1
|
Fratt K, Hamre R, Burak M, Mutoro N, Nootbaar H, Wykstra M. Using differential reinforcement and extinction to increase specificity in cheetah scat detection dogs. Anim Cogn 2025; 28:27. [PMID: 40167810 PMCID: PMC11961458 DOI: 10.1007/s10071-025-01947-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 03/12/2025] [Accepted: 03/21/2025] [Indexed: 04/02/2025]
Abstract
Detection dogs are trained using limited samples and then expected to generalize this ability to recognize wild samples while maintaining specificity to a target category. Such specificity is critical because dogs are often used to locate targets that are difficult to visually identify. Little is known about how to regain target specificity when false alerts become frequent or established. This case study assessed the training of two conservation dogs that alerted to off-target caracal (Caracal caracal) and leopard (Panthera pardus) scat samples during training to detect cheetah (Acinonyx jubatus) scat. The dogs were trained using an extinction-based differential reinforcement protocol consisting of the non delivery of reinforcement to reduce false alerts to caracal and leopard scats while maintaining sensitivity to cheetah scats. All training was conducted in situ in Samburu County, Kenya, by local handlers under the guidance of trainers. Sessions were filmed and coded for false alerts, true alerts, and where possible, misses and correct dismissals. Within four training sessions, both dogs exhibited an extinction burst demonstrated by an increase and then decrease in both the number and duration of false alerts. They continued to make fewer false alerts for the remainder of the training program. These results demonstrate the ability to reduce false alerts in operational detection dogs via extinction coupled with systematic reinforcement of desired behaviors. This case study highlights the importance of record-keeping and handling protocols for training samples. To our knowledge, this study represents the first publication on an extinction protocol to reduce false alerts in detection dogs.
Collapse
Affiliation(s)
- Kayla Fratt
- Department of Fisheries, Wildlife, and Conservation, Oregon State University, Corvallis, Oregon, USA
- K9 Conservationists, Missoula, Montana, USA
| | - Rachel Hamre
- K9 Conservationists, Missoula, Montana, USA.
- University of Montana College of Business, Missoula, Montana, USA.
| | - Mary Burak
- Yale University School of the Environment, New Haven Connecticut, USA
| | - Noreen Mutoro
- Action for Cheetahs in Kenya, Samburu, Kenya
- Department of Environment and Bioaffiliationersity, University of Salzburg, Salzburg, Austria
| | | | | |
Collapse
|
2
|
McKeague B, Finlay C, Rooney N. Conservation detection dogs: A critical review of efficacy and methodology. Ecol Evol 2024; 14:e10866. [PMID: 38371867 PMCID: PMC10869951 DOI: 10.1002/ece3.10866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 11/09/2023] [Accepted: 12/02/2023] [Indexed: 02/20/2024] Open
Abstract
Conservation detection dogs (CDD) use their exceptional olfactory abilities to assist a wide range of conservation projects through the detection of target specimens or species. CDD are generally quicker, can cover wider areas and find more samples than humans and other analytical tools. However, their efficacy varies between studies; methodological and procedural standardisation in the field is lacking. Considering the cost of deploying a CDD team and the limited financial resources within conservation, it is vital that their performance is quantified and reliable. This review aims to summarise what is currently known about the use of scent detection dogs in conservation and elucidate which factors affect efficacy. We describe the efficacy of CDD across species and situational contexts like training and fieldwork. Reported sensitivities (i.e. the proportion of target samples found out of total available) ranged from 23.8% to 100% and precision rates (i.e. proportion of alerts that are true positives) from 27% to 100%. CDD are consistently shown to be better than other techniques, but performance varies substantially across the literature. There is no consistent difference in efficacy between training, testing and fieldwork, hence we need to understand the factors affecting this. We highlight the key variables that can alter CDD performance. External effects include target odour, training methods, sample management, search methodology, environment and the CDD handler. Internal effects include dog breed, personality, diet, age and health. Unfortunately, much of the research fails to provide adequate information on the dogs, handlers, training, experience and samples. This results in an inability to determine precisely why an individual study has high or low efficacy. It is clear that CDDs can be effective and applied to possibly limitless conservation scenarios, but moving forward researchers must provide more consistent and detailed methodologies so that comparisons can be conducted, results are more easily replicated and progress can be made in standardising CDD work.
Collapse
Affiliation(s)
- Beth McKeague
- School of Biological SciencesQueen's University BelfastBelfastUK
| | | | - Nicola Rooney
- Bristol Veterinary SchoolUniversity of BristolBristolUK
| |
Collapse
|
3
|
Cieśla J, Skrobisz J, Niciński B, Kloc M, Mazur K, Pałasz A, Javan GT, Tomsia M. The smell of death. State-of-the-art and future research directions. Front Microbiol 2023; 14:1260869. [PMID: 37779703 PMCID: PMC10538644 DOI: 10.3389/fmicb.2023.1260869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023] Open
Abstract
The decomposition of a body is inseparably associated with the release of several types of odors. This phenomenon has been used in the training of sniffer dogs for decades. The odor profile associated with decomposition consists of a range of volatile organic compounds (VOCs), chemical composition of which varies over time, temperature, environmental conditions, and the type of microorganisms, and insects colonizing the carcass. Mercaptans are responsible for the bad smell associated with corpses; however, there are no unified recommendations for conducting forensic analysis based on the detectable odor of revealed corpses and previous research on VOCs shows differing results. The aim of this review is to systematize the current knowledge on the type of volatile organic compounds related to the decomposition process, depending on a few variables. This knowledge will improve the methods of VOCs detection and analysis to be used in modern forensic diagnostics and improve the methods of training dogs for forensic applications.
Collapse
Affiliation(s)
- Julia Cieśla
- Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Julia Skrobisz
- Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Bartosz Niciński
- Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Magdalena Kloc
- Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Katarzyna Mazur
- Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Artur Pałasz
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Gulnaz T. Javan
- Department of Physical and Forensic Science Programs, Alabama State University, Montgomery, AL, United States
| | - Marcin Tomsia
- Department of Forensic Medicine and Forensic Toxicology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
4
|
Wohlfahrt G, Schmitt M, Zeller L, Hörand A, Spittel-Schnell K, Wulms T, Schnell R, Bültge M. Air temperature and humidity effects on the performance of conservation detection dogs. Appl Anim Behav Sci 2023. [DOI: 10.1016/j.applanim.2023.105909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
5
|
Saura-Sanmartin A, Andreu-Ardil L. Recent Advances in the Preparation of Delivery Systems for the Controlled Release of Scents. Int J Mol Sci 2023; 24:ijms24054685. [PMID: 36902122 PMCID: PMC10002519 DOI: 10.3390/ijms24054685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/25/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
Scents are volatile compounds highly employed in a wide range of manufactured items, such as fine perfumery, household products, and functional foods. One of the main directions of the research in this area aims to enhance the longevity of scents by designing efficient delivery systems to control the release rate of these volatile molecules and also increase their stability. Several approaches to release scents in a controlled manner have been developed in recent years. Thus, different controlled release systems have been prepared, including polymers, metal-organic frameworks and mechanically interlocked systems, among others. This review is focused on the preparation of different scaffolds to accomplish a slow release of scents, by pointing out examples reported in the last five years. In addition to discuss selected examples, a critical perspective on the state of the art of this research field is provided, comparing the different types of scent delivery systems.
Collapse
Affiliation(s)
- Adrian Saura-Sanmartin
- Departamento de Química Orgánica, Facultad de Química, Universidad de Murcia, 30100 Murcia, Spain
- Correspondence:
| | | |
Collapse
|
6
|
Reply to the Commentary on “Mantrailing as evidence in court?” Forensic Science International: Reports, 3 (2021), 100204. FORENSIC SCIENCE INTERNATIONAL: REPORTS 2023. [DOI: 10.1016/j.fsir.2023.100308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
7
|
Novák K, Helena C, Václav B, Ivona S, Marek K. Factors affecting locomotor activity of search and rescue dogs: The importance of terrain, vegetation and dog certification. Appl Anim Behav Sci 2022. [DOI: 10.1016/j.applanim.2022.105674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
8
|
Jendrny P, Twele F, Meller S, Osterhaus ADME, Schalke E, Volk HA. Canine olfactory detection and its relevance to medical detection. BMC Infect Dis 2021; 21:838. [PMID: 34412582 PMCID: PMC8375464 DOI: 10.1186/s12879-021-06523-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/03/2021] [Indexed: 12/28/2022] Open
Abstract
The extraordinary olfactory sense of canines combined with the possibility to learn by operant conditioning enables dogs for their use in medical detection in a wide range of applications. Research on the ability of medical detection dogs for the identification of individuals with infectious or non-infectious diseases has been promising, but compared to the well-established and-accepted use of sniffer dogs by the police, army and customs for substances such as money, explosives or drugs, the deployment of medical detection dogs is still in its infancy. There are several factors to be considered for standardisation prior to deployment of canine scent detection dogs. Individual odours in disease consist of different volatile organic molecules that differ in magnitude, volatility and concentration. Olfaction can be influenced by various parameters like genetics, environmental conditions, age, hydration, nutrition, microbiome, conditioning, training, management factors, diseases and pharmaceuticals. This review discusses current knowledge on the function and importance of canines' olfaction and evaluates its limitations and the potential role of the dog as a biomedical detector for infectious and non-infectious diseases.
Collapse
Affiliation(s)
- Paula Jendrny
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Bünteweg 9, 30559, Hannover, Germany
| | - Friederike Twele
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Bünteweg 9, 30559, Hannover, Germany
| | - Sebastian Meller
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Bünteweg 9, 30559, Hannover, Germany
| | | | - Esther Schalke
- Bundeswehr School of Dog Handling, Gräfin-Maltzan-Kaserne, Hochstraße, 56766, Ulmen, Germany
| | - Holger Andreas Volk
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Bünteweg 9, 30559, Hannover, Germany.
| |
Collapse
|
9
|
Goss KU. Mantrailing as evidence in court? FORENSIC SCIENCE INTERNATIONAL: REPORTS 2021. [DOI: 10.1016/j.fsir.2021.100204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
10
|
Salthammer T, Monegel F, Schulz N, Uhde E, Grimme S, Seibert J, Hohm U, Palm W. Sensory Perception of Non-Deuterated and Deuterated Organic Compounds. Chemistry 2021; 27:1046-1056. [PMID: 33058253 PMCID: PMC7839723 DOI: 10.1002/chem.202003754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/10/2020] [Indexed: 11/24/2022]
Abstract
The chemical background of olfactory perception has been subject of intensive research, but no available model can fully explain the sense of smell. There are also inconsistent results on the role of the isotopology of molecules. In experiments with human subjects it was found that the isotope effect is weak with acetone and D6 -acetone. In contrast, clear differences were observed in the perception of octanoic acid and D15 -octanoic acid. Furthermore, a trained sniffer dog was initially able to distinguish between these isotopologues of octanoic acid. In chromatographic measurements, the respective deuterated molecule showed weaker interaction with a non-polar liquid phase. Quantum chemical calculations give evidence that deuterated octanoic acid binds more strongly to a model receptor than non-deuterated. In contrast, the binding of the non-deuterated molecule is stronger with acetone. The isotope effect is calculated in the framework of statistical mechanics. It results from a complicated interplay between various thermostatistical contributions to the non-covalent free binding energies and it turns out to be very molecule-specific. The vibrational terms including non-classical zero-point energies play about the same role as rotational/translational contributions and are larger than bond length effects for the differential isotope perception of odor for which general rules cannot be derived.
Collapse
Affiliation(s)
- Tunga Salthammer
- Department of Material Analysis and Indoor ChemistryFraunhofer WKI38108BraunschweigGermany
| | - Friederike Monegel
- Department of Material Analysis and Indoor ChemistryFraunhofer WKI38108BraunschweigGermany
| | - Nicole Schulz
- Department of Material Analysis and Indoor ChemistryFraunhofer WKI38108BraunschweigGermany
| | - Erik Uhde
- Department of Material Analysis and Indoor ChemistryFraunhofer WKI38108BraunschweigGermany
| | - Stefan Grimme
- Mulliken Center for Theoretical ChemistryInstitute for Physical and Theoretical ChemistryUniversity of Bonn53115BonnGermany
| | - Jakob Seibert
- Mulliken Center for Theoretical ChemistryInstitute for Physical and Theoretical ChemistryUniversity of Bonn53115BonnGermany
| | - Uwe Hohm
- Institute of Physical and Theoretical ChemistryUniversity of Braunschweig—Institute of Technology38106BraunschweigGermany
| | - Wolf‐Ulrich Palm
- Institute of Sustainable and Environmental ChemistryLeuphana University Lüneburg21335LüneburgGermany
| |
Collapse
|
11
|
Jones NS, Comparin JH. Interpol review of controlled substances 2016-2019. Forensic Sci Int Synerg 2020; 2:608-669. [PMID: 33385148 PMCID: PMC7770462 DOI: 10.1016/j.fsisyn.2020.01.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 01/23/2020] [Indexed: 12/14/2022]
Abstract
This review paper covers the forensic-relevant literature in controlled substances from 2016 to 2019 as a part of the 19th Interpol International Forensic Science Managers Symposium. The review papers are also available at the Interpol website at: https://www.interpol.int/content/download/14458/file/Interpol%20Review%20Papers%202019.pdf.
Collapse
Affiliation(s)
- Nicole S. Jones
- RTI International, Applied Justice Research Division, Center for Forensic Sciences, 3040 E. Cornwallis Road, Research Triangle Park, NC, 22709-2194, USA
| | - Jeffrey H. Comparin
- United States Drug Enforcement Administration, Special Testing and Research Laboratory, USA
| |
Collapse
|