1
|
Teshager AA, Atlabachew M, Alene AN. Development of biodegradable film from cactus ( Opuntia Ficus Indica) mucilage loaded with acid-leached kaolin as filler. Heliyon 2024; 10:e31267. [PMID: 38845886 PMCID: PMC11153097 DOI: 10.1016/j.heliyon.2024.e31267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/30/2024] [Accepted: 05/14/2024] [Indexed: 06/09/2024] Open
Abstract
Nowadays, substituting petroleum-based plastics with biodegradable polymers made from polysaccharides loaded with various reinforcing materials has recently gained attention due to the impact of conventional plastics wastes. In this study, polysaccharidic mucilage from Ethiopian cactus (Opuntia Ficus Indica) was derived using microwave-assisted extraction technique to develop biodegradable polymers that were inexpensive, readily available, simple to make, and ecofriendly. The effect of microwave power 300-800 W, solid-liquid (cactus-sodium hydroxide solution) ratio 1:5-1:25, sodium hydroxide concentration 0.1-0.8 mol/L, and extraction time 2-10 min on mucilage extraction were studied and the maximum yield of mucilage was attained at optimized parameters of 506 W, 1:20, 0.606 mol/L, and 9.5 min, respectively. Biodegradable polymers made with mucilage alone have poor mechanical characteristics and are thermally unstable. Thus, to overcome the stated problems, glycerol as a plasticizer and acid-leached kaolin crosslinked with urea as a reinforcing material were used. Moreover, the effect of acid-leached kaolin and glycerol on the physico-chemical properties of the films was studied, and a maximum tensile strength of 6.74 MPa with 18.45 % elongation at break, thermally improved biodegradability of 26 %, were attained at 10 % acid-leached kaolin and 20 % glycerol crosslinking with 2 % urea. But the maximum degradability of 53.5 % was attained at 30 % glycerol content. The control and reinforced biodegradable films were characterized using TGA, FTIR, SEM, and XRD to determine the thermal, functional group, morphology, and crystallinity of the bioplastics, respectively. These biodegradable plastics may be used for packaging application.
Collapse
Affiliation(s)
- Alebel Abebaw Teshager
- Faculty of Chemical and Food Engineering, Bahir Dar Institute of Technology, Bahir Dar University, P.O. Box 26, Bahir Dar, Ethiopia
| | - Minaleshewa Atlabachew
- Department of Chemistry, College of Science, Bahir Dar University, P.O. Box 79, Bahir Dar, Ethiopia
| | - Adugna Nigatu Alene
- Faculty of Chemical and Food Engineering, Bahir Dar Institute of Technology, Bahir Dar University, P.O. Box 26, Bahir Dar, Ethiopia
| |
Collapse
|
2
|
Lai WF. Design and application of self-healable polymeric films and coatings for smart food packaging. NPJ Sci Food 2023; 7:11. [PMID: 36991042 DOI: 10.1038/s41538-023-00185-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 03/01/2023] [Indexed: 03/31/2023] Open
Abstract
Smart packaging materials enable active control of parameters that potentially influence the quality of a packaged food product. One type of these that have attracted extensive interest is self-healable films and coatings, which show the elegant, autonomous crack repairing ability upon the presence of appropriate stimuli. They exhibit increased durability and effectively lengthen the usage lifespan of the package. Over the years, extensive efforts have been paid to the design and development of polymeric materials that show self-healing properties; however, till now most of the discussions focus on the design of self-healable hydrogels. Efforts devoted to delineating related advances in the context of polymeric films and coatings are scant, not to mention works reviewing the use of self-healable polymeric materials for smart food packaging. This article fills this gap by offering a review of not only the major strategies for fabrication of self-healable polymeric films and coatings but also the mechanisms of the self-healing process. It is hoped that this article cannot only provide a snapshot of the recent development of self-healable food packaging materials, but insights into the optimization and design of new polymeric films and coatings with self-healing properties can also be gained for future research.
Collapse
Affiliation(s)
- Wing-Fu Lai
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China.
| |
Collapse
|
3
|
Moth Bean, Gelatin, and Murraya Koenigii Leaves Extract-Based Film and Coating: Effect of Coating on Shelf and Quality of Solanum Melongena. J FOOD QUALITY 2022. [DOI: 10.1155/2022/8606104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Moth bean starch (MS), gelatin (GA), and Murraya koenigii leaves extract (ME) are blended at different compositions to prepare film and coating according to casting and dipping approaches. Different MS, GA, and ME compositions were used to synthesize films and coating. The film compositions (MS : GA: ME: 60 : 20 : 20 and MS : GA: ME:20 : 60 : 20) were represented in terms of F3 and F4, respectively. The results showed that F3 exhibited better physicochemical properties than other films. In addition, SEM images showed that all components of the films were uniformly mixed and formed smooth surface morphology without cracks and bubbles. FTIR results indicate that ME in the films induces interactions between the film components, causing an improvement in compactness. Moreover, an optimized film-forming solution was tested as a coating. Parameters such as skin tightness, weight loss, pH, titratable acidity, and sensory analysis were considered to check the quality of coated Solanum melongena during storage. The results show that the formulation effectively maintains the quality parameters during storage. Furthermore, it also notices that coating extends the shelf life of Solanum melongena by one week.
Collapse
|
4
|
Pérez-Marroquín XA, Aguirre-Cruz G, Campos-Lozada G, Callejas-Quijada G, León-López A, Campos-Montiel RG, García-Hernández L, Méndez-Albores A, Vázquez-Durán A, Aguirre-Álvarez G. Green Synthesis of Silver Nanoparticles for Preparation of Gelatin Films with Antimicrobial Activity. Polymers (Basel) 2022; 14:3453. [PMID: 36080528 PMCID: PMC9460488 DOI: 10.3390/polym14173453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/11/2022] [Accepted: 08/20/2022] [Indexed: 11/16/2022] Open
Abstract
Silver nanoparticles were successfully synthesized using Thuja orientalis aqueous extract and AgNO3 as a precursor. UV-Vis showed a distinct absorption peak at 424 nm attributed to silver nanoparticles due to their surface plasmon resonance. Atomic absorption analysis reflected an increase in the concentration of nanoparticles in relation to the progress of the synthesis, obtaining a peak concentration value of 15.7 mg/L at 50 min. The FTIR spectra revealed the characteristic functional groups of phytomolecules involved in the silver-ion binding process, such as R-O-H (3335 cm-1) O=C-OH (2314 cm-1) and C-C=C (1450 cm-1). At 50 min, zeta potential showed the stability of the nanoparticles with the value of -21.73 mV. TEM micrographs revealed the formation of spherical nanoparticles with an average size of about 85.77 nm. Furthermore, films incorporated with nanoparticles exhibited a Tg from 66.42 °C to 73.71 °C and Tm at 103.31 °C. Films from the G22 formulation presented excellent antibacterial properties inhibiting the growth of Staphylococcus aureus. Thuja orientalis aqueous extract could be a low-cost, eco-friendly, and efficient reducing and capping agent for the synthesis of nanometric-sized Ag particles. Gelatin films with nanoparticles are expected to have high potential as an active food packaging system.
Collapse
Affiliation(s)
- Xóchitl A. Pérez-Marroquín
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km. 1 Rancho Universitario, Tulancingo C.P. 43684, Hidalgo, Mexico
| | - Gabriel Aguirre-Cruz
- Centro de Desarrollo en Nanotecnología, Universidad Tecnológica de Tulancingo, Área Electromecánica Industrial, Camino a Ahuehuetitla No. 301, Colonia Las Presas, Tulancingo C.P. 43642, Hidalgo, Mexico
- Uni-Collagen S.A. de C.V., Arnulfo González No. 203, El Paraíso, Tulancingo C.P. 43684, Hidalgo, Mexico
| | - Gieraldin Campos-Lozada
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km. 1 Rancho Universitario, Tulancingo C.P. 43684, Hidalgo, Mexico
| | - Graciela Callejas-Quijada
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km. 1 Rancho Universitario, Tulancingo C.P. 43684, Hidalgo, Mexico
| | - Arely León-López
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km. 1 Rancho Universitario, Tulancingo C.P. 43684, Hidalgo, Mexico
| | - Rafael G. Campos-Montiel
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km. 1 Rancho Universitario, Tulancingo C.P. 43684, Hidalgo, Mexico
| | - Laura García-Hernández
- Centro de Desarrollo en Nanotecnología, Universidad Tecnológica de Tulancingo, Área Electromecánica Industrial, Camino a Ahuehuetitla No. 301, Colonia Las Presas, Tulancingo C.P. 43642, Hidalgo, Mexico
| | - Abraham Méndez-Albores
- Unidad de Investigación Multidisciplinaria L14-A1 (Ciencia y Tecnología de Materiales). Km 2.5 Carretera Cuautitlán-Teoloyucan San Sebastián Xhala, Cuautitlán Izcalli C.P. 54714, Estado de México, Mexico
| | - Alma Vázquez-Durán
- Unidad de Investigación Multidisciplinaria L14-A1 (Ciencia y Tecnología de Materiales). Km 2.5 Carretera Cuautitlán-Teoloyucan San Sebastián Xhala, Cuautitlán Izcalli C.P. 54714, Estado de México, Mexico
| | - Gabriel Aguirre-Álvarez
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km. 1 Rancho Universitario, Tulancingo C.P. 43684, Hidalgo, Mexico
- Uni-Collagen S.A. de C.V., Arnulfo González No. 203, El Paraíso, Tulancingo C.P. 43684, Hidalgo, Mexico
| |
Collapse
|
5
|
Preparation, characterization, and antibacterial properties of “green” synthesis of Ag nanoparticles and AgNPs/kaolin composite. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-021-01757-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
6
|
Rangaraj VM, Devaraju S, Rambabu K, Banat F, Mittal V. Silver-sepiolite (Ag-Sep) hybrid reinforced active gelatin/date waste extract (DSWE) blend composite films for food packaging application. Food Chem 2022; 369:130983. [PMID: 34500208 DOI: 10.1016/j.foodchem.2021.130983] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/19/2021] [Accepted: 08/27/2021] [Indexed: 11/04/2022]
Abstract
In this study, date syrup waste extract (DSWE) (15 wt%) and different content of silver doped sepiolite hybrid (Ag-Sep, 0.25-3 wt%) were incorporated into gelatin matrix to develop a series of active composite packaging films. Incorporating 2 wt% of Ag-Sep increased the modulus of blend film by 98% compared to unmodified gelatin/DSWE blend film. The active gelatin composite film exhibited superior active compounds migration to aqueous food simulants. Besides, Ag-Sep provided a tortuous pathway to the composite film, resulting in high 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical inhibition efficiency (91%) and slow-release kinetics of active compounds to the food simulant. The Ag-Sep hybrid was improved the antimicrobial property of the gelatin/DSWE blend film against both gram-negative and gram-positive microbes. Thus, this study demonstrated that the Ag-Sep hybrid exhibits significant properties in the active gelatin composite films, implying that this hybrid could be an effective additive for various active packaging films.
Collapse
Affiliation(s)
- Vengatesan M Rangaraj
- Department of Chemical Engineering, SAN Campus, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Subramani Devaraju
- Division of Chemistry, Department of Sciences & Humanities, Vignan's Foundations for Science, Technology and Research, Andhra Pradesh, India
| | - K Rambabu
- Department of Chemical Engineering, SAN Campus, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Fawzi Banat
- Department of Chemical Engineering, SAN Campus, Khalifa University, Abu Dhabi, United Arab Emirates.
| | - Vikas Mittal
- Department of Chemical Engineering, SAN Campus, Khalifa University, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
7
|
Lu Y, Luo Q, Chu Y, Tao N, Deng S, Wang L, Li L. Application of Gelatin in Food Packaging: A Review. Polymers (Basel) 2022; 14:polym14030436. [PMID: 35160426 PMCID: PMC8838392 DOI: 10.3390/polym14030436] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/01/2022] [Accepted: 01/09/2022] [Indexed: 01/27/2023] Open
Abstract
Owing to the increasing environmental concerns and requirements for high-quality foods, edible films and coatings (based on proteins, polysaccharides, natural phenolic active substances, etc.) are being developed as effective alternatives to traditional plastic packaging. Gelatin is extracted from collagen. It is an ideal material for food packaging due to its versatile advantages such as low price, polymerization, biodegradability, good antibacterial and antioxidant properties, etc. However, gelatin film exists poor waterproof and mechanical properties, which limit its developments and applications in food packaging. Previous studies show that pure gelatin can be modified by adding active ingredients and incorporating them with bio-polymers to improve its mechanical properties, aiming to achieve the desirable effect of preservation. This review mainly shows the preparation and molding ways of gelatin-based edible films and the applications of gelatin modified with other biopolymers. Furthermore, this review provides the latest advances in gelatin-based biodegradable packaging and food applications that exhibit outstanding advantages in food preservation.
Collapse
Affiliation(s)
- Yanan Lu
- Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Y.L.); (Q.L.); (Y.C.); (N.T.)
| | - Qijun Luo
- Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Y.L.); (Q.L.); (Y.C.); (N.T.)
| | - Yuchan Chu
- Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Y.L.); (Q.L.); (Y.C.); (N.T.)
| | - Ningping Tao
- Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Y.L.); (Q.L.); (Y.C.); (N.T.)
| | - Shanggui Deng
- Engineering Research Center of Food Thermal Processing Technology, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316000, China;
| | - Li Wang
- Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Y.L.); (Q.L.); (Y.C.); (N.T.)
- Correspondence: (L.W.); (L.L.); Tel.: +86-13062789659 (L.W.); +86-21-61900372 (L.L.)
| | - Li Li
- Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Y.L.); (Q.L.); (Y.C.); (N.T.)
- Correspondence: (L.W.); (L.L.); Tel.: +86-13062789659 (L.W.); +86-21-61900372 (L.L.)
| |
Collapse
|
8
|
Pham BTT, Duong THT, Nguyen TT, Van Nguyen D, Trinh CD, Bach LG. Development of polyvinyl (alcohol)/D-glucose/agar/silver nanoparticles nanocomposite film as potential food packaging material. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02761-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
9
|
Nguyen TT, Huynh Nguyen TT, Tran Pham BT, Van Tran T, Bach LG, Bui Thi PQ, Ha Thuc C. Development of poly (vinyl alcohol)/agar/maltodextrin coating containing silver nanoparticles for banana (Musa acuminate) preservation. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100740] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Khodaei D, Álvarez C, Mullen AM. Biodegradable Packaging Materials from Animal Processing Co-Products and Wastes: An Overview. Polymers (Basel) 2021; 13:2561. [PMID: 34372163 PMCID: PMC8348897 DOI: 10.3390/polym13152561] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 01/08/2023] Open
Abstract
Biodegradable polymers are non-toxic, environmentally friendly biopolymers with considerable mechanical and barrier properties that can be degraded in industrial or home composting conditions. These biopolymers can be generated from sustainable natural sources or from the agricultural and animal processing co-products and wastes. Animals processing co-products are low value, underutilized, non-meat components that are generally generated from meat processing or slaughterhouse such as hide, blood, some offal etc. These are often converted into low-value products such as animal feed or in some cases disposed of as waste. Collagen, gelatin, keratin, myofibrillar proteins, and chitosan are the major value-added biopolymers obtained from the processing of animal's products. While these have many applications in food and pharmaceutical industries, a significant amount is underutilized and therefore hold potential for use in the generation of bioplastics. This review summarizes the research progress on the utilization of meat processing co-products to fabricate biodegradable polymers with the main focus on food industry applications. In addition, the factors affecting the application of biodegradable polymers in the packaging sector, their current industrial status, and regulations are also discussed.
Collapse
Affiliation(s)
| | | | - Anne Maria Mullen
- Department of Food Quality and Sensory Science, Teagasc Food Research Centre, Ashtown, Dublin, Ireland; (D.K.); (C.Á.)
| |
Collapse
|
11
|
Boeira CP, Alves JDS, Flores DCB, Moura MR, Melo PTS, Rosa CS. Antioxidant and antimicrobial effect of an innovative active film containing corn stigma residue extract for refrigerated meat conservation. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15721] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Caroline Pagnossim Boeira
- Department of Food Science and Technology Universidade Federal de Santa Maria (UFSM) Santa Maria Brazil
| | - Jamila dos Santos Alves
- Department of Food Science and Technology Universidade Federal de Santa Maria (UFSM) Santa Maria Brazil
| | | | - Márcia Regina Moura
- Department of Physics and Chemistry Universidade Estadual Paulista (UNESP) Ilha Solteira Brazil
| | - Pamela Thais Sousa Melo
- Department of Physics and Chemistry Universidade Estadual Paulista (UNESP) Ilha Solteira Brazil
| | - Claudia Severo Rosa
- Department of Food Science and Technology Universidade Federal de Santa Maria (UFSM) Santa Maria Brazil
| |
Collapse
|
12
|
Sani MA, Azizi-Lalabadi M, Tavassoli M, Mohammadi K, McClements DJ. Recent Advances in the Development of Smart and Active Biodegradable Packaging Materials. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1331. [PMID: 34070054 PMCID: PMC8158105 DOI: 10.3390/nano11051331] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 02/06/2023]
Abstract
Interest in the development of smart and active biodegradable packaging materials is increasing as food manufacturers try to improve the sustainability and environmental impact of their products, while still maintaining their quality and safety. Active packaging materials contain components that enhance their functionality, such as antimicrobials, antioxidants, light blockers, or oxygen barriers. Smart packaging materials contain sensing components that provide an indication of changes in food attributes, such as alterations in their quality, maturity, or safety. For instance, a smart sensor may give a measurable color change in response to a deterioration in food quality. This article reviews recent advances in the development of active and smart biodegradable packaging materials in the food industry. Moreover, studies on the application of these packaging materials to monitor the freshness and safety of food products are reviewed, including dairy, meat, fish, fruit and vegetable products. Finally, the potential challenges associated with the application of these eco-friendly packaging materials in the food industry are discussed, as well as potential future directions.
Collapse
Affiliation(s)
- Mahmood Alizadeh Sani
- Food Safety and Hygiene Division, School of Public Health, Tehran University of Medical Sciences, Tehran 1417614411, Iran;
| | - Maryam Azizi-Lalabadi
- Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of Medical Sciences, Kermanshah 6719851552, Iran;
| | - Milad Tavassoli
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz 5166614711, Iran;
| | - Keyhan Mohammadi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran;
| | | |
Collapse
|
13
|
Abstract
Packaging containing nanoparticles (NPs) can increase the shelf life of products, but the presence of NPs may hazards human life. In this regard, there are reports regarding the side effect and cytotoxicity of nanoparticles. The main aim of this research was to study the migration of silver and copper nanoparticles from the packaging to the food matrix as well as the assessment techniques. The diffusion and migration of nanoparticles can be analyzed by analytical techniques including atomic absorption, inductively coupled plasma mass spectrometry, inductively coupled plasma atomic emission, and inductively coupled plasma optical emission spectroscopy, as well as X-ray diffraction, spectroscopy, migration, and titration. Inductively coupled plasma-based techniques demonstrated the best results. Reports indicated that studies on the migration of Ag/Cu nanoparticles do not agree with each other, but almost all studies agree that the migration of these nanoparticles is higher in acidic environments. There are widespread ambiguities about the mechanism of nanoparticle toxicity, so understanding these nanoparticles and their toxic effects are essential. Nanomaterials that enter the body in a variety of ways can be distributed throughout the body and damage human cells by altering mitochondrial function, producing reactive oxygen, and increasing membrane permeability, leading to toxic effects and chronic disease. Therefore, more research needs to be done on the development of food packaging coatings with consideration given to the main parameters affecting nanoparticles migration.
Collapse
|
14
|
On the Use of Persian Gum for the Development of Antiviral Edible Coatings against Murine Norovirus of Interest in Blueberries. Polymers (Basel) 2021; 13:polym13020224. [PMID: 33440825 PMCID: PMC7827901 DOI: 10.3390/polym13020224] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/30/2020] [Accepted: 01/07/2021] [Indexed: 11/29/2022] Open
Abstract
In the last decades, berries have been identified as important vehicles for the transmission of foodborne viruses and different strategies are being explored to eliminate or reduce viral contamination in these fruits. The aim of this work was to develop novel edible coatings with antiviral properties for inactivating and reducing murine norovirus (MNV). Firstly, the effect of gelatin (G) addition on Persian gum (PG) films was studied in terms of microstructural, mechanical, optical, and water barrier properties. The following PG:G ratios were considered: 100:0, 75:25, 50:50, 25:75, and 0:100. Microstructure analysis revealed the compatibility of both hydrocolloids since no phase separation was observed. The addition of G to PG films provided stiffer and more deformable films than pure PG, with lower water vapor permeability values. Specifically, films prepared with 50:50 PG:G ratio presented better mechanical and barrier performance. Interestingly, pure PG showed antiviral activity on murine norovirus, probably due to the presence of some impurities (mainly tannins). Adding allyl isothiocyanate (AITC) enhanced the PG antiviral activity at refrigerated temperatures in blueberries, not being affected by the AITC concentration. This effect was not observed at ambient temperature, probably due to the volatilization of AITC.
Collapse
|