1
|
Xu Y, Wu Z, Li A, Chen N, Rao J, Zeng Q. Nanocellulose Composite Films in Food Packaging Materials: A Review. Polymers (Basel) 2024; 16:423. [PMID: 38337312 DOI: 10.3390/polym16030423] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/24/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
Owing to the environmental pollution caused by petroleum-based packaging materials, there is an imminent need to develop novel food packaging materials. Nanocellulose, which is a one-dimensional structure, has excellent physical and chemical properties, such as renewability, degradability, sound mechanical properties, and good biocompatibility, indicating promising applications in modern industry, particularly in food packaging. This article introduces nanocellulose, followed by its extraction methods and the preparation of relevant composite films. Meanwhile, the performances of nanocellulose composite films in improving the mechanical, barrier (oxygen, water vapor, ultraviolet) and thermal properties of food packaging materials and the development of biodegradable or edible packaging materials in the food industry are elaborated. In addition, the excellent performances of nanocellulose composites for the packaging and preservation of various food categories are outlined. This study provides a theoretical framework for the development and utilization of nanocellulose composite films in the food packaging industry.
Collapse
Affiliation(s)
- Yanting Xu
- Postgraduate Department, Minjiang University, No. 200, Xiyuangong Road, Fuzhou 350108, China
| | - Zhenzeng Wu
- The College of Ecology and Resource Engineering, Wuyi University, No. 16, Wuyi Avenue, Wuyishan 354300, China
| | - Ao Li
- College of Material Engineering, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou 350002, China
| | - Nairong Chen
- College of Material Engineering, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou 350002, China
| | - Jiuping Rao
- College of Material Engineering, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou 350002, China
| | - Qinzhi Zeng
- College of Material Engineering, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou 350002, China
| |
Collapse
|
2
|
Lv Z, Meng X, Liang Q, Jiang T, Sun S, Tan Y, Feng J. A biodegradable oxidized starch/carboxymethyl chitosan film coated with pesticide-loaded ZIF-8 for tomato fusarium wilt control. Int J Biol Macromol 2024; 259:129249. [PMID: 38199556 DOI: 10.1016/j.ijbiomac.2024.129249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/17/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Film mulching is one of the most important methods to control soil-borne diseases. However, the traditional mulch may cause microplastic pollution and soil ecological damage. Herein, a biodegradable film was developed using oxidized starch and carboxymethyl chitosan and incorporated ZIF-8 carrying fludioxonil to sustainably control soil-borne disease. The microstructure, mechanical properties, optical properties, and water barrier properties of the composite films (Flu@ZIF-8-OS/CMCS) were investigated. The results show that Flu@ZIF-8-OS/CMCS had a smooth and uniform surface and excellent light transmittance. The excellent mechanical properties of the films were verified by tensile strength, elongation at break and Young's modulus. Higher contact angle and lower water vapor permeability indicate water retention capacity of the soil was improved through using Flu@ZIF-8-OS/CMCS. Furthermore, the release properties, biological activity, degradability and safety to soil organisms of Flu@ZIF-8-OS/CMCS was determined. The addition of ZIF-8 significantly improved the film's ability to retard the release of Flu, while the Flu@ZIF-8-OS/CMCS has good soil degradability. In vitro antifungal assays and pot experiments demonstrated excellent inhibitory activity against Fusarium oxysporum f. sp. Lycopersici. Flu@ZIF-8-OS/CMCS caused only 13.33 % mortality of earthworms within 7 d. This research provides a new approach to reducing microplastic pollution and effectively managing soil-borne diseases.
Collapse
Affiliation(s)
- Ze Lv
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Xiaohan Meng
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Qianwei Liang
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Tianzhen Jiang
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Shaoyang Sun
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Yifei Tan
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Jianguo Feng
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
3
|
Han Y, Yan W, Hou Y, Wang D, Yu M. Xanthoceras sorbifolia Husk Extract Incorporation for the Improvement in Physical and Antioxidant Properties of Soy Protein Isolate Films. Foods 2023; 12:2842. [PMID: 37569111 PMCID: PMC10416942 DOI: 10.3390/foods12152842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
With the increasing awareness of ecological and environmental protection, the research on eco-friendly materials has experienced a considerable increase. The objective of our study was to explore a novel soy protein isolate (SPI) film functionalized with antioxidants extracted from Xanthoceras sorbifolia husk (XSHE) as bio-based active packaging films. The films were evaluated in light of their structure, physical machinery, and antioxidant performance using advanced characterization techniques. The FTIR and microscopy results revealed the hydrogen-bond interaction between the SPI and XSHE and their good compatibility, which contributed to the improvement in various properties of the composite films, such as tensile strength (TS), UV blocking, and the water barrier property. As the XSHE content increased to 5%, the TS of the films dramatically increased up to 7.37 MPa with 47.7% and the water vapor permeability decreased to 1.13 × 10-10 g m m-2 s-1 Pa-1 with 22.1%. Meanwhile, the introduction of XSHE caused further improvement in the antioxidant capacity of films, and the release of active agents from films was faster and higher in 10% ethanol than it was in a 50% ethanol food simulant. Overall, SPI-based films functionalized with XSHE demonstrated promising potential applications in food packaging.
Collapse
Affiliation(s)
- Yingying Han
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China;
| | - Wentao Yan
- College of Forestry, Northwest A&F University, Yangling 712100, China; (W.Y.); (Y.H.); (D.W.)
- Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, Northwest A&F University, Yangling 712100, China
| | - Yuping Hou
- College of Forestry, Northwest A&F University, Yangling 712100, China; (W.Y.); (Y.H.); (D.W.)
- Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, Northwest A&F University, Yangling 712100, China
| | - Dongmei Wang
- College of Forestry, Northwest A&F University, Yangling 712100, China; (W.Y.); (Y.H.); (D.W.)
- Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, Northwest A&F University, Yangling 712100, China
| | - Miao Yu
- College of Forestry, Northwest A&F University, Yangling 712100, China; (W.Y.); (Y.H.); (D.W.)
- Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
4
|
Jin B, Liu X, Liang W, Li Q, Yan J, Han Z. Preparation, physicochemical characteristics and bioactivity evaluation of pitaya peel extract/soy protein nanocomposite film containing zinc oxide nanoparticles by photocatalysis. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bei Jin
- School of Food & Science Engineering Lingnan Normal University Zhanjiang 524048 China
| | - Xunqi Liu
- School of Food & Science Engineering Lingnan Normal University Zhanjiang 524048 China
| | - Wanying Liang
- School of Food & Science Engineering Lingnan Normal University Zhanjiang 524048 China
| | - Qiyong Li
- School of Food & Science Engineering Lingnan Normal University Zhanjiang 524048 China
| | - JingKun Yan
- School of Chemical Engineering & Energy Technology Dongguan University of Technology Dongguan 523808 China
| | - Zhiping Han
- School of Food & Science Engineering Lingnan Normal University Zhanjiang 524048 China
| |
Collapse
|
5
|
|
6
|
The Influence of Extracts from Common Houseleek (Sempervivum tectorum) on the Metabolic Activity of Human Melanoma Cells WM-266-4. Processes (Basel) 2021. [DOI: 10.3390/pr9091549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Human melanoma cells are known as one of the most aggressive cancer cells, and consequently, melanoma is one of the most incurable cancer diseases. There is intense activity in research and development of potential medicines for malignant diseases, including alternative forms of remedies. Therefore, the purpose of our work was testing extracts from the common houseleek (Sempervivum tectorum) grown in Slovenia to establish its impact on human melanoma cells. Namely, we wanted to verify if the extracts inhibit growth of malignant cells and their metabolic activity. Soxhlet, cold solvent, ultrasound, and supercritical extraction methods were applied to obtain S. tectorum extracts. Polyphenols and proanthocyanins content in acquired extracts was determined as well as their antioxidative potential. For a relevant comparison, Chinese (CHI) dried and Slovenian (SLO) lyophilized S. tectorum was used. Results showed that the highest contents of polyphenols and proanthocyanins were yielded from lyophilized material, which also had the highest antioxidative potential. The focus of our work was on analysis of possible inhibition effects of the extracts on human melanoma cells since no past studies were found regarding the possible effects of S. tectorum on metabolic activity of WM-266-4. We established that in a 24-h incubation period, the extracts inhibited metabolic activity of the cells at their concentrations of 20, 10, 4, 2, 1, 0.2, and 0.02 mg/mL. Extract obtained from SLO S. tectorum (ultrasound extraction with acetone as a solvent), which showed promising results of inhibitory effect on the mentioned cells, was further described since the local plant was the focus of our study. CHI S. tectorum extract (Soxhlet extraction with ehtanol:water mixture = 1:1 as a solvent) showed the highest inhibitory effect on human melanoma cells WM-266-4, although both obtained extracts are suitable for their growth inhibition of this specific cell line. Our results suggest inhibitory ability of S. tectorum extracts on the metabolic activity of WM-266-4 metastatic cell line, suggesting their potential use as an anticancer agent.
Collapse
|
7
|
Ran R, Wang L, Su Y, He S, He B, Li C, Wang C, Liu Y, Chen S. Preparation of pH-indicator films based on soy protein isolate/bromothymol blue and methyl red for monitoring fresh-cut apple freshness. J Food Sci 2021; 86:4594-4610. [PMID: 34392537 DOI: 10.1111/1750-3841.15884] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/26/2021] [Accepted: 07/22/2021] [Indexed: 01/17/2023]
Abstract
Intelligent pH-indicator films based on soy protein isolate (SPI) were prepared using pH-sensitive dyes (bromothymol blue and methyl red). The addition of mixed indicators imparts pH-indicator films with an appreciable microstructure, acceptable water resistance, and favorable optical properties. The incorporation of the mixed indicators did not lead to significant improvement in the mechanical properties of films due to weak ionic cross-linking by hydrogen bonding between the SPI macromolecules and low-molecular-weight indicators. Fourier-transform infrared spectroscopy indicated hydrogen bond-mediated intermolecular interactions, and scanning electron microscopy showed that BB/MR were well dispersed in the SPI film. The indicator addition hindered the sorption and passage of water molecules. The water vapor permeability, moisture sorption, moisture content, and total soluble matter were 4.32 to 6.12 ×10-12 g·cm/cm2 ·s·Pa, 36.70% to 73.33%, 25.28% to 44.11%, and 8.21% to 25.56%, respectively. Also, the addition of indicators reduced UV light transmittance with minimal effect on the transparency of the film. The presence of indicators enhanced the pH sensitivity, seen as a visible color reaction at different pHs (total color difference, ΔE > 5). When the pH-indicator film containing 8 ml/100 ml final film emulsions was used to monitor the fresh-cut apple freshness, a green color for fresh status was observed, which turned blue after 60 h. Collectively, our findings suggested that indicator-containing SPI films have the potential for monitoring the freshness of fruits. PRACTICAL APPLICATION: pH-indicator films can help consumers to identify the freshness of packaged food by a change in the color of the packaging material, which is easily visible to the unaided eye without the need for opening the packaging. This protects consumers' interests.
Collapse
Affiliation(s)
- Ruimin Ran
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan Province, China
| | - Luyao Wang
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan Province, China
| | - Yuhang Su
- School of Ocean Science and Biochemistry Engineering, Fujian Normal University Fuqing Branch, Fujian Province, Fuzhou, China
| | - Shujian He
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan Province, China
| | - Binbin He
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan Province, China
| | - Cheng Li
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan Province, China
| | - Caixia Wang
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan Province, China
| | - Yuntao Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan Province, China
| | - Saiyan Chen
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan Province, China
| |
Collapse
|
8
|
Design and characterization of bio-amine responsive films enriched with colored potato (Black King Kong) anthocyanin for visual detecting pork freshness in cold storage. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01040-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Li T, Xia N, Xu L, Zhang H, Zhang H, Chi Y, Zhang Y, Li L, Li H. Preparation, characterization and application of SPI-based blend film with antioxidant activity. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2020.100614] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
10
|
Preparation and Characterization of Biodegradable Composited Films Based on Potato Starch/Glycerol/Gelatin. J FOOD QUALITY 2021. [DOI: 10.1155/2021/6633711] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The use of plastics is resisted worldwide. Therefore, finding alternatives to plastic packaging products is an urgent issue. This work was dedicated to the preparation of biodegradable composited films with potato starch, glycerol, and gelatin. The formulation of the biodegradable film was first optimized via response surface methodology combined with the multi-index comprehensive evaluation method that considered physical properties (thickness, water solution (WS), tensile strength (TS) and elongation at break (E%)) and barrier property (light transmittance (T%)). Results indicated that the optimal conditions were 2.5% starch, 2.0% glycerol, and 1.5% gelatin (based on water). The optimized film presented excellent properties with TS of 4.47 MPa, E% of 109.91%, WS of 43.64%, and T% of 41.21% at 500 nm, and the comprehensive evaluation score of the composite film was 28.68. Moreover, a model verification experiment was further conducted, which proved that the predicted value highly matched experimental values, indicting the credibility and accuracy of the model. The resulting films were further characterized on the basis of rheological measurements, Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The rheological measurements proved that the film-forming solution exhibited low shear viscosity and non-Newtonian fluid behavior. FTIR and SEM revealed excellent compatibility among starch, glycerol, and gelatin. Hence, the resulting optimized film may be expected to provide theoretical basis and technical support for the food packing industry.
Collapse
|