1
|
Sidhambaram J, Sakayanathan P, Loganathan C, Iruthayaraj A, Thayumanavan P. Esterified Indole-3-propionic Acid: A Novel Inhibitor against Cholinesterase Identified through Experimental and Computational Approaches. ACS OMEGA 2025; 10:9073-9087. [PMID: 40092751 PMCID: PMC11904713 DOI: 10.1021/acsomega.4c08149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/28/2024] [Accepted: 02/20/2025] [Indexed: 03/19/2025]
Abstract
Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) are targeted for designing drugs against cognitive dysfunction. Curcumin (CUR) and indole-3-propionic acid (IPA) are known for their neuroprotective activity. The clinical application of CUR is hindered due to poor absorption and bioavailability. Hence, CUR was conjugated with IPA to form the CUR-IPA diester. CUR-IPA inhibition against electric eel AChE (eAChE), human AChE (hAChE), and hBChE was carried out. In silico and molecular dynamics (MD) analyses of the interaction of CUR-IPA with hAChE and hBChE were done. UV-visible spectroscopy (λmax at 415 and 276 nm), NMR spectrum, and ESI/MS/MS [m/z = 711 (M + H)] confirmed CUR-IPA formation. CUR-IPA showed in vitro antioxidant activity. The IC50 values of eAChE, hAChE, and hBChE enzyme inhibition were 5.66, 59.30, and 60.66 μM, respectively. MD simulation-based analysis such as RMSD, RMSF, free-energy calculation, PCA, FEL, and DCCM confirmed the stable binding of CUR-IPA with hAChE and hBChE. Further QM/MM analysis confirmed the stable interaction of CUR-IPA with hAChE and hBChE. Since CUR-IPA showed in vitro inhibition against AChE and BChE, a further neuroprotective effect in in vivo could be studied.
Collapse
Affiliation(s)
| | | | - Chitra Loganathan
- Department
of Prosthodontics and Implantology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences
(SIMATS), Chennai600 077, India
| | - Ancy Iruthayaraj
- Bioinnov
Solutions LLP, Research and Development Center, Salem, Tamil Nadu 636009, India
| | | |
Collapse
|
2
|
Gandhi M, Sariga, Varghese A. Unveiling the Redox Characteristics of Rutin Trihydrate-Canvas-Based Sensor for Hydrazine Sensing in Water Samples. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:2167-2180. [PMID: 39865675 DOI: 10.1021/acs.langmuir.4c03360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The inclusion of redox mediators into electrocatalytic systems facilitates rapid electron shuttling kinetics and boosts the overall catalytic performance of the electrode. This approach overcomes the sluggish reaction dynamics associated with direct electron transfer, which may be impeded by restricted analyte access to the electrode's active sites. In contrast to conventional synthetic redox mediators, naturally sourced phytomolecule rutin trihydrate (RT), extracted from apple juice, offers potential ecological advantages. This bands with green chemistry principles and sustainability in electroanalytical approaches. The current work presents an eco-friendly and direct electrochemical approach to fabricate a redox-active RT-immobilized MWCNT-infused PEDOT hybrid material-modified glassy carbon electrode (GCE/MWCNT + PEDOT@RT). The developed electrode showcased a sharp and stable redox signal at E0 = 0.63 V vs Ag/AgCl with no surface-fouling characteristics. The efficacious functionalization of RT onto MWCNT + PEDOT was corroborated by a remarkable increase in the surface characteristics, enhanced electrochemical current responses, and low charge transfer resistance. The GCE/MWCNT + PEDOT@RT exhibited highly selective and sensitive sensing responses toward the toxic and potentially carcinogenic hydrazine (HZ) via cyclic voltammetry and differential pulse voltammetry techniques, yielding a low detection limit (DL) of 1.02 μM and a sensitivity of 0.032 μA μM-1 in a linear dynamic range between 0 and 1350 μM. In addition, the method was highly efficient for HZ detection in real samples of tanker, tap, and wastewater samples, producing a good recovery of ∼98%.
Collapse
Affiliation(s)
- Mansi Gandhi
- Department of Chemistry, Christ University, Bangalore 560029, Karnataka
| | - Sariga
- Department of Chemistry, Christ University, Bangalore 560029, Karnataka
| | - Anitha Varghese
- Department of Chemistry, Christ University, Bangalore 560029, Karnataka
| |
Collapse
|
3
|
She R, Xu P. Mechanism of curcumin in the prevention and treatment of oral submucosal fibrosis and progress in clinical application research. BDJ Open 2024; 10:82. [PMID: 39455570 PMCID: PMC11512022 DOI: 10.1038/s41405-024-00268-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/10/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024] Open
Abstract
INTRODUCTION Oral submucosal fibrosis is a potentially life-threatening oral disease that significantly impacts physiological functions such as speech and swallowing while also diminishing the quality of life for patients. Currently, the mainstream treatment for oral submucosal fibrosis in clinical practice involves invasive glucocorticoid drugs such as injection therapy. However, this method often leads to intraoperative pain, anxiety, fear, and poor medical experience due to associated side effects. METHODS There is an urgent need to actively explore new drugs and relatively noninvasive approaches for the treatment of oral submucosal fibrosis in order to enhance patients' medical experience and compliance. This has become a focal point of attention in clinical research. After conducting an extensive literature search, it was discovered that curcumin, a natural polyphenolic compound, exhibits potent anti-tumor, anti-inflammatory, antioxidant, anti-metastatic and anti-angiogenic properties. Moreover, curcumin holds significant clinical potential in the prevention and treatment of various diseases such as oral submucosal fibrosis. CONCLUSION This review presents a comprehensive elaboration encompassing the action mechanisms, biological activity, potential applications, and clinical characteristics of curcumin in the management of oral submucosal fibrosis, aiming to provide diagnostic insights and novel therapeutic perspectives for its prevention and treatment.
Collapse
Affiliation(s)
- Rong She
- Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, China
| | - Pu Xu
- Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, China.
| |
Collapse
|
4
|
Pal S, Sharma D, Yadav NP. Plant leads for mitigation of oral submucous fibrosis: Current scenario and future prospect. Oral Dis 2024; 30:80-99. [PMID: 36565439 DOI: 10.1111/odi.14485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/25/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022]
Abstract
The aim of this review is to enumerate medicinal plants and their bioactive compounds that may become potential leads in the mitigation of oral submucous fibrosis (OSMF) in the forthcoming future. It is focused on pathophysiology, risk factors, current treatment regimen, potential plant leads, and future therapies for OSMF. Data were extracted from a vast literature survey by using SciFinder, Web of Science, Google Scholar, and PubMed search engines with relevant keywords. Upon literature survey, we found that the phytochemical 'arecoline' present in the areca nut is the main causative agent of OSMF condition. Currently, OSMF is treated by immunomodulatory and anti-inflammatory agents such as corticosteroids, enzymes (hyaluronidase, chymotrypsin, and collagenase), anti-inflammatory mediators (isoxsuprine and pentoxifylline), dietary supplements (vitamins, antioxidants, and micronutrients), and anti-fibrotic cytokines like interferon-gamma that provides short-term symptomatic relief to OSMF patients. However, some plant leads have been proven effective in alleviating symptoms and mitigating OSMF, which ultimately improves the quality of OSMF patients' life. We concluded that plant drugs like lycopene, curcumin, Aloe vera, colchicine, and Glycyrrhiza glabra are effective against OSMF in various in vitro and/or clinical studies and are being used by modern and traditional practitioners.
Collapse
Affiliation(s)
- Sarita Pal
- Bioprospection and Product Development, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Disha Sharma
- Bioprospection and Product Development, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Narayan Prasad Yadav
- Bioprospection and Product Development, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| |
Collapse
|
5
|
Olender D, Sowa-Kasprzak K, Pawełczyk A, Skóra B, Zaprutko L, Szychowski KA. Curcuminoid Chalcones: Synthesis and Biological Activity against the Human Colon Carcinoma (Caco-2) Cell Line. Curr Med Chem 2024; 31:5397-5416. [PMID: 37779412 DOI: 10.2174/0109298673257972230919055832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/18/2023] [Accepted: 08/09/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND There are many current scientific reports on the synthesis of various derivatives modelled on the structure of known small-molecular and natural bioactive compounds. Curcuminoid chalcones are an innovative class of compounds with significant therapeutic potential against various diseases and they perfectly fit into the current trends in the search for new biologically active substances. AIM The aim of this study was to design and synthesise a series of curcuminoid chalcones. OBJECTIVE The objective of this scientific paper was to synthesise twelve curcuminoid chalcones and confirm their structures using spectral methods. Additionally, the biological activity of three of the synthesised compounds was evaluated using various assays, and their anticancer properties and toxicity were studied. METHODS The proposed derivatives were obtained via the Claisen-Schmidt reaction of selected acetophenones and aldehydes in various conditions using both classical methods: the solutions and solvent-free microwave (MW) or ultrasound (US) variants. The most optimal synthetic method for the selected curcuminoid chalcones was the classical Claisen-Schmidt condensation in an alkaline (NaOH) medium. Spectral methods were used to confirm the structures of the compounds. The resazurin reduction assay, caspase-3 activity assay, and RT-qPCR method were performed, followed by measurements of the intracellular reactive oxygen species (ROS) level and the lactate dehydrogenase (LDH) release level. RESULTS Twelve designed curcuminoid chalcones were successfully synthesized and structurally confirmed by NMR, MS, and IR spectroscopy. Examination of the anticancer activity was carried out for the three most interesting chalcone products. CONCLUSION The results suggested that compound 3a increased the metabolism and/or proliferation of the human colon carcinoma (Caco-2) cell line, while compounds 3b and 3f showed significant toxicity against the Caco-2 cell line. Overall, the preliminary results suggested that compound 3b exhibited the most favourable anticancer activity.
Collapse
Affiliation(s)
- Dorota Olender
- Department of Organic Chemistry, Pharmaceutical Faculty, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland
| | - Katarzyna Sowa-Kasprzak
- Department of Organic Chemistry, Pharmaceutical Faculty, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland
| | - Anna Pawełczyk
- Department of Organic Chemistry, Pharmaceutical Faculty, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland
| | - Bartosz Skóra
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszów, Poland
| | - Lucjusz Zaprutko
- Department of Organic Chemistry, Pharmaceutical Faculty, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland
| | - Konrad A Szychowski
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszów, Poland
| |
Collapse
|
6
|
Zhao W, Zeng M, Li K, Pi C, Liu Z, Zhan C, Yuan J, Su Z, Wei Y, Wen J, Pi F, Song X, Lee RJ, Wei Y, Zhao L. Solid lipid nanoparticle as an effective drug delivery system of a novel curcumin derivative: formulation, release in vitro and pharmacokinetics in vivo. PHARMACEUTICAL BIOLOGY 2022; 60:2300-2307. [PMID: 36606719 PMCID: PMC9704087 DOI: 10.1080/13880209.2022.2136205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/20/2022] [Accepted: 10/09/2022] [Indexed: 06/17/2023]
Abstract
CONTEXT Curcumin (Cur) has a short duration of action which limits its therapeutic efficacy. Carbonic acid 17-(1,5-dimethyl-hexyl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl ester 4-[7-(4-hydroxy-3-methoxy-phenyl)-3,5-dioxo-hepta-1,6-dienyl]-2-methoxy-phenyl ester (CUD), as a small molecule derivative of Cur with superior stability, has been developed in our laboratory. OBJECTIVE CUD-loaded solid lipid nanoparticles (CUD-SLN) were prepared to prolong the duration of the drug action of Cur. MATERIALS AND METHODS CUD-SLN were prepared with Poloxamer 188 (F68) and hydrogenated soybean phospholipids (HSPC) as carriers, and the prescription was optimized. The in vitro release of CUD and CUD-SLN was investigated. CUD-SLN (5 mg/kg) was injected into Sprague Dawley (SD) rats to investigate its pharmacokinetic behaviour. RESULTS CUD-SLN features high entrapment efficiency (96.8 ± 0.4%), uniform particle size (113.0 ± 0.8 nm), polydispersity index (PDI) (0.177 ± 0.007) and an appropriate drug loading capacity (6.2 ± 0.1%). Optimized CUD-SLN exhibited sustained release of CUD for about 48 h. Moreover, the results of the pharmacokinetic studies showed that, compared to Cur, CUD-SLN had a considerably prolonged half-life of 14.7 h, slowed its metabolism in vivo by 35.6-fold, and had an improved area under the curve (AUC0-t) of 37.0-fold. CONCLUSIONS CUD-SLN is a promising preparation for the development of a small molecule derivative of Cur.
Collapse
Affiliation(s)
- Wenmei Zhao
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, PR China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, PR China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, PR China
| | - Mingtang Zeng
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, PR China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, PR China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, PR China
| | - Ke Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, PR China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, PR China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, PR China
| | - Chao Pi
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, PR China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, PR China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, PR China
| | - Zerong Liu
- Central Nervous System Drug Key Laboratory of Sichuan Province, Sichuan Credit Pharmaceutical Co., Ltd., Luzhou City, PR China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Chenglin Zhan
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, PR China
| | - Jiyuan Yuan
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, PR China
- Clinical Trial Center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, PR China
| | - Zhilian Su
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, PR China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, PR China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, PR China
| | - Yuxun Wei
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, PR China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, PR China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, PR China
| | - Jie Wen
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, PR China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, PR China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, PR China
| | - Fengjuan Pi
- Department of Pharmacy, The Traditional Chinese Medicine Hospital of Luzhou, Luzhou, PR China
| | - Xinjie Song
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Robert J. Lee
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Yumeng Wei
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, PR China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, PR China
| | - Ling Zhao
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, PR China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, PR China
| |
Collapse
|
7
|
Teo RHX, Lee JXT, Tan WR, Shum WQ, Li Y, Pullarkat SA, Tan NS, Leung PH. Catalytic Asymmetric Hydrophosphination as a Valuable Tool to Access Dihydrophosphinated Curcumin and Its Derivatives. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ronald Hong Xiang Teo
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| | - Jeannie Xue Ting Lee
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, 308232, Singapore
| | - Wei Ren Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, 308232, Singapore
| | - Wen Qian Shum
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| | - Yongxin Li
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| | - Sumod A. Pullarkat
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| | - Nguan Soon Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, 308232, Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Pak-Hing Leung
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| |
Collapse
|
8
|
Morris G, Gamage E, Travica N, Berk M, Jacka FN, O'Neil A, Puri BK, Carvalho AF, Bortolasci CC, Walder K, Marx W. Polyphenols as adjunctive treatments in psychiatric and neurodegenerative disorders: Efficacy, mechanisms of action, and factors influencing inter-individual response. Free Radic Biol Med 2021; 172:101-122. [PMID: 34062263 DOI: 10.1016/j.freeradbiomed.2021.05.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/14/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023]
Abstract
The pathophysiology of psychiatric and neurodegenerative disorders is complex and multifactorial. Polyphenols possess a range of potentially beneficial mechanisms of action that relate to the implicated pathways in psychiatric and neurodegenerative disorders. The aim of this review is to highlight the emerging clinical trial and preclinical efficacy data regarding the role of polyphenols in mental and brain health, elucidate novel mechanisms of action including the gut microbiome and gene expression, and discuss the factors that may be responsible for the mixed clinical results; namely, the role of interindividual differences in treatment response and the potentially pro-oxidant effects of some polyphenols. Further clarification as part of larger, well conducted randomized controlled trials that incorporate precision medicine methods are required to inform clinical efficacy and optimal dosing regimens.
Collapse
Affiliation(s)
- Gerwyn Morris
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Elizabeth Gamage
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Nikolaj Travica
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Michael Berk
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Felice N Jacka
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Adrienne O'Neil
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | | | - Andre F Carvalho
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Chiara C Bortolasci
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Ken Walder
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Wolfgang Marx
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia.
| |
Collapse
|
9
|
Dos Santos VR, Caiaffa KS, Oliveira WCD, Pereira JA, Abuna GF, Polaquini CR, Regasini LO, Guiotti AM, Duque C. Cytotoxicity and effects of curcumin and cinnamaldehyde hybrids on biofilms of oral pathogens. BIOFOULING 2021; 37:591-605. [PMID: 34210215 DOI: 10.1080/08927014.2021.1942859] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
The objective of the study was to evaluate the cytotoxicity and effect of curcumin-cinnamaldehyde hybrids (CCHs) on the biofilm of oral pathogens. Of the 18 hybrids tested, nine had an inhibitory effect on at least one of the bacterial species tested, with minimal inhibitory and bactericidal concentrations ranging from 9 to 625 μg ml-1. CCH 7 promoted a potent inhibitory effect against all the bacterial species tested and better compatibility than chlorhexidine (CHX). CCH 7 also presented a similar or improved effect over that of CHX, causing a reduction in bacterial metabolism and viability in single and dual-species biofilms. CCH 7 reduced by 86% and 34% the viability of multispecies biofilms formed by collection and clinical strains. It can be concluded that CCH 7 was cytocompatible at the minimal inhibitory concentration, presented anti-biofilm action against oral pathogens, and could act as an antimicrobial agent for application in endodontics.
Collapse
Affiliation(s)
- Vanessa Rodrigues Dos Santos
- Department of Preventive and Restorative Dentistry, Araçatuba School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Karina Sampaio Caiaffa
- Department of Preventive and Restorative Dentistry, Araçatuba School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Warlley Campos de Oliveira
- Department of Preventive and Restorative Dentistry, Araçatuba School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Jesse Augusto Pereira
- Department of Preventive and Restorative Dentistry, Araçatuba School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Gabriel Flores Abuna
- Department of Restorative Dentistry, Faculty of Dentistry of Piracicaba, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Carlos Roberto Polaquini
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Luís Octávio Regasini
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Aimée Maria Guiotti
- Department of Dental Materials and Prosthodontics, Araçatuba School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Cristiane Duque
- Department of Preventive and Restorative Dentistry, Araçatuba School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| |
Collapse
|
10
|
Pham VTB, Nguyen TV, Nguyen HV, Nguyen TT, Hoang HM. Curcuminoids versus Pyrazole‐Modified Analogues: Synthesis and Cytotoxicity against HepG2 Cancer Cell Line. ChemistrySelect 2020. [DOI: 10.1002/slct.202003003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Van Thi Bich Pham
- Department of Chemistry Nong Lam University Linh Trung Ward, Thu Duc district, Ho Chi Minh City 700000 Vietnam
| | - Tien Vinh Nguyen
- Department of Chemical Technology Ho Chi Minh City University of Technology and Education Vo Van Ngan 01, Linh Chieu Ward, Thu Duc District Ho Chi Minh City 700000 Vietnam
| | - Hien Van Nguyen
- Department of Chemistry Nong Lam University Linh Trung Ward, Thu Duc district, Ho Chi Minh City 700000 Vietnam
| | - Triet Thanh Nguyen
- Department of Traditional Pharmacy University of Medicine and Pharmacy at Ho Chi Minh City 217 Hong Bang, Ward 11 District 5, Ho Chi Minh City 70000 Vietnam
| | - Hao Minh Hoang
- Department of Chemical Technology Ho Chi Minh City University of Technology and Education Vo Van Ngan 01, Linh Chieu Ward, Thu Duc District Ho Chi Minh City 700000 Vietnam
| |
Collapse
|
11
|
More CB, Jatti Patil D, Rao NR. Medicinal management of oral submucous fibrosis in the past decade- A systematic review. J Oral Biol Craniofac Res 2020; 10:552-568. [PMID: 32939334 PMCID: PMC7479289 DOI: 10.1016/j.jobcr.2020.08.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/08/2020] [Accepted: 08/09/2020] [Indexed: 12/28/2022] Open
Abstract
INTRODUCTION Oral submucous fibrosis (OSMF) is a potentially malignant disorder with a high rate of malignant transformation. It is associated with chewing of areca nut and tobacco products with a high global prevalence, particularly in the southeast Asian countries. A wide range of treatment modalities are available, ranging from corticosteroids, antioxidants, nutritional supplements to herbal medicines but lacks a reliable treatment regimen. AIM This systematic review will comprehensively analyze the medicinal treatment for OSMF from 2011 to 2020, apprise the literature with new clinical studies, and initiate a discussion about other potential medicines. MATERIAL AND METHODS A comprehensive electronic search was conducted in Pubmed, Scopus, and other databases from January 2011 to June 2020 according to the PRISMA guidelines, to identify all the clinical studies for the medicinal management of OSMF with definite keywords and defined criteria. RESULTS Among the thirty-two included clinical studies 23 were randomized controlled studies and 9 were case-control studies. The treatment outcomes were diverse, and the majority of the studies showed improvement in the subjective signs and symptoms of OSMF. Only a few studies noticed the side effects. CONCLUSION No single treatment modality is effective in the management of OSMF. The concurrent use of triple therapy is efficacious. The naturally occurring herbal medicines have an immense potential in the management of OSMF. Therefore, high-quality, longitudinal, multi-center randomized controlled trials with larger samples need to be conducted to further assess the efficacy of various medicinal formulations in conjunction with physiotherapy in the management of OSMF.
Collapse
Affiliation(s)
- Chandramani B. More
- Department of Oral Medicine and Radiology, K. M. Shah Dental College and Hospital, Sumandeep Vidyapeeth Deemed to be University, Vadodara, Gujarat, India
| | - Deepa Jatti Patil
- Department of Oral Medicine and Radiology, K. M. Shah Dental College and Hospital, Sumandeep Vidyapeeth Deemed to be University, Vadodara, Gujarat, India
| | - Naman R. Rao
- Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA, USA
| |
Collapse
|
12
|
Hasan M, Elkhoury K, Belhaj N, Kahn C, Tamayol A, Barberi-Heyob M, Arab-Tehrany E, Linder M. Growth-Inhibitory Effect of Chitosan-Coated Liposomes Encapsulating Curcumin on MCF-7 Breast Cancer Cells. Mar Drugs 2020; 18:E217. [PMID: 32316578 PMCID: PMC7230998 DOI: 10.3390/md18040217] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/04/2020] [Accepted: 04/13/2020] [Indexed: 12/16/2022] Open
Abstract
Current anticancer drugs exhibit limited efficacy and initiate severe side effects. As such, identifying bioactive anticancer agents that can surpass these limitations is a necessity. One such agent, curcumin, is a polyphenolic compound derived from turmeric, and has been widely investigated for its potential anti-inflammatory and anticancer effects over the last 40 years. However, the poor bioavailability of curcumin, caused by its low absorption, limits its clinical use. In order to solve this issue, in this study, curcumin was encapsulated in chitosan-coated nanoliposomes derived from three natural lecithin sources. Liposomal formulations were all in the nanometric scale (around 120 nm) and negatively charged (around -40 mV). Among the three lecithins, salmon lecithin presented the highest growth-inhibitory effect on MCF-7 cells (two times lower growth than the control group for 12 µM of curcumin and four times lower for 20 µM of curcumin). The soya and rapeseed lecithins showed a similar growth-inhibitory effect on the tumor cells. Moreover, coating nanoliposomes with chitosan enabled a higher loading efficiency of curcumin (88% for coated liposomes compared to 65% for the non-coated liposomes) and a stronger growth-inhibitory effect on MCF-7 breast cancer cells.
Collapse
Affiliation(s)
- Mahmoud Hasan
- LIBio, Université de Lorraine, F-54000 Nancy, France; (M.H.); (K.E.); (N.B.); (C.K.)
| | - Kamil Elkhoury
- LIBio, Université de Lorraine, F-54000 Nancy, France; (M.H.); (K.E.); (N.B.); (C.K.)
| | - Nabila Belhaj
- LIBio, Université de Lorraine, F-54000 Nancy, France; (M.H.); (K.E.); (N.B.); (C.K.)
| | - Cyril Kahn
- LIBio, Université de Lorraine, F-54000 Nancy, France; (M.H.); (K.E.); (N.B.); (C.K.)
| | - Ali Tamayol
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | | | - Elmira Arab-Tehrany
- LIBio, Université de Lorraine, F-54000 Nancy, France; (M.H.); (K.E.); (N.B.); (C.K.)
| | - Michel Linder
- LIBio, Université de Lorraine, F-54000 Nancy, France; (M.H.); (K.E.); (N.B.); (C.K.)
| |
Collapse
|
13
|
Zhang Y, Zhao M, Ning Z, Yu S, Tang N, Zhou F. Development of a Sono-Assembled, Bifunctional Soy Peptide Nanoparticle for Cellular Delivery of Hydrophobic Active Cargoes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:4208-4218. [PMID: 29634264 DOI: 10.1021/acs.jafc.7b05889] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Soy proteins are prone to aggregate upon proteolysis, hindering their sustainable development in food processing. Here, a continuous work on the large insoluble peptide aggregates was carried out, aiming to develop a new type of soy peptide-based nanoparticle (SPN) for active cargo delivery. Sono-assembled SPN in spherical appearance and core-shell structure maintained by noncovalent interactions was successfully fabricated, exhibiting small particle size (103.95 nm) in a homogeneous distribution state (PDI = 0.18). Curcumin as a model cargo was efficiently encapsulated into SPN upon sonication, showing high water dispersity (129.6 mg/L, 104 higher than its water solubility) and storage stability. Additionally, the pepsin-resistant SPN contributed to the controlled release of curcumin at the intestinal phase and thus significantly improved the bioaccessibility. Encapsulated curcumin was effective in protecting glutamate-induced toxicity in PC12 cells, where the matrix SPN can simultaneously reduce lipid peroxidation and elevate antioxidant enzymes levels, innovatively demonstrating its bifunctionality during cellular delivery.
Collapse
Affiliation(s)
- Yuanhong Zhang
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , China
- Guangdong Food Green Processing and Nutrition Regulation Technology Research Center, Guangzhou 510640 , China
| | - Mouming Zhao
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , China
- Guangdong Food Green Processing and Nutrition Regulation Technology Research Center, Guangzhou 510640 , China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health , Beijing Technology & Business University , Beijing 100048 , China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health, (111 Center) , Guangzhou 510640, China
| | - Zhengxiang Ning
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Shujuan Yu
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Ning Tang
- Department of Chemistry , Technical University of Denmark , DK-2800 Kgs. Lyngby , Denmark
| | - Feibai Zhou
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , China
- Guangdong Food Green Processing and Nutrition Regulation Technology Research Center, Guangzhou 510640 , China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health, (111 Center) , Guangzhou 510640, China
| |
Collapse
|
14
|
Choudhary S, Singh PK, Verma H, Singh H, Silakari O. Success stories of natural product-based hybrid molecules for multi-factorial diseases. Eur J Med Chem 2018; 151:62-97. [PMID: 29605809 DOI: 10.1016/j.ejmech.2018.03.057] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/19/2018] [Accepted: 03/20/2018] [Indexed: 12/18/2022]
Abstract
Complex diseases comprises of highly complicated etiology resulting in limited applicability of conventional targeted therapies. Consequently, conventional medicinal compounds suffer major failure when used for such disease conditions. Additionally, development of multidrug resistance (MDR), adverse drug reactions and clinical specificity of single targeted drug therapy has increased thrust for novel drug therapy. In this rapidly evolving era, natural product-based discovery of hybrid molecules or multi-targeted drug therapies have shown promising results and are trending now a days. Historically, nature has blessed human with different sources viz. plant, animal, microbial, marine and ethnopharmaceutical sources which has given a wide variety of medicinally active compounds. These compounds from natural origin are always choice of interest of medicinal chemists because of their minimum side effects. Hybrid molecules synthesized by fusing or conjugating different active molecules obtained from these sources are reported to synergistically block different pathways which contribute in the pathogenesis of complex diseases. This review strives to encompass all natural product-derived hybrid molecules which act as multi-targeting agents striking various targets involved in different pathways of complex diseased conditions reported in literature.
Collapse
Affiliation(s)
- Shalki Choudhary
- Molecular Modelling Lab (MML), Department of Pharmaceutical Sciences and Drug research, Punjabi University, Patiala, Punjab, 147002, India
| | - Pankaj Kumar Singh
- Molecular Modelling Lab (MML), Department of Pharmaceutical Sciences and Drug research, Punjabi University, Patiala, Punjab, 147002, India
| | - Himanshu Verma
- Molecular Modelling Lab (MML), Department of Pharmaceutical Sciences and Drug research, Punjabi University, Patiala, Punjab, 147002, India
| | | | - Om Silakari
- Molecular Modelling Lab (MML), Department of Pharmaceutical Sciences and Drug research, Punjabi University, Patiala, Punjab, 147002, India.
| |
Collapse
|
15
|
Curcumin in Advancing Treatment for Gynecological Cancers with Developed Drug- and Radiotherapy-Associated Resistance. Rev Physiol Biochem Pharmacol 2018; 176:107-129. [DOI: 10.1007/112_2018_11] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
16
|
Anticancer Curcumin: Natural Analogues and Structure-Activity Relationship. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2017. [DOI: 10.1016/b978-0-444-63929-5.00010-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
17
|
Sökmen M, Akram Khan M. The antioxidant activity of some curcuminoids and chalcones. Inflammopharmacology 2016; 24:81-6. [PMID: 27188988 PMCID: PMC4883448 DOI: 10.1007/s10787-016-0264-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/12/2016] [Indexed: 12/22/2022]
Abstract
The antioxidant properties of the synthetic compound (C1)–(C8), which comprised 7 curcuminoids and a chalcone, were evaluated by two complementary assays, DPPH and β-carotene/linoleic acid. It was found that, in general, the free radical scavenging ability of (C1)–(C8) was concentration-dependent. Compounds (C1) and (C4), which contained (4-OH) phenolic groups, were found to be highly potent antioxidants with higher antioxidant values than BHT suggesting that synthetic curcuminoids are more potent antioxidants than standard antioxidants like BHT. Using β-carotene-linoleic acid assay, only the water-soluble 2, 4,6-trihydroxyphenolic chalcone (C5) showed 85.2 % inhibition of the formation of conjugated dienes reflecting on its potent antioxidant activity.
Collapse
Affiliation(s)
- Münevver Sökmen
- Department of Chemistry, Faculty of Science, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - M Akram Khan
- Biomedical Research Centre, Sheffield Hallam University, Sheffield, S1 1WB, UK.
| |
Collapse
|
18
|
Margar SN, Sekar N. Nonlinear optical properties of curcumin: solvatochromism-based approach and computational study. Mol Phys 2016. [DOI: 10.1080/00268976.2016.1161248] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
19
|
Bhullar KS, Jha A, Rupasinghe HPV. Novel carbocyclic curcumin analog CUR3d modulates genes involved in multiple apoptosis pathways in human hepatocellular carcinoma cells. Chem Biol Interact 2015; 242:107-22. [PMID: 26409325 DOI: 10.1016/j.cbi.2015.09.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 09/13/2015] [Accepted: 09/22/2015] [Indexed: 01/16/2023]
Abstract
Anticancer activity of a novel curcumin analog (E)-2-(4-hydroxy-3-methoxybenzylidene)-5-((E)-3-(4-hydroxy-3-methoxyphenyl)acryloyl)cyclopentanone (CUR3d) was studied using a human hepatocellular carcinoma cell line (HepG2). The results showed that CUR3d completely inhibits the tumor cell proliferation in a dose- and time-dependent manner. CUR3d at 100 μmol/L activated the pro-apoptotic caspase-3 along with downregulation of anti-apoptotic BIRC5 and Bcl2. CUR3d treatment controlled the cancer cell growth by downregulating the expression of PI3K/Akt (Akt1, Akt2) pathway along with NF-κB. CUR3d down-regulated the members of epidermal growth receptor family (EGFR, ERBB3, ERBB2) and insulin like growth receptors (IGF1, IGF-1R, IGF2). This correlated with the downregulation of G-protein (RHOA, RHOB) and RAS (ATF2, HRAS, KRAS, NRAS) pathway signaling. CUR3d also arrested cell cycle via inhibition of CDK2, CDK4, CDK5, CDK9, MDM2, MDM4 and TERT genes. Cell cycle essential aurora kinases (AURKα, AURKβ) and polo-like kinases (PLK1, PLK2, PLK3) were also modulated by CUR3d. Topoisomerases (TOP2α, TOP2β), important factors in cancer cell immortality, as well as HIF-1α were downregulated following CUR3d treatment. The expression of protein kinase-C family (PRKC-A, PRKC-D, PRKC-E) was also attenuated by CUR3d. The downregulation of histone deacetylases (Class I, II, IV) and PARP I further strengthened the anticancer efficacy of CUR3d. Downregulation of carcinogenic cathepsins (CTSB, CTSD) and heat shock proteins exhibited CUR3d's potency as a potential immunological adjuvant. Finally, the non-toxic manifestation of CUR3d in healthy liver and lung cells along with downregulation of drug resistant gene ABCC1 further warrant need for advance investigations.
Collapse
Affiliation(s)
- Khushwant S Bhullar
- Department of Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, B2N 5E3, Canada; Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | - Amitabh Jha
- Department of Chemistry, Acadia University, Wolfville, Nova Scotia, B4P 2R6, Canada
| | - H P Vasantha Rupasinghe
- Department of Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, B2N 5E3, Canada; Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada.
| |
Collapse
|
20
|
Bharitkar YP, Das M, Kumari N, Kumari MP, Hazra A, Bhayye SS, Natarajan R, Shah S, Chatterjee S, Mondal NB. Synthesis of Bis-pyrrolizidine-Fused Dispiro-oxindole Analogues of Curcumin via One-Pot Azomethine Ylide Cycloaddition: Experimental and Computational Approach toward Regio- and Diastereoselection. Org Lett 2015; 17:4440-3. [PMID: 26331906 DOI: 10.1021/acs.orglett.5b02085] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Curcumin has been transformed to racemic curcuminoids via an azomethine ylide cycloaddition reaction using isatin/acenaphthoquinone and proline as the reagents. The products were characterized by extensive 1D/2D NMR analysis and single-crystal X-ray crystallographic studies. The enantiomers of one racemic product were separated by HPLC on a Chiralcel OD-H column and were indeed confirmed by the CD spectra of the separated enantiomers.
Collapse
Affiliation(s)
- Yogesh P Bharitkar
- Department of Organic and Medicinal Chemistry, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research , 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India
| | - Mohua Das
- National Institute of Pharmaceutical Education and Research, Indian Institute of Chemical Biology , 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India
| | - Neha Kumari
- National Institute of Pharmaceutical Education and Research, Indian Institute of Chemical Biology , 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India
| | - M Padma Kumari
- National Institute of Pharmaceutical Education and Research, Indian Institute of Chemical Biology , 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India
| | - Abhijit Hazra
- Department of Organic and Medicinal Chemistry, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research , 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India
| | - Sagar S Bhayye
- Department of Chemical Technology, University of Calcutta , Kolkata, West Bengal 700 009, India
| | - Ramalingam Natarajan
- Department of Organic and Medicinal Chemistry, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research , 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India
| | - Siddharth Shah
- National Institute of Pharmaceutical Education and Research, Indian Institute of Chemical Biology , 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India
| | - Sourav Chatterjee
- Department of Organic and Medicinal Chemistry, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research , 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India
| | - Nirup B Mondal
- Department of Organic and Medicinal Chemistry, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research , 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India
| |
Collapse
|
21
|
Yao Q, Lin M, Wang Y, Lai Y, Hu J, Fu T, Wang L, Lin S, Chen L, Guo Y. Curcumin induces the apoptosis of A549 cells via oxidative stress and MAPK signaling pathways. Int J Mol Med 2015; 36:1118-26. [PMID: 26310655 DOI: 10.3892/ijmm.2015.2327] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 08/10/2015] [Indexed: 11/05/2022] Open
Abstract
Curcumin has been found to exhibit anticancer activity and certain studies have shown that curcumin triggers the apoptosis of human A549 lung adenocarcinoma cells. However, the mechanism underlying curcumin‑mediated apoptosis is not completely understood. The present study was designed to investigate the effect of curcumin on the induction of apoptosis and apoptosis‑related factors in human A549 lung adenocarcinoma cells. Treatment of A549 cells with curcumin caused a concentration‑dependent inhibition of cell growth and an increase in apoptosis, as confirmed by THE MTT assay, flow cytometry and morphology analysis. Curcumin‑treatment of A549 cells induced a loss of the mitochondrial membrane potential and increased cytosolic cytochrome c. Furthermore, curcumin‑induced apoptosis was accompanied by changes in intracellular oxidative stress‑related enzymes, including decreased intracellular reactive oxygen species levels, increased superoxide dismutase and decreased malondialdehyde and 4‑hydroxynonenal. In addition, induction of apoptosis was also accompanied by phosphorylation and activation of mitogen‑activated protein kinase signaling pathway factors c‑Jun N‑terminal kinase, p38 and extracellular signal-regulated kinase.
Collapse
Affiliation(s)
- Qinghua Yao
- Key Laboratory of Traditional Chinese Medicine Oncology, Zhejiang Cancer Hospital, Banshan Qiao, Hangzhou, Zhejiang 310022, P.R. China
| | - Miao Lin
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Yuqi Wang
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Yuebiao Lai
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Jingjing Hu
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Ting Fu
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Lu Wang
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Shuyuan Lin
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Liangliang Chen
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Yong Guo
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
22
|
A Novel Approach for Overcoming Drug Resistance in Breast Cancer Chemotherapy by Targeting new Synthetic Curcumin Analogues Against Aldehyde Dehydrogenase 1 (ALDH1A1) and Glycogen Synthase Kinase-3 β (GSK-3β). Appl Biochem Biotechnol 2015; 176:1996-2017. [DOI: 10.1007/s12010-015-1696-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 05/28/2015] [Indexed: 12/16/2022]
|
23
|
Lundvig DMS, Pennings SWC, Brouwer KM, Mtaya-Mlangwa M, Mugonzibwa E, Kuijpers-Jagtman AM, Wagener FADTG, Von den Hoff JW. Cytoprotective responses in HaCaT keratinocytes exposed to high doses of curcumin. Exp Cell Res 2015; 336:298-307. [PMID: 26071936 DOI: 10.1016/j.yexcr.2015.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 06/02/2015] [Accepted: 06/04/2015] [Indexed: 01/05/2023]
Abstract
Wound healing is a complex process that involves the well-coordinated interactions of different cell types. Topical application of high doses of curcumin, a plant-derived polyphenol, enhances both normal and diabetic cutaneous wound healing in rodents. For optimal tissue repair interactions between epidermal keratinocytes and dermal fibroblasts are essential. We previously demonstrated that curcumin increased reactive oxygen species (ROS) formation and apoptosis in dermal fibroblasts, which could be prevented by pre-induction of the cytoprotective enzyme heme oxygenase (HO)-1. To better understand the effects of curcumin on wound repair, we now assessed the effects of high doses of curcumin on the survival of HaCaT keratinocytes and the role of the HO system. We exposed HaCaT keratinocytes to curcumin in the presence or absence of the HO-1 inducers heme (FePP) and cobalt protoporphyrin (CoPP). We then assessed cell survival, ROS formation, and caspase activation. Curcumin induced caspase-dependent apoptosis in HaCaT keratinocytes via a ROS-dependent mechanism. Both FePP and CoPP induced HO-1 expression, but only FePP protected against curcumin-induced ROS formation and caspase-mediated apoptosis. In the presence of curcumin, FePP but not CoPP induced the expression of the iron scavenger ferritin. Together, our data show that the induction of ferritin, but not HO, protects HaCaT keratinocytes against cytotoxic doses of curcumin. The differential response of fibroblasts and keratinocytes to high curcumin doses may provide the basis for improving curcumin-based wound healing therapies.
Collapse
Affiliation(s)
- Ditte M S Lundvig
- Department of Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Sebastiaan W C Pennings
- Department of Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Katrien M Brouwer
- Department of Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Matilda Mtaya-Mlangwa
- Department of Preventive and Community Dentistry, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Emeria Mugonzibwa
- Department of Preventive and Community Dentistry, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Anne Marie Kuijpers-Jagtman
- Department of Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Frank A D T G Wagener
- Department of Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Johannes W Von den Hoff
- Department of Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| |
Collapse
|
24
|
Gomes A, Machado M, Lobo L, Nogueira F, Prudêncio M, Teixeira C, Gomes P. N-Cinnamoylation of Antimalarial Classics: Effects of Using Acyl Groups Other than Cinnamoyl toward Dual-Stage Antimalarials. ChemMedChem 2015; 10:1344-9. [PMID: 26038181 DOI: 10.1002/cmdc.201500164] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Indexed: 01/08/2023]
Abstract
In a follow-up study to our reports of N-cinnamoylated chloroquine and quinacrine analogues as promising dual-stage antimalarial leads with high in vitro potency against both blood-stage Plasmodium falciparum and liver-stage Plasmodium berghei, we decided to investigate the effect of replacing the cinnamoyl moiety with other acyl groups. Thus, a series of N-acylated analogues were synthesized, and their activities against blood- and liver-stage Plasmodium spp. were assessed along with their in vitro cytotoxicities. Although the new N-acylated analogues were found to be somewhat less active and more cytotoxic than their N-cinnamoylated counterparts, they equally displayed nanomolar activities in vitro against blood-stage drug-sensitive and drug-resistant P. falciparum, and significant in vitro liver-stage activity against P. berghei. Therefore, it is demonstrated that simple N-acylated surrogates of classical antimalarial drugs are promising dual-stage antimalarial leads.
Collapse
Affiliation(s)
- Ana Gomes
- CICECO, Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal)
| | - Marta Machado
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa (Portugal)
| | - Lis Lobo
- Centro de Malária e Outras Doenças Tropicais, Instituto de Higiene e Medicina Tropical, R. da Junqueira 100, 1349-008 Lisboa (Portugal)
| | - Fátima Nogueira
- Centro de Malária e Outras Doenças Tropicais, Instituto de Higiene e Medicina Tropical, R. da Junqueira 100, 1349-008 Lisboa (Portugal)
| | - Miguel Prudêncio
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa (Portugal)
| | - Cátia Teixeira
- CICECO, Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal).
| | - Paula Gomes
- UCIBIO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal).
| |
Collapse
|
25
|
Affiliation(s)
| | - Philip A. Cole
- Department
of Pharmacology
and Molecular Sciences, The Johns Hopkins
University School of Medicine, 725 North Wolfe Street, Hunterian 316, Baltimore, Maryland 21205, United States
| |
Collapse
|
26
|
Das KK, Razzaghi-Asl N, Tikare SN, Di Santo R, Costi R, Messore A, Pescatori L, Crucitti GC, Jargar JG, Dhundasi SA, Saso L. Hypoglycemic activity of curcumin synthetic analogues in alloxan-induced diabetic rats. J Enzyme Inhib Med Chem 2015; 31:99-105. [DOI: 10.3109/14756366.2015.1004061] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
27
|
Singh DV, Agarwal S, Singh P, Godbole MM, Misra K. Curcumin conjugates induce apoptosis via a mitochondrion dependent pathway in MCF-7 and MDA-MB-231 cell lines. Asian Pac J Cancer Prev 2015; 14:5797-804. [PMID: 24289580 DOI: 10.7314/apjcp.2013.14.10.5797] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
In order to enhance the bioavailability of curcumin its conjugates with piperic acid and glycine were synthesized by esterifying the 4 and 4' phenolic hydroxyls, the sites of metabolic conjugation. Antiproliferative and apoptotic efficacy of synthesized conjugates was investigated in MCF-7 and MDA-MB-231 cell lines. IC50 values of di-O-glycinoyl (CDG) and di-O-piperoyl (CDP) esters of curcumin were found to be comparable with that of curcumin. Both conjugates induced chromatin condensation fragmentation and apoptotic body formation. CDP exposure to MCF-7 cells induced apoptosis initiating loss of mitochondrial membrane potential (Δψm) followed by inhibition of translocation of transcription factor NF-kB and release of Cytochrome-C. Reactive oxygen species (ROS) production was evaluated by fluorescent activated cell sorter. Change in ratio of Bcl2/ Bclxl was observed, suggesting permeablization of mitochondrial membrane leading to the release of AIF, Smac and other apoptogenic molecules. DNA fragmentation as a hallmark for apoptosis was monitored by TUNEL as well as agrose gel electrophoresis. Thus, it was proven that conjugation does not affect the therapeutic potential of parent molecule in vitro, while these could work in vivo as prodrugs with enhanced pharmacokinetic profile. Pharmacokinetics of these molecules under in vivo conditions is a further scope of this study.
Collapse
Affiliation(s)
- Durg Vijay Singh
- Department of Bioinformatics, Indian Institute of Information Technology, Allahabad, India E-mail :
| | | | | | | | | |
Collapse
|
28
|
Feng L, Li Y, Song ZF, Li HJ, Huai QY. Synthesis and Biological Evaluation of Curcuminoid Derivatives. Chem Pharm Bull (Tokyo) 2015; 63:873-81. [DOI: 10.1248/cpb.c15-00470] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Yang Li
- Marine College, Shandong University
| | | | - Hui-jing Li
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai
| | | |
Collapse
|
29
|
Lundvig DM, Pennings SW, Brouwer KM, Mtaya-Mlangwa M, Mugonzibwa EA, Kuijpers-Jagtman AM, Von den Hoff JW, Wagener FA. Curcumin induces differential expression of cytoprotective enzymes but similar apoptotic responses in fibroblasts and myofibroblasts. Exp Cell Res 2015; 330:429-441. [DOI: 10.1016/j.yexcr.2014.10.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 10/02/2014] [Accepted: 10/05/2014] [Indexed: 12/22/2022]
|
30
|
Teiten MH, Dicato M, Diederich M. Hybrid curcumin compounds: a new strategy for cancer treatment. Molecules 2014; 19:20839-63. [PMID: 25514225 PMCID: PMC6271749 DOI: 10.3390/molecules191220839] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/26/2014] [Accepted: 11/27/2014] [Indexed: 01/09/2023] Open
Abstract
Cancer is a multifactorial disease that requires treatments able to target multiple intracellular components and signaling pathways. The natural compound, curcumin, was already described as a promising anticancer agent due to its multipotent properties and huge amount of molecular targets in vitro. Its translation to the clinic is, however, limited by its reduced solubility and bioavailability in patients. In order to overcome these pharmacokinetic deficits of curcumin, several strategies, such as the design of synthetic analogs, the combination with specific adjuvants or nano-formulations, have been developed. By taking into account the risk-benefit profile of drug combinations, as well as the knowledge about curcumin's structure-activity relationship, a new concept for the combination of curcumin with scaffolds from different natural products or components has emerged. The concept of a hybrid curcumin molecule is based on the incorporation or combination of curcumin with specific antibodies, adjuvants or other natural products already used or not in conventional chemotherapy, in one single molecule. The high diversity of such conjugations enhances the selectivity and inherent biological activities and properties, as well as the efficacy of the parental compound, with particular emphasis on improving the efficacy of curcumin for future clinical treatments.
Collapse
Affiliation(s)
- Marie-Hélène Teiten
- Laboratory of Molecular and Cellular Biology of Cancer (LBMCC), Hôpital Kirchberg, 9, Rue Edward Steichen, Luxembourg L-2540, Luxembourg.
| | - Mario Dicato
- Laboratory of Molecular and Cellular Biology of Cancer (LBMCC), Hôpital Kirchberg, 9, Rue Edward Steichen, Luxembourg L-2540, Luxembourg.
| | - Marc Diederich
- Department of Pharmacy, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Korea.
| |
Collapse
|
31
|
Singh DV, Bharti SK, Agarwal S, Roy R, Misra K. Study of interaction of human serum albumin with curcumin by NMR and docking. J Mol Model 2014; 20:2365. [DOI: 10.1007/s00894-014-2365-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 06/22/2014] [Indexed: 10/25/2022]
|
32
|
Structure-Function Elucidation of Antioxidative and Prooxidative Activities of the Polyphenolic Compound Curcumin. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/396708] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Phenolic compounds have been very well known for their antioxidant properties, owing to their unique ability to act as free radical scavengers which, in turn, is an outstanding attribute of their unique biochemical structure. Recent accumulating lines of evidence inculcate sustainable interest and curiosity towards the chemoprotective nature of the natural polyphenolic compound curcumin (diferuloylmethane) against oxidative stress-mediated disorders. Curcumin is naturally found as a constituent of dietary spices called turmeric, extracted from the plant Curcuma longa. However, like every phenolic antioxidant, curcumin possesses a concentration and medium dependent anti- and pro-oxidant behaviour. A detailed study of the structure-function analysis and the understanding of the mode of action of curcumin as well as its chemical analogues is thus essential to understand the selective biochemical consequences of curcumin. Moreover, the presence of transition metal ions, route of administration, and localized tissue are also the vital decisive factors to determine curcumin behaviour. With this viewpoint, this paper sheds lights on the medium dependent prooxidative and antioxidative attributes of curcumin. Further, with respect to emergence of nanocarriers, a brief discussion focusing on the biochemical effect exertion of curcumin chiefly due to targeted and slow release has also been added towards the end.
Collapse
|
33
|
Bukhari SNA, Jantan IB, Jasamai M, Ahmad W, Amjad MWB. Synthesis and Biological Evaluation of Curcumin Analogues. JOURNAL OF MEDICAL SCIENCES 2013. [DOI: 10.3923/jms.2013.501.513] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
34
|
Vyas A, Dandawate P, Padhye S, Ahmad A, Sarkar F. Perspectives on new synthetic curcumin analogs and their potential anticancer properties. Curr Pharm Des 2013. [PMID: 23116312 DOI: 10.2174/138161213805289309] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Curcumin is the active component of dried rhizome of Curcuma longa, a perennial herb belonging to ginger family, cultivated extensively in south and southeastern tropical Asia. It is widely consumed in the Indian subcontinent, south Asia and Japan in traditional food recipes. Extensive research over last few decades has shown that curcumin is a potent anti-inflammatory agent with powerful therapeutic potential against a variety of cancers. It suppresses proliferation and metastasis of human tumors through regulation of various transcription factors, growth factors, inflammatory cytokines, protein kinases and other enzymes. It induces apoptotic cell death and also inhibits proliferation of cancer cells by cell cycle arrest. Pharmacokinetic data has shown that curcumin undergoes rapid metabolism leading to glucuronidation and sulfation in the liver and excretion in the feces, which accounts for its poor systemic bioavailability. The compound has, therefore, been formulated and administered using different drug delivery systems such as liposomes, micelles, polysaccharides, phospholipid complexes and nanoparticles that can overcome the limitation of bioavailability to some extent. Attempts to avoid rapid metabolism of curcumin until now have been met with limited success. This has prompted researchers to look for new synthetic curcumin analogs in order to overcome the drawbacks of limited bioavailability and rapid metabolism, and gain efficacy with reduced toxicity. In this review we provide a summarized account of novel synthetic curcumin formulations and analogs, and the recent progress in the field of cancer prevention and treatment.
Collapse
Affiliation(s)
- Alok Vyas
- ISTRA, Department of Chemistry, Abeda Inamdar College, University of Pune, Pune 411001, India
| | | | | | | | | |
Collapse
|
35
|
Vyas A, Dandawate P, Padhye S, Ahmad A, Sarkar F. Perspectives on new synthetic curcumin analogs and their potential anticancer properties. Curr Pharm Des 2013. [PMID: 23116312 DOI: 10.2174/1381612811319110007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Curcumin is the active component of dried rhizome of Curcuma longa, a perennial herb belonging to ginger family, cultivated extensively in south and southeastern tropical Asia. It is widely consumed in the Indian subcontinent, south Asia and Japan in traditional food recipes. Extensive research over last few decades has shown that curcumin is a potent anti-inflammatory agent with powerful therapeutic potential against a variety of cancers. It suppresses proliferation and metastasis of human tumors through regulation of various transcription factors, growth factors, inflammatory cytokines, protein kinases and other enzymes. It induces apoptotic cell death and also inhibits proliferation of cancer cells by cell cycle arrest. Pharmacokinetic data has shown that curcumin undergoes rapid metabolism leading to glucuronidation and sulfation in the liver and excretion in the feces, which accounts for its poor systemic bioavailability. The compound has, therefore, been formulated and administered using different drug delivery systems such as liposomes, micelles, polysaccharides, phospholipid complexes and nanoparticles that can overcome the limitation of bioavailability to some extent. Attempts to avoid rapid metabolism of curcumin until now have been met with limited success. This has prompted researchers to look for new synthetic curcumin analogs in order to overcome the drawbacks of limited bioavailability and rapid metabolism, and gain efficacy with reduced toxicity. In this review we provide a summarized account of novel synthetic curcumin formulations and analogs, and the recent progress in the field of cancer prevention and treatment.
Collapse
Affiliation(s)
- Alok Vyas
- ISTRA, Department of Chemistry, Abeda Inamdar College, University of Pune, Pune 411001, India
| | | | | | | | | |
Collapse
|
36
|
Human papilloma virus 16 e6 protein as a target for curcuminoids, curcumin conjugates and congeners for chemoprevention of oral and cervical cancers. Interdiscip Sci 2013; 5:112-8. [DOI: 10.1007/s12539-013-0159-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 10/31/2011] [Accepted: 09/03/2012] [Indexed: 11/26/2022]
|
37
|
Safe and targeted anticancer therapy for ovarian cancer using a novel class of curcumin analogs. J Ovarian Res 2013; 6:35. [PMID: 23663277 PMCID: PMC3665575 DOI: 10.1186/1757-2215-6-35] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 05/01/2013] [Indexed: 12/13/2022] Open
Abstract
A diagnosis of advanced ovarian cancer is the beginning of a long and arduous journey for a patient. Worldwide, approximately half of the individuals undergoing therapy for advanced cancer will succumb to the disease, or consequences of treatment. Well-known and widely-used chemotherapeutic agents such as cisplatin, paclitaxel, 5-fluorouracil, and doxorubicin are toxic to both cancer and non-cancerous cells, and have debilitating side effects Therefore, development of new targeted anticancer therapies that can selectively kill cancer cells while sparing the surrounding healthy tissues is essential to develop more effective therapies. We have developed a new class of synthetic curcumin analogs, diarylidenyl-piperidones (DAPs), which have higher anticancer activity and enhanced bio-absorption than curcumin. The DAP backbone structure exhibits cytotoxic (anticancer) activity, whereas the N-hydroxypyrroline (-NOH) moiety found on some variants functions as a cellular- or tissue-specific modulator (antioxidant) of cytotoxicity. The anticancer activity of the DAPs has been evaluated using a number of ovarian cancer cell lines, and the safety has been evaluated in a number of non-cancerous cell lines. Both variations of the DAP compounds showed similar levels of cell death in ovarian cancer cells, however the compounds with the -NOH modification were less toxic to non-cancerous cells. The selective cytotoxicity of the DAP-NOH compounds suggests that they will be useful as safe and effective anticancer agents. This article reviews some of the key findings of our work with the DAP compounds, and compares this to some of the targeted therapies currently used in ovarian cancer therapy.
Collapse
|
38
|
Antioxidant and antimicrobial activities of various solvent extracts, piperine and piperic acid from Piper nigrum. Lebensm Wiss Technol 2013. [DOI: 10.1016/j.lwt.2012.07.036] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
39
|
Mohanty C, Das M, Sahoo SK. Emerging role of nanocarriers to increase the solubility and bioavailability of curcumin. Expert Opin Drug Deliv 2012; 9:1347-64. [PMID: 22971222 DOI: 10.1517/17425247.2012.724676] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Curcumin is a safe, affordable and natural bioactive molecule of turmeric (Curcuma longa). It has gained considerable attention in recent years for its multiple pharmacological activities. However, its optimum pharmaceutical potential has been limited by its lack of aqueous solubility and poor bioavailability. To mitigate the above limitations, recently various nanostructured water-soluble delivery systems were developed to increase the solubility and bioavailability of curcumin. AREAS COVERED Major reasons contributing to the low bioavailability of curcumin appear to be owing to its poor solubility, low absorption, rapid metabolism and rapid systemic elimination. The present review summarizes the strategies using curcumin in various nanocarrier delivery systems to overcome poor solubility and inconsistent bioavailability of curcumin and describes the current status and challenges for the future. EXPERT OPINION The development of various drug delivery systems to deliver curcumin will certainly provide a step up towards augmenting the therapeutic activity of curcumin thereby increasing the solubility and bioavailability of curcumin. However, the future of such delivery technology will be highly dependent on the development of safe, non-toxic and non-immunogenic nanocarriers.
Collapse
Affiliation(s)
- Chandana Mohanty
- Institute of Life Sciences, Laboratory for Nanomedicine, Nalco Square, Bhubaneswar, Orissa, 751023, India
| | | | | |
Collapse
|
40
|
Beneficial effects of curcumin on antitumor activity and adverse reactions of doxorubicin. Int J Pharm 2012; 432:42-9. [DOI: 10.1016/j.ijpharm.2012.04.062] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 04/16/2012] [Accepted: 04/23/2012] [Indexed: 11/20/2022]
|
41
|
Abstract
This review chronicles the exploration of the curcumin in terms of development of analogues for the anticancer activity over the last century. Curcumin is a natural phytochemical obtained from dried root and rhizome of Turmeric (Curcuma Longa). It has been shown to interfere with multiple cell signaling pathways, including apoptosis (activation of caspases and downregulation of antiapoptotic gene products), proliferation (HER-2, EGFR, and AP-1), angiogenesis (VEGF), and inflammation (NF-kappaB, TNF, IL-6, IL-1, COX-2, and 5-LOX). In the last decade it has been much explored and various synthetic analogues have been prepared and evaluated for various pharmacological activities. Most of the analogues have shown very good anticancer activity in various models and various cell lines. However, some analogues have also shown antioxidant, anti-HIV, antimutagenic, antiangiogenic, antimalarial, antitubercular, antiandrogenic, COX inhibitory activities. Few analogues have shown very potent results and may be considered as clinical candidates for the development of future anticancer agent. This review contains 728 curcumin analogues and covers the literature from 1815 to mid 2009 and 93 references are cited.
Collapse
Affiliation(s)
- Dinesh Kumar Agrawal
- Agra Public Institute of Technology and Computer Education, Department of Pharmacy, Artoni, Agra, India.
| | | |
Collapse
|
42
|
Lee JW, Hong HM, Kwon DD, Pae HO, Jeong HJ. Dimethoxycurcumin, a structural analogue of curcumin, induces apoptosis in human renal carcinoma caki cells through the production of reactive oxygen species, the release of cytochrome C, and the activation of caspase-3. Korean J Urol 2010; 51:870-8. [PMID: 21221209 PMCID: PMC3016435 DOI: 10.4111/kju.2010.51.12.870] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 11/24/2010] [Indexed: 12/19/2022] Open
Abstract
Purpose Curcumin (Cur) has been reported to induce apoptosis in human renal carcinoma Caki cells. Dimethoxycurcumin (DMC), one of several synthetic Cur analogues, has been reported to have increased metabolic stability over Cur. We determined whether DMC, like Cur, induces apoptosis in Caki cells and also compared the apoptosis-inducing activity of DMC with that of Cur. Materials and Methods Caki cells were treated with DMC possessing four methoxy groups, Cur possessing two methoxy groups, or bis-demethoxycurcumin (BMC), which lacks a methoxy group. Cell viability was measured by using a methyltetrazolium assay. Flow cytometry and the caspase-3 activity assay were used to detect apoptosis. The release of cytochrome-c (Cyt c) was detected by Western blot analysis. The production of reactive oxygen species (ROS) was measured by flow cytometry. Results DMC, Cur, and BMC reduced cell viability and induced apoptosis, but the potency varied; DMC was the most potent compound, followed by Cur and BMC. ROS production, Cyt c release, and caspase-3 activity were increased, again in the order DMC>Cur>BMC. N-Acetylcysteine, a potent antioxidant, inhibited ROS production, Cyt c release, caspase-3 activation, and apoptosis induction in DMC-treated cells. Conclusions These results indicate that DMC, like the original form of Cur, may induce apoptosis in human renal carcinoma Caki cells through the production of ROS, the release of mitochondrial Cyt c, and the subsequent activation of caspase-3. In addition, DMC is more potent than Cur in the ability to induce apoptosis.
Collapse
Affiliation(s)
- Jea Whan Lee
- Department of Urology, Wonkwang University School of Medicine, Iksan, Korea
| | | | | | | | | |
Collapse
|
43
|
Comparative nuclease and anti-cancer properties of the naturally occurring malabaricones. Bioorg Med Chem 2010; 18:7043-51. [DOI: 10.1016/j.bmc.2010.08.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 08/03/2010] [Accepted: 08/04/2010] [Indexed: 01/12/2023]
|
44
|
Rai B, Kaur J, Jacobs R, Singh J. Possible action mechanism for curcumin in pre-cancerous lesions based on serum and salivary markers of oxidative stress. J Oral Sci 2010; 52:251-6. [PMID: 20587949 DOI: 10.2334/josnusd.52.251] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Extensive research within the past half-century has indicated that curcumin (diferuloylmethane), a yellow pigment in curry powder, exhibits anti-oxidant, anti-inflammatory, and pro-apoptotic activities. We investigated whether the anti-pre-cancer activities assigned to curcumin are mediated through an anti-oxidant and DNA-protecting mechanism. Patients with oral leukoplakia, oral submucous fibrosis or lichen planus, and healthy individuals (n = 25 for each group) aged 17-50 years were selected. Salivary and serum oxidative markers such as malonaldehyde (MDA), 8-hydroxydeoxyguanosine (8-OHdG), vitamins C and E were measured just prior to the intake of curcumin, after one week of curcumin intake and following clinical cure of precancerous lesions. Serum and salivary vitamins C and E showed increases, while MDA and 8-OHdG levels showed decreases in patients with oral leukoplakia, submucous fibrosis and lichen planus after intake of curcumin for all categories of precancerous lesions. The changes in these values were observed to be statistically significant after clinical cure of the disease (P < 0.05). The five-point rating scale for pain, as well as lesion size in oral leukoplakia, submucous fibrosis and lichen planus, improved significantly (P < 0.05). In addition, in submucous fibrosis, mouth opening (P < 0.05) recovered significantly. In oral leukoplakia, submucous fibrosis and lichen planus, the levels of serum and salivary vitamins C and E increased significantly, while MDA and 8-OHdG levels decreased after 131(15), 211(17), and 191(18) days, respectively. Values for serum and salivary vitamins C and E showed a significant decrease in oral leukoplakia, submucous fibrosis and lichen planus, in contrast to healthy individuals, but increased significantly in all groups subsequent to curcumin administration after clinical cure of lesions. Based on these results, we can conclude that curcumin mediates its anti-pre-cancer activities by increasing levels of vitamins C and E, and preventing lipid peroxidation and DNA damage.
Collapse
Affiliation(s)
- Balwant Rai
- School of Dentistry, Oral Pathology and Maxillofacial Surgery, Catholic University Leuven, Leuven, Belgium.
| | | | | | | |
Collapse
|
45
|
Suphim B, Prawan A, Kukongviriyapan U, Kongpetch S, Buranrat B, Kukongviriyapan V. Redox modulation and human bile duct cancer inhibition by curcumin. Food Chem Toxicol 2010; 48:2265-2272. [PMID: 20510329 DOI: 10.1016/j.fct.2010.05.059] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 04/23/2010] [Accepted: 05/19/2010] [Indexed: 12/31/2022]
Abstract
Curcumin, a major component from tumeric and well-known dietary spice, possesses various pharmacological effects. The cancer chemoprevention effect is suggested to act through its pro-oxidant property. The study was to clarify effects of curcumin on cholangiocarcinoma cells, a cancer of the bile duct that refractory to chemotherapeutic drugs. We examined time-course of oxidant formation in relation to antitumor and the adaptive antioxidant response of the cells. Curcumin induced antiproliferation and apoptosis in KKU-M214 CCA cells with concentration- and time- dependent manners. The antiproliferative effect of curcumin was observed at concentrations as low as 3 microM and was not necessarily associated with oxidative stress, while induction of apoptosis required significant production of superoxide anion, suppression of cellular redox and collapse of mitochondrial transmembrane potential. Western blot analysis showed a temporal relationship between the suppression of nuclear NF-kappaB with Bcl-XL protein levels. Up-regulation of p53 and Bax was associated with marked oxidative stress and apoptosis. Curcumin also induced Nrf2 protein expression with up-regulation of gamma-glutamylcysteine ligase mRNA and increased cellular antioxidant, glutathione. The study suggests that curcumin could be developed into an effective chemoprevention against CCA.
Collapse
Affiliation(s)
- Bunliang Suphim
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | | | | | | | | | | |
Collapse
|
46
|
Rekowski MVW, Giannis A. Histone acetylation modulation by small molecules: a chemical approach. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2010; 1799:760-7. [PMID: 20493978 DOI: 10.1016/j.bbagrm.2010.05.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2010] [Accepted: 05/08/2010] [Indexed: 12/18/2022]
Abstract
Histone acetyltransferases (HATs) are enzymes able to acetylate lysine side chains of histones. They play essential roles in normal cell function as well as in pathogenesis of a broad set of diseases, including multiple cancers, HIV, diabetes mellitus, and neurodegenerative disorders. Moreover, several HATs are able to acetylate various non-histone protein substrates e.g. transcription factors, enzymes involved in glycolysis, fatty acid and glycogen metabolism, the tricarboxylic acid and urea cycles, suggesting that lysine acetylation represents an important regulatory mechanism similar to protein phosphorylation. Small molecule inhibitors of histone acetyltransferases have been developed in the last years and proved to be powerful tools to provide new insights into the mechanisms and the role of protein acetylation in gene regulation. This article highlights recent advances in the development of small molecule modulators of histone acetyltransferases.
Collapse
Affiliation(s)
- Margarete von Wantoch Rekowski
- Department of Chemistry and Mineralogy, Institute for Organic Chemistry, University of Leipzig, Johannisallee 29, D-04103 Leipzig, Germany
| | | |
Collapse
|
47
|
Parvathy K, Negi P, Srinivas P. Curcumin–amino acid conjugates: Synthesis, antioxidant and antimutagenic attributes. Food Chem 2010. [DOI: 10.1016/j.foodchem.2009.10.047] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
48
|
Bioconjugates of curcumin display improved protection against glutathione depletion mediated oxidative stress in a dopaminergic neuronal cell line: Implications for Parkinson’s disease. Bioorg Med Chem 2010; 18:2631-8. [DOI: 10.1016/j.bmc.2010.02.029] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 02/16/2010] [Accepted: 02/17/2010] [Indexed: 12/12/2022]
|
49
|
Upadhyay J, Kesharwani RK, Misra K. Comparative study of antioxidants as cancer preventives through inhibition of HIF-1 alpha activity. Bioinformation 2009; 4:233-6. [PMID: 20975915 PMCID: PMC2951710 DOI: 10.6026/97320630004233] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 06/18/2009] [Accepted: 11/15/2009] [Indexed: 01/13/2023] Open
Abstract
HIF-1 α (hypoxia inducible factor-1 α isoform) has been exploited as a target in cancer therapeutics. HIF-1 α is the isoform-2 of HIF-1 α subunit. It is a 735 residues long protein modeled in this study. The HIF-1 α is absolutely critical for continued survival of cancer cells as it is involved in the activation of glycolysis and it helps an oxygen-starved cell convert sugar to energy without using oxygen. It also initiates angiogenesis to bring in a fresh oxygen supply. HIF-1 α operates only in presence of free radicals. In the present study, five antioxidants, namely lycopene, ascorbic acid, α-tocopherol, curcumin and curcumin dipiperoyl ester which are potent scavengers of reactive oxygen species (ROS) have been docked to HIF-1 α modeled protein in order to assess their binding and consequently, their inhibitory activity. The binding energy score has been found to be in the order, curumin dipiperoyl ester > lycopene > curcumin > tocopherol > ascorbic acid. However, subsequent experiments should be designed to validate these observations.
Collapse
Affiliation(s)
- Jyoti Upadhyay
- Indian Institute of Information Technology, Allahabad, India-211002
| | | | - Krishna Misra
- Indian Institute of Information Technology, Allahabad, India-211002
| |
Collapse
|
50
|
Basile V, Ferrari E, Lazzari S, Belluti S, Pignedoli F, Imbriano C. Curcumin derivatives: molecular basis of their anti-cancer activity. Biochem Pharmacol 2009; 78:1305-15. [PMID: 19580791 DOI: 10.1016/j.bcp.2009.06.105] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 06/24/2009] [Accepted: 06/26/2009] [Indexed: 02/07/2023]
Abstract
Curcumin, a phenolic compound from the plant Curcuma longa L., has shown a wide-spectrum of chemopreventive, antioxidant and antitumor properties. Although its promising chemotherapeutic activity, preclinical and clinical studies highlight Curcumin limited therapeutic application due to its instability in physiological conditions. To improve its stability and activity, many derivatives have been synthesized and studied, among which bis-DemethoxyCurcumin (bDMC) and diAcetylCurcumin (DAC). In this report, we show that both bDMC and DAC are more stable than Curcumin in physiological medium. To explore the mechanism of their chemotherapeutic effect, we studied their role in proliferation in the HCT116 human colon cancer cells. We correlated kinetic stability and cellular uptake data to their biological effects. Both bDMC and DAC impair correct spindles formation and induce a p53- and p21(CIP1/WAF1)-independent mitotic arrest, which is more stable and long-lasting for bDMC. A subsequent p53/p21(CIP1/WAF1)-dependent inhibition of G1 to S transition is triggered by Curcumin and DAC as a consequence of the mitotic slippage, preventing post-mitotic cells from re-entering the cell cycle. Conversely, the G1/S arrest induced by bDMC is a direct effect of the drug and concomitant to the mitotic block. Finally, we demonstrate that bDMC induces rapid DNA double-strand breaks, moving for its possible development in anti-cancer clinical applications.
Collapse
Affiliation(s)
- Valentina Basile
- Dipartimento di Biologia Animale, Università di Modena e Reggio Emilia, via Campi 213/D, 41100 Modena, Italy
| | | | | | | | | | | |
Collapse
|