/Documents#Publications.
Collapse
Affiliation(s)
- Douglas J. Klapec
- United States Department of Justice, Bureau of Alcohol, Tobacco, Firearms and Explosives, Forensic Science Laboratory, 6000 Ammendale Road, Ammendale, MD, 20705, USA
| | - Greg Czarnopys
- United States Department of Justice, Bureau of Alcohol, Tobacco, Firearms and Explosives, Forensic Science Laboratory, 6000 Ammendale Road, Ammendale, MD, 20705, USA
| | - Julie Pannuto
- United States Department of Justice, Bureau of Alcohol, Tobacco, Firearms and Explosives, Forensic Science Laboratory, 6000 Ammendale Road, Ammendale, MD, 20705, USA
| |
Collapse
|
7
|
Mistek E, Fikiet MA, Khandasammy SR, Lednev IK. Toward Locard's Exchange Principle: Recent Developments in Forensic Trace Evidence Analysis. Anal Chem 2018; 91:637-654. [PMID: 30404441 DOI: 10.1021/acs.analchem.8b04704] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ewelina Mistek
- Department of Chemistry , University at Albany, SUNY , 1400 Washington Avenue , Albany , New York 12222 , United States
| | - Marisia A Fikiet
- Department of Chemistry , University at Albany, SUNY , 1400 Washington Avenue , Albany , New York 12222 , United States
| | - Shelby R Khandasammy
- Department of Chemistry , University at Albany, SUNY , 1400 Washington Avenue , Albany , New York 12222 , United States
| | - Igor K Lednev
- Department of Chemistry , University at Albany, SUNY , 1400 Washington Avenue , Albany , New York 12222 , United States
| |
Collapse
|
8
|
Melo VF, Mazzetto JM, Dieckow J, Bonfleur EJ. Factor analysis of organic soils for site discrimination in a forensic setting. Forensic Sci Int 2018; 290:244-250. [DOI: 10.1016/j.forsciint.2018.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 07/05/2018] [Accepted: 07/09/2018] [Indexed: 10/28/2022]
|
9
|
|
10
|
Sullivan C, Thomas P, Stuart B. An atomic force microscopy investigation of plastic wrapping materials of forensic relevance buried in soil environments. AUST J FORENSIC SCI 2018. [DOI: 10.1080/00450618.2018.1450893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Clare Sullivan
- Centre for Forensic Science, University of Technology Sydney , Ultimo, Australia
| | - Paul Thomas
- School of Mathematical and Physical Sciences, University of Technology Sydney , Ultimo, Australia
| | - Barbara Stuart
- Centre for Forensic Science, University of Technology Sydney , Ultimo, Australia
| |
Collapse
|
11
|
Wang C, Stanciu CE, Ehrhardt CJ, Yadavalli VK. Nanoscale characterization of forensically relevant epithelial cells and surface associated extracellular DNA. Forensic Sci Int 2017; 277:252-258. [PMID: 28672218 DOI: 10.1016/j.forsciint.2017.06.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/18/2017] [Accepted: 06/18/2017] [Indexed: 01/03/2023]
Abstract
Atomic force microscopy provides a novel morphological and physico-chemical perspective to analyze epithelial cell samples in forensic investigations. As a nanoscale, single cell tool, it allows the investigation of scarce samples in a non-destructive fashion. Using chemical force spectroscopy, it permits the identification of specific functional groups or surface molecules. Of specific interest is the presence of extracellular DNA (eDNA) on the surface of epithelial cells that line the exterior skin and interior cavities of human bodies, and can transfer onto surfaces through contact with skin and saliva. To date, this eDNA has only been measured a bulk level. Here, using nanoscale imaging, we first describe the unique differences between keratinized epithelial cells and non-keratinized buccal cells. Then via a force mapping technique, we show how eDNA can be spatially located and quantified on the cell surface. Our results suggest that presence and relative quantity of surface-associated, extracellular DNA signatures can be analyzed on individual epithelial cells from different tissue sources, providing a new tool in the forensic analysis of touch samples.
Collapse
Affiliation(s)
- Congzhou Wang
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Cristina E Stanciu
- Department of Forensic Science, Virginia Commonwealth University, Richmond, VA, USA
| | | | - Vamsi K Yadavalli
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|