1
|
Affiliation(s)
- Carlo G Tocchetti
- Cardio-Oncology Unit, Department of Translational Medical Sciences (DISMET), Center for Basic and Clinical Immunology Research (CISI), Interdepartmental Center of Clinical and Translational Sciences (CIRCET), Interdepartmental Hypertension Research Center (CIRIAPA), Federico II University, Naples, Italy
| | - Alessandra Ghigo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126 Torino, Italy
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126 Torino, Italy
| |
Collapse
|
2
|
Mancardi D, Ottolenghi S, Attanasio U, Tocchetti CG, Paroni R, Pagliaro P, Samaja M. Janus, or the Inevitable Battle Between Too Much and Too Little Oxygen. Antioxid Redox Signal 2022; 37:972-989. [PMID: 35412859 DOI: 10.1089/ars.2021.0232] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Significance: Oxygen levels are key regulators of virtually every living mammalian cell, under both physiological and pathological conditions. Starting from embryonic and fetal development, through the growth, onset, and progression of diseases, oxygen is a subtle, although pivotal, mediator of key processes such as differentiation, proliferation, autophagy, necrosis, and apoptosis. Hypoxia-driven modifications of cellular physiology are investigated in depth or for their clinical and translational relevance, especially in the ischemic scenario. Recent Advances: The mild or severe lack of oxygen is, undoubtedly, related to cell death, although abundant evidence points at oscillating oxygen levels, instead of permanent low pO2, as the most detrimental factor. Different cell types can consume oxygen at different rates and, most interestingly, some cells can shift from low to high consumption according to the metabolic demand. Hence, we can assume that, in the intracellular compartment, oxygen tension varies from low to high levels depending on both supply and consumption. Critical Issues: The positive balance between supply and consumption leads to a pro-oxidative environment, with some cell types facing hypoxia/hyperoxia cycles, whereas some others are under fairly constant oxygen tension. Future Directions: Within this frame, the alterations of oxygen levels (dysoxia) are critical in two paradigmatic organs, the heart and brain, under physiological and pathological conditions and the interactions of oxygen with other physiologically relevant gases, such as nitric oxide, can alternatively contribute to the worsening or protection of ischemic organs. Further, the effects of dysoxia are of pivotal importance for iron metabolism. Antioxid. Redox Signal. 37, 972-989.
Collapse
Affiliation(s)
- Daniele Mancardi
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
| | - Sara Ottolenghi
- Department of Health Sciences, University of Milano, Milan, Italy
- School of Medicine and Surgery, University of Milano Bicocca, Milan, Italy
| | - Umberto Attanasio
- Cardio-Oncology Unit, Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Carlo Gabriele Tocchetti
- Cardio-Oncology Unit, Department of Translational Medical Sciences, Federico II University, Naples, Italy
- Interdepartmental Center for Clinical and Translational Research (CIRCET), Federico II University, Naples, Italy
- Interdepartmental Hypertension Research Center (CIRIAPA), Federico II University, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), Federico II University, Naples, Italy
| | - Rita Paroni
- Department of Health Sciences, University of Milano, Milan, Italy
| | - Pasquale Pagliaro
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
| | - Michele Samaja
- Department of Health Sciences, University of Milano, Milan, Italy
- MAGI GROUP, San Felice del Benaco, Italy
| |
Collapse
|
3
|
Ling G, Wang X, Tan N, Cao J, Li W, Zhang Y, Jiang J, Sun Q, Jiang Y, Wang W, Wang Y. Mechanisms and Drug Intervention for Doxorubicin-Induced Cardiotoxicity Based on Mitochondrial Bioenergetics. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7176282. [PMID: 36275901 PMCID: PMC9586735 DOI: 10.1155/2022/7176282] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/17/2022] [Accepted: 09/10/2022] [Indexed: 11/18/2022]
Abstract
Doxorubicin (DOX) is an anthracycline chemotherapy drug, which is indispensable in antitumor therapy. However, its subsequent induction of cardiovascular disease (CVD) has become the primary cause of mortality in cancer survivors. Accumulating evidence has demonstrated that cardiac mitochondrial bioenergetics changes have become a significant marker for doxorubicin-induced cardiotoxicity (DIC). Here, we mainly summarize the related mechanisms of DOX-induced cardiac mitochondrial bioenergetics disorders reported in recent years, including mitochondrial substrate metabolism, the mitochondrial respiratory chain, myocardial ATP storage and utilization, and other mechanisms affecting mitochondrial bioenergetics. In addition, intervention for DOX-induced cardiac mitochondrial bioenergetics disorders using chemical drugs and traditional herbal medicine is also summarized, which will provide a comprehensive process to study and develop more appropriate therapeutic strategies for DIC.
Collapse
Affiliation(s)
- Guanjing Ling
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaoping Wang
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Nannan Tan
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jing Cao
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Weili Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yawen Zhang
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jinchi Jiang
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qianbin Sun
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yanyan Jiang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wei Wang
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
- Beijing Key Laboratory of TCM Syndrome and Formula, Beijing 100029, China
- Key Laboratory of Beijing University of Chinese Medicine, Ministry of Education, Beijing 100029, China
- Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yong Wang
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
- Beijing Key Laboratory of TCM Syndrome and Formula, Beijing 100029, China
- Key Laboratory of Beijing University of Chinese Medicine, Ministry of Education, Beijing 100029, China
| |
Collapse
|
4
|
Muniz Carvalho E, Silva Sousa EH, Bernardes‐Génisson V, Gonzaga de França Lopes L. When NO
.
Is not Enough: Chemical Systems, Advances and Challenges in the Development of NO
.
and HNO Donors for Old and Current Medical Issues. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Edinilton Muniz Carvalho
- Bioinorganic Group Department of Organic and Inorganic Chemistry Center of Sciences Federal University of Ceará Pici Campus Fortaleza 60455-760 Brazil
- CNRS Laboratoire de Chimie de Coordination LCC UPR 8241 205 Route de Narbonne, 44099 31077 Toulouse, Cedex 4 France
- Université de Toulouse Université Paul Sabatier UPS 118 Route de Narbonne 31062 Toulouse, Cedex 9 France
| | - Eduardo Henrique Silva Sousa
- Bioinorganic Group Department of Organic and Inorganic Chemistry Center of Sciences Federal University of Ceará Pici Campus Fortaleza 60455-760 Brazil
| | - Vania Bernardes‐Génisson
- CNRS Laboratoire de Chimie de Coordination LCC UPR 8241 205 Route de Narbonne, 44099 31077 Toulouse, Cedex 4 France
- Université de Toulouse Université Paul Sabatier UPS 118 Route de Narbonne 31062 Toulouse, Cedex 9 France
| | - Luiz Gonzaga de França Lopes
- Bioinorganic Group Department of Organic and Inorganic Chemistry Center of Sciences Federal University of Ceará Pici Campus Fortaleza 60455-760 Brazil
| |
Collapse
|
5
|
Updating NO •/HNO interconversion under physiological conditions: A biological implication overview. J Inorg Biochem 2020; 216:111333. [PMID: 33385637 DOI: 10.1016/j.jinorgbio.2020.111333] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/13/2020] [Accepted: 12/05/2020] [Indexed: 12/12/2022]
Abstract
Azanone (HNO/NO-), also called nitroxyl, is a highly reactive compound whose biological role is still a matter of debate. A key issue that remains to be clarified regarding HNO and its biological activity is that of its endogenous formation. Given the overlap of the molecular targets and reactivity of nitric oxide (NO•) and HNO, its chemical biology was perceived to be similar to that of NO• as a biological signaling agent. However, despite their closely related reactivity, NO• and HNO's biochemical pathways are quite different. Moreover, the reduction of nitric oxide to azanone is possible but necessarily coupled to other reactions, which drive the reaction forward, overcoming the unfavorable thermodynamic barrier. The mechanism of this NO•/HNO interplay and its downstream effects in different contexts were studied recently, showing that more than fifteen moderate reducing agents react with NO• producing HNO. Particularly, it is known that the reaction between nitric oxide and hydrogen sulfide (H2S) produces HNO. However, this rate constant was not reported yet. In this work, firstly the NO•/H2S effective rate constant was measured as a function of the pH. Then, the implications of these chemical (non-enzymatic), biologically compatible, routes to endogenous HNO formation was discussed. There is no doubt that HNO could be (is?) a new endogenously produced messenger that mediates specific physiological responses, many of which were attributed yet to direct NO• effects.
Collapse
|
6
|
Boehm M, Novoyatleva T, Kojonazarov B, Veit F, Weissmann N, Ghofrani HA, Seeger W, Schermuly RT. Nitric Oxide Synthase 2 Induction Promotes Right Ventricular Fibrosis. Am J Respir Cell Mol Biol 2019; 60:346-356. [PMID: 30277804 DOI: 10.1165/rcmb.2018-0069oc] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The ability of the right ventricle to compensate pressure overload determines survival in pulmonary arterial hypertension (PAH). Nitric oxide (NO) reduces the right ventricular afterload through pulmonary vasodilation, but excessive NO amounts cause oxidative stress. Oxidative stress drives remodeling of pulmonary arteries and the right ventricle. In the present study, we hypothesized that nitric oxide synthase 2 (NOS2) induction leads to excessive NO amounts that contribute to oxidative stress and impair right ventricular adaptation to PAH. We used a surgical pulmonary artery banding (PAB) mouse model in which right ventricular dysfunction and remodeling occur independently of changes in the pulmonary vasculature. Three weeks after PAB, NOS2 expression was increased twofold in the hypertrophied right ventricle on transcript and protein levels together with increased NO production. Histomorphology localized NOS2 in interstitial and perivascular cardiac fibroblasts after PAB, which was confirmed by cell isolation experiments. In the hypertrophied right ventricle, NOS2 induction was accompanied by an increased formation of reactive oxidants blocked by ex vivo NOS inhibition. We show that reactive oxidant formation in the hypertrophied right ventricle is in part NOS2 dependent (in NOS2-deficient mice [NOS2-/-]). Lack of NOS2 induction prevented superoxide scavenging and decreased reactive oxidant formation. Functional measures of cardiac function by noninvasive echocardiography together with intracardiac catheterization revealed no differences in heart function between both genotypes after PAB. However, reduced NO and reactive oxidant formation in the hypertrophied right ventricle of NOS2-/- mice was linked to reduced collagen accumulation through reduced collagen deposition from the cardiac fibroblast. Together, our data demonstrate a profibrotic role for NOS2 induction in the hypertrophied right ventricle.
Collapse
Affiliation(s)
- Mario Boehm
- 1 Universities of Giessen and Marburg Lung Center, Giessen, Germany.,2 Excellence Cluster Cardio-Pulmonary System, Giessen, Germany.,3 German Center for Lung Research, Giessen, Germany; and
| | - Tatyana Novoyatleva
- 1 Universities of Giessen and Marburg Lung Center, Giessen, Germany.,2 Excellence Cluster Cardio-Pulmonary System, Giessen, Germany.,3 German Center for Lung Research, Giessen, Germany; and
| | - Baktybek Kojonazarov
- 1 Universities of Giessen and Marburg Lung Center, Giessen, Germany.,2 Excellence Cluster Cardio-Pulmonary System, Giessen, Germany.,3 German Center for Lung Research, Giessen, Germany; and
| | - Florian Veit
- 1 Universities of Giessen and Marburg Lung Center, Giessen, Germany.,2 Excellence Cluster Cardio-Pulmonary System, Giessen, Germany.,3 German Center for Lung Research, Giessen, Germany; and
| | - Norbert Weissmann
- 1 Universities of Giessen and Marburg Lung Center, Giessen, Germany.,2 Excellence Cluster Cardio-Pulmonary System, Giessen, Germany.,3 German Center for Lung Research, Giessen, Germany; and
| | - Hossein A Ghofrani
- 1 Universities of Giessen and Marburg Lung Center, Giessen, Germany.,2 Excellence Cluster Cardio-Pulmonary System, Giessen, Germany.,3 German Center for Lung Research, Giessen, Germany; and
| | - Werner Seeger
- 1 Universities of Giessen and Marburg Lung Center, Giessen, Germany.,2 Excellence Cluster Cardio-Pulmonary System, Giessen, Germany.,3 German Center for Lung Research, Giessen, Germany; and.,4 Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Ralph T Schermuly
- 1 Universities of Giessen and Marburg Lung Center, Giessen, Germany.,2 Excellence Cluster Cardio-Pulmonary System, Giessen, Germany.,3 German Center for Lung Research, Giessen, Germany; and
| |
Collapse
|
7
|
Flores-Tamez V, Escalante B, Rios A. Peroxynitrite-Induced Intracellular Ca2+ Depression in Cardiac Myocytes: Role of Sarco/Endoplasmic Reticulum Ca2+ Pump. Folia Biol (Praha) 2019; 65:237-245. [PMID: 32362307 DOI: 10.14712/fb2019065050237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Several studies have shown that peroxynitrite (ONOO-), formed upon the reaction of •NO and O2-, is increased in many cardiovascular diseases and is detrimental to myocardial function. Proteins associated with Ca2+ homeostasis regulation in the heart may be involved in these effects. Thus, the aim of this study was to elucidate the mechanisms associated with ONOO--induced effects. We evaluated [Ca2+]i regulation, sarco/endoplasmic reticulum Ca2+- binding proteins, and phosphorylation levels of the ryanodine receptor in isolated rat myocytes. Electrical field-induced intracellular Ca2+ transients and contractions were recorded simultaneously. Myocytes superfused with 3-morpholinosydnonimine N-ethylcarbamide (SIN-1), an ONOO- donor, decreased the amplitude of Ca2+ transients and contraction in a dose-response (1-200 μM) manner. Similarly, SIN-1 increased half-time decay in a concentration-dependent manner. Co-infusion of the ONOO- donor with FeTMPyP (1 μM), an ONOO- decomposition catalyst, inhibited the effects induced by ONOO-. Impaired sarcoplasmic reticulum Ca2+ uptake caused by ONOO- (SIN-1 200 μM) was confirmed by a reduction of caffeine-evoked Ca2+ release along with prolongation of the half-time decay. Surprisingly, ONOO- induced a spontaneous Ca2+ transient that started at the beginning of the relaxation phase and was inhibited by tetracaine. Also, reduced phosphorylation at the ryanodine receptor 2 (RyR2)-Ser-2814 site was observed. In conclusion, deficient sarco/endoplasmic reticulum Ca2+-ATPase-mediated Ca2+ uptake concomitant with augmented Ca2+ release by RyR2 in myocytes may be associated with modification of myocyte Ca2+ handling by ONOO-. Thus, development of cardiac failure in diabetes, nephropathy, or hypertension may be related with elevated ONOO- in cardiac tissue.
Collapse
Affiliation(s)
- V Flores-Tamez
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad-Monterrey, PIIT, Apodaca NL, México
| | - B Escalante
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad-Monterrey, PIIT, Apodaca NL, México
- Universidad de Monterrey, San Pedro Garza García, NL, México
| | - A Rios
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad-Monterrey, PIIT, Apodaca NL, México
| |
Collapse
|
8
|
González Arbeláez LF, Ciocci Pardo A, Swenson ER, Álvarez BV, Mosca SM, Fantinelli JC. Cardioprotection of benzolamide in a regional ischemia model: Role of eNOS/NO. Exp Mol Pathol 2018; 105:345-351. [PMID: 30308197 DOI: 10.1016/j.yexmp.2018.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/22/2018] [Accepted: 10/04/2018] [Indexed: 11/29/2022]
Abstract
BACKGROUND Recent studies from our laboratory show the cardioprotective action of benzolamide (BZ, carbonic anhydrase inhibitor) against ischemia-reperfusion injury. However, the mechanisms involved have not been fully elucidated. OBJECTIVE To examine the participation of the endothelial nitric oxide synthase (eNOS)/nitric oxide (NO) in the effects of BZ in a model of regional ischemia. METHODS Isolated rat hearts perfused by Langendorff technique were submitted to 40 min of coronary artery occlusion followed by 60 min of reperfusion (IC). Other hearts received BZ during the first 10 min of reperfusion in absence or presence of L-NAME, NOS inhibitor. The infarct size (IS) and the post-ischemic recovery of myocardial function were measured. Oxidative/nitrosative damage were assessed by reduced glutathione (GSH) content, thiobarbituric acid reactive substances (TBARS) and 3-nitrotyrosine levels. The expression of phosphorylated forms of Akt, p38MAPK and eNOS, and the concentration of inducible nitric oxide synthase (iNOS) were also determined. RESULTS BZ significantly decreased IS (6.2 ± 0.5% vs. 34 ± 4%), improved post-ischemic contractility, preserved GSH levels and diminished TBARS and 3-nitrotyrosine. In IC hearts, P-Akt, P-p38MAPK and P-eNOS decreased and iNOS increased. After BZ addition the levels of P-kinases and P-eNOS increased and iNOS decreased. Except for P-Akt, P-p38MAPK and iNOS, the effects of BZ were abolished by L-NAME. CONCLUSIONS Our data demonstrate that the treatment with BZ at the onset of reperfusion was effective to reduce cell death, contractile dysfunction and oxidative/nitrosative damage produced by coronary artery occlusion. These BZ-mediated beneficial actions appear mediated by eNOS/NO-dependent pathways.
Collapse
Affiliation(s)
| | | | - Erik R Swenson
- Department of Medicine, Pulmonary and Critical Care Medicine, VA Puget Sound Health Care System, University of Washington, Seatle, WA 98108, USA
| | - Bernardo V Álvarez
- "Dr Horacio E. Cingolani", Universidad Nacional de La Plata, La Plata, Argentina
| | - Susana M Mosca
- "Dr Horacio E. Cingolani", Universidad Nacional de La Plata, La Plata, Argentina
| | - Juliana C Fantinelli
- "Dr Horacio E. Cingolani", Universidad Nacional de La Plata, La Plata, Argentina.
| |
Collapse
|
9
|
Abstract
Nitric oxide (NO) signalling has pleiotropic roles in biology and a crucial function in cardiovascular homeostasis. Tremendous knowledge has been accumulated on the mechanisms of the nitric oxide synthase (NOS)-NO pathway, but how this highly reactive, free radical gas signals to specific targets for precise regulation of cardiovascular function remains the focus of much intense research. In this Review, we summarize the updated paradigms on NOS regulation, NO interaction with reactive oxidant species in specific subcellular compartments, and downstream effects of NO in target cardiovascular tissues, while emphasizing the latest developments of molecular tools and biomarkers to modulate and monitor NO production and bioavailability.
Collapse
Affiliation(s)
- Charlotte Farah
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Experimentale et Clinique (IREC) and Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, UCL-FATH Tour Vésale 5th Floor, 52 Avenue Mounier B1.53.09, 1200 Brussels, Belgium
| | - Lauriane Y M Michel
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Experimentale et Clinique (IREC) and Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, UCL-FATH Tour Vésale 5th Floor, 52 Avenue Mounier B1.53.09, 1200 Brussels, Belgium
| | - Jean-Luc Balligand
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Experimentale et Clinique (IREC) and Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, UCL-FATH Tour Vésale 5th Floor, 52 Avenue Mounier B1.53.09, 1200 Brussels, Belgium
| |
Collapse
|
10
|
Shen M, Li K, Jing H, Zheng L. In VivoTherapeutic Effect ofVaccinium MeridionaleSwartz in Ischemia-Reperfusion Induced Male Albino Rats. J Food Sci 2017; 83:221-228. [PMID: 29178435 DOI: 10.1111/1750-3841.13986] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 10/03/2017] [Accepted: 10/16/2017] [Indexed: 01/06/2023]
Affiliation(s)
- Mingge Shen
- Dept. of Emergency; the 1st Affiliated Hospital of Jiamusi Univ.; Jiamusi 154002 China
| | - Ketian Li
- Dept. of Nuclear Medicine; the 1st Affiliated Hospital of Jiamusi Univ.; Jiamusi 154002 China
| | - Hongying Jing
- Dept. of Pharmacy; the 1st Affiliated Hospital of Jiamusi Univ.; Jiamusi 154002 China
| | - Linyi Zheng
- Dept. of Cardiology No. 1; the 1st Affiliated Hospital of Jiamusi Univ.; Jiamusi 154002 China
| |
Collapse
|
11
|
Dulce RA, Kulandavelu S, Schulman IH, Fritsch J, Hare JM. Nitric Oxide Regulation of Cardiovascular Physiology and Pathophysiology. Nitric Oxide 2017. [DOI: 10.1016/b978-0-12-804273-1.00024-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
12
|
Novel Perspectives in Redox Biology and Pathophysiology of Failing Myocytes: Modulation of the Intramyocardial Redox Milieu for Therapeutic Interventions-A Review Article from the Working Group of Cardiac Cell Biology, Italian Society of Cardiology. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:6353469. [PMID: 26881035 PMCID: PMC4736421 DOI: 10.1155/2016/6353469] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 11/16/2015] [Indexed: 12/11/2022]
Abstract
The prevalence of heart failure (HF) is still increasing worldwide, with enormous human, social, and economic costs, in spite of huge efforts in understanding pathogenetic mechanisms and in developing effective therapies that have transformed this syndrome into a chronic disease. Myocardial redox imbalance is a hallmark of this syndrome, since excessive reactive oxygen and nitrogen species can behave as signaling molecules in the pathogenesis of hypertrophy and heart failure, leading to dysregulation of cellular calcium handling, of the contractile machinery, of myocardial energetics and metabolism, and of extracellular matrix deposition. Recently, following new interesting advances in understanding myocardial ROS and RNS signaling pathways, new promising therapeutical approaches with antioxidant properties are being developed, keeping in mind that scavenging ROS and RNS tout court is detrimental as well, since these molecules also play a role in physiological myocardial homeostasis.
Collapse
|
13
|
Basudhar D, Ridnour LA, Cheng R, Kesarwala AH, Heinecke J, Wink DA. Biological signaling by small inorganic molecules. Coord Chem Rev 2016; 306:708-723. [PMID: 26688591 PMCID: PMC4680994 DOI: 10.1016/j.ccr.2015.06.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Small redox active molecules such as reactive nitrogen and oxygen species and hydrogen sulfide have emerged as important biological mediators that are involved in various physiological and pathophysiological processes. Advancement in understanding of cellular mechanisms that tightly regulate both generation and reactivity of these molecules is central to improved management of various disease states including cancer and cardiovascular dysfunction. Imbalance in the production of redox active molecules can lead to damage of critical cellular components such as cell membranes, proteins and DNA and thus may trigger the onset of disease. These small inorganic molecules react independently as well as in a concerted manner to mediate physiological responses. This review provides a general overview of the redox biology of these key molecules, their diverse chemistry relevant to physiological processes and their interrelated nature in cellular signaling.
Collapse
Affiliation(s)
- Debashree Basudhar
- Radiation Biology Branch, National Cancer Institute, NIH, Bethesda, MD 20892
| | - Lisa A. Ridnour
- Radiation Biology Branch, National Cancer Institute, NIH, Bethesda, MD 20892
| | - Robert Cheng
- Radiation Biology Branch, National Cancer Institute, NIH, Bethesda, MD 20892
| | - Aparna H. Kesarwala
- Radiation Oncology Branch, National Cancer Institute, NIH, Bethesda, MD 20892
| | - Julie Heinecke
- Radiation Biology Branch, National Cancer Institute, NIH, Bethesda, MD 20892
| | - David A. Wink
- Radiation Biology Branch, National Cancer Institute, NIH, Bethesda, MD 20892
| |
Collapse
|
14
|
Abstract
The loss of contractile function is a hallmark of heart failure. Although increasing intracellular Ca(2+) is a possible strategy for improving contraction, current inotropic agents that achieve this by raising intracellular cAMP levels, such as β-agonists and phosphodiesterase inhibitors, are generally deleterious when administered as long-term therapy due to arrhythmia and myocardial damage. Nitroxyl donors have been shown to improve cardiac function in normal and failing dogs, and in isolated cardiomyocytes they increase fractional shortening and Ca(2+) transients, independently from cAMP/PKA or cGMP/PKG signaling. Instead, nitroxyl targets cysteines in the EC-coupling machinery and myofilament proteins, reversibly modifying them to enhance Ca(2+) handling and myofilament Ca(2+) sensitivity. Phase I-IIa trials with CXL-1020, a novel pure HNO donor, reported declines in left and right heart filling pressures and systemic vascular resistance, and increased cardiac output and stroke volume index. These findings support the concept of nitroxyl donors as attractive agents for the treatment of acute decompensated heart failure.
Collapse
|
15
|
Dunlop K, Gosal K, Kantores C, Ivanovska J, Dhaliwal R, Desjardins JF, Connelly KA, Jain A, McNamara PJ, Jankov RP. Therapeutic hypercapnia prevents inhaled nitric oxide-induced right-ventricular systolic dysfunction in juvenile rats. Free Radic Biol Med 2014; 69:35-49. [PMID: 24423485 DOI: 10.1016/j.freeradbiomed.2014.01.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 12/31/2013] [Accepted: 01/04/2014] [Indexed: 10/25/2022]
Abstract
Chronic pulmonary hypertension in the neonate and infant frequently presents with right-ventricular (RV) failure. Current clinical management may include protracted treatment with inhaled nitric oxide (iNO), with the goal of reducing RV afterload. We have previously reported that prolonged exposure to iNO causes RV systolic dysfunction in the chronic hypoxia-exposed juvenile rat, which was prevented by a peroxynitrite decomposition catalyst. Given that inhalation of CO2 (therapeutic hypercapnia) may limit oxidative stress and upregulated cytokine expression in the lung and other organs, we hypothesized that therapeutic hypercapnia would attenuate cytokine-mediated nitric oxide synthase (NOS) upregulation, thus limiting peroxynitrite generation. Sprague-Dawley rat pups were exposed to chronic hypoxia (13% O2) from postnatal day 1 to 21, while receiving iNO (20 ppm) from day 14 to 21, with or without therapeutic hypercapnia (10% CO2). Therapeutic hypercapnia completely normalized RV systolic function, RV hypertrophy, and remodeling of pulmonary resistance arteries in animals exposed to iNO. Inhaled nitric oxide-mediated increases in RV peroxynitrite, apoptosis, and contents of tumor necrosis factor (TNF)-α, interleukin (IL)-1α, and NOS-2 were all attenuated by therapeutic hypercapnia. Inhibition of NOS-2 activity with 1400 W (1 mg/kg/day) prevented iNO-mediated upregulation of peroxynitrite and led to improved RV systolic function. Blockade of IL-1 receptor signaling with anakinra (500 mg/kg/day) decreased NOS-2 content and had similar effects compared to NOS-2 inhibition on iNO-mediated effects, whereas blockade of TNF-α signaling with etanercept (0.4 mg/kg on alternate days) had no effects on these parameters. We conclude that therapeutic hypercapnia prevents the adverse effects of sustained exposure to iNO on RV systolic function by limiting IL-1-mediated NOS-2 upregulation and consequent nitration. Therapeutic hypercapnia also acts synergistically with iNO in normalizing RV hypertrophy, vascular remodeling, and raised pulmonary vascular resistance secondary to chronic hypoxia.
Collapse
Affiliation(s)
- Kristyn Dunlop
- Physiology & Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, ON, Canada M5G 1X8
| | - Kiranjot Gosal
- Physiology & Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, ON, Canada M5G 1X8; Department of Physiology, Faculty of Medicine, Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 1A8
| | - Crystal Kantores
- Physiology & Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, ON, Canada M5G 1X8
| | - Julijana Ivanovska
- Physiology & Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, ON, Canada M5G 1X8
| | - Rupinder Dhaliwal
- Physiology & Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, ON, Canada M5G 1X8
| | - Jean-François Desjardins
- Keenan Research Center, Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, ON, Canada
| | - Kim A Connelly
- Keenan Research Center, Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, ON, Canada; Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, and Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 1A8
| | - Amish Jain
- Physiology & Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, ON, Canada M5G 1X8; Department of Physiology, Faculty of Medicine, Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 1A8; Division of Neonatology, Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 1A8
| | - Patrick J McNamara
- Physiology & Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, ON, Canada M5G 1X8; Department of Physiology, Faculty of Medicine, Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 1A8; Division of Neonatology, Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 1A8
| | - Robert P Jankov
- Physiology & Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, ON, Canada M5G 1X8; Department of Physiology, Faculty of Medicine, Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 1A8; Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, and Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 1A8; Division of Neonatology, Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 1A8.
| |
Collapse
|
16
|
|
17
|
The NO/ONOO-cycle as the central cause of heart failure. Int J Mol Sci 2013; 14:22274-330. [PMID: 24232452 PMCID: PMC3856065 DOI: 10.3390/ijms141122274] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 10/23/2013] [Accepted: 10/24/2013] [Indexed: 01/08/2023] Open
Abstract
The NO/ONOO-cycle is a primarily local, biochemical vicious cycle mechanism, centered on elevated peroxynitrite and oxidative stress, but also involving 10 additional elements: NF-κB, inflammatory cytokines, iNOS, nitric oxide (NO), superoxide, mitochondrial dysfunction (lowered energy charge, ATP), NMDA activity, intracellular Ca(2+), TRP receptors and tetrahydrobiopterin depletion. All 12 of these elements have causal roles in heart failure (HF) and each is linked through a total of 87 studies to specific correlates of HF. Two apparent causal factors of HF, RhoA and endothelin-1, each act as tissue-limited cycle elements. Nineteen stressors that initiate cases of HF, each act to raise multiple cycle elements, potentially initiating the cycle in this way. Different types of HF, left vs. right ventricular HF, with or without arrhythmia, etc., may differ from one another in the regions of the myocardium most impacted by the cycle. None of the elements of the cycle or the mechanisms linking them are original, but they collectively produce the robust nature of the NO/ONOO-cycle which creates a major challenge for treatment of HF or other proposed NO/ONOO-cycle diseases. Elevated peroxynitrite/NO ratio and consequent oxidative stress are essential to both HF and the NO/ONOO-cycle.
Collapse
|
18
|
Puttabyatappa Y, Stallone JN, Ergul A, El-Remessy AB, Kumar S, Black S, Johnson M, Owen MP, White RE. Peroxynitrite mediates testosterone-induced vasodilation of microvascular resistance vessels. J Pharmacol Exp Ther 2013; 345:7-14. [PMID: 23318471 PMCID: PMC3608447 DOI: 10.1124/jpet.112.201947] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 12/13/2012] [Indexed: 01/01/2023] Open
Abstract
Our knowledge of how androgens influence the cardiovascular system is far from complete, and this lack of understanding is especially true of how androgens affect resistance vessels. Our aim was to identify the signaling mechanisms stimulated by testosterone (TES) in microvascular arteries and to understand how these mechanisms mediate TES-induced vasodilation. Mesenteric microvessels were isolated from male Sprague-Dawley rats. Tension studies demonstrated a rapid, concentration-dependent, vasodilatory response to TES that did not involve protein synthesis or aromatization to 17β-estradiol. Dichlorofluorescein fluorescence and nitrotyrosine immunoblot experiments indicated that TES stimulated peroxynitrite formation in microvessels, and functional studies demonstrated that TES-induced vasodilation was inhibited by scavenging peroxynitrite. As predicted, TES enhanced the production of both peroxynitrite precursors (i.e., superoxide and nitic oxide), and xanthine oxidase was identified as the likely source of TES-stimulated superoxide production. Functional and biochemical studies indicated that TES signaling involved activity of the phosphoinositide 3 (PI3) kinase-protein kinase B (Akt) cascade initiated by activation of the androgen receptor and culminated in enhanced production of cGMP and microvascular vasodilation. These findings, derived from a variety of analytical and functional approaches, provide evidence for a novel nongenomic signaling mechanism for androgen action in the microvasculature: TES-stimulated vasodilation mediated primarily by peroxynitrite formed from xanthine oxidase-generated superoxide and NO. This response was associated with activation of the PI3 kinase-Akt signaling cascade initiated by activation of the androgen receptor. We propose this mechanism could account for TES-stimulated cGMP production in microvessels and, ultimately, vasodilation.
Collapse
Affiliation(s)
- Yashoda Puttabyatappa
- Department of Pharmacology & Toxicology, Georgia Health Sciences University, Augusta, Georgia, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Antioxidant Activity and Cardioprotective Effect of a Nonalcoholic Extract of Vaccinium meridionale Swartz during Ischemia-Reperfusion in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:516727. [PMID: 23476693 PMCID: PMC3580918 DOI: 10.1155/2013/516727] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 12/13/2012] [Accepted: 12/21/2012] [Indexed: 01/15/2023]
Abstract
Our objective was to assess the antioxidant properties and the effects against the reperfusion injury of a nonalcoholic extract obtained by fermentation from the Colombian blueberry, mortiño (Vaccinium meridionale Swartz, Ericaceae). Antioxidant properties were assessed by in vitro systems. To examine the postischemic myocardial function, isolated rat hearts were treated 10 min before ischemia and during the first 10 min of reperfusion with the extract. To analyze the participation of nitric oxide (NO), other experiments were performed in the presence of nitric oxide synthase (NOS) inhibition with N(G)-nitro-L-arginine methyl ester (L-NAME). In cardiac tissue thiobarbituric acid reactive substances (TBARS) concentration, reduced glutathione (GSH) content, endothelial NOS (eNOS), and Akt expression were also measured. The blueberry extract showed higher total phenols and anthocyanins contents, scavenging activity of superoxide radical and systolic and diastolic function was improved, TBARS diminished, GSH was partially preserved, and both NOS and Akt expression increased in hearts treated with the extract. These beneficial effects were lost when eNOS was inhibited. In resume, these data show that the increase of eNOS expression via Akt and the scavenging activity contribute to the cardioprotection afforded by acute treatment with Colombian blueberry extract against ischemia and reperfusion injury.
Collapse
|
20
|
Dulce RA, Yiginer O, Gonzalez DR, Goss G, Feng N, Zheng M, Hare JM. Hydralazine and organic nitrates restore impaired excitation-contraction coupling by reducing calcium leak associated with nitroso-redox imbalance. J Biol Chem 2013; 288:6522-33. [PMID: 23319593 DOI: 10.1074/jbc.m112.412130] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Although the combined use of hydralazine and isosorbide dinitrate confers important clinical benefits in patients with heart failure, the underlying mechanism of action is still controversial. We used two models of nitroso-redox imbalance, neuronal NO synthase-deficient (NOS1(-/-)) mice and spontaneously hypertensive heart failure rats, to test the hypothesis that hydralazine (HYD) alone or in combination with nitroglycerin (NTG) or isosorbide dinitrate restores Ca(2+) cycling and contractile performance and controls superoxide production in isolated cardiomyocytes. The response to increased pacing frequency was depressed in NOS1(-/-) compared with wild type myocytes. Both sarcomere length shortening and intracellular Ca(2+) transient (Δ[Ca(2+)]i) responses in NOS1(-/-) cardiomyocytes were augmented by HYD in a dose-dependent manner. NTG alone did not affect myocyte shortening but reduced Δ[Ca(2+)]i across the range of pacing frequencies and increased myofilament Ca(2+) sensitivity thereby enhancing contractile efficiency. Similar results were seen in failing myocytes from the heart failure rat model. HYD alone or in combination with NTG reduced sarcoplasmic reticulum (SR) leak, improved SR Ca(2+) reuptake, and restored SR Ca(2+) content. HYD and NTG at low concentrations (1 μm), scavenged superoxide in isolated cardiomyocytes, whereas in cardiac homogenates, NTG inhibited xanthine oxidoreductase activity and scavenged NADPH oxidase-dependent superoxide more efficiently than HYD. Together, these results revealed that by reducing SR Ca(2+) leak, HYD improves Ca(2+) cycling and contractility impaired by nitroso-redox imbalance, and NTG enhanced contractile efficiency, restoring cardiac excitation-contraction coupling.
Collapse
Affiliation(s)
- Raul A Dulce
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Kohr MJ, Roof SR, Zweier JL, Ziolo MT. Modulation of myocardial contraction by peroxynitrite. Front Physiol 2012; 3:468. [PMID: 23248603 PMCID: PMC3520483 DOI: 10.3389/fphys.2012.00468] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 11/26/2012] [Indexed: 12/18/2022] Open
Abstract
Peroxynitrite is a potent oxidant that is quickly emerging as a crucial modulator of myocardial function. This review will focus on the regulation of myocardial contraction by peroxynitrite during health and disease, with a specific emphasis on cardiomyocyte Ca2+ handling, proposed signaling pathways, and protein end-targets.
Collapse
Affiliation(s)
- Mark J Kohr
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University Columbus, OH, USA ; Division of Cardiovascular Pathology, Department of Pathology, Johns Hopkins University Baltimore, MD, USA
| | | | | | | |
Collapse
|
22
|
Zhang Y, Tocchetti CG, Krieg T, Moens AL. Oxidative and nitrosative stress in the maintenance of myocardial function. Free Radic Biol Med 2012; 53:1531-40. [PMID: 22819981 DOI: 10.1016/j.freeradbiomed.2012.07.010] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Revised: 06/12/2012] [Accepted: 07/11/2012] [Indexed: 12/13/2022]
Abstract
Reactive oxygen species (ROS) are generated by several different cellular sources, and their accumulation within the myocardium is widely considered to cause harmful oxidative stress. On the other hand, their role as second messengers has gradually emerged. The equilibrium of the nitroso/redox balance between reactive nitrogen species and ROS is crucial for the health of cardiomyocytes. This review provides a comprehensive overview of sources of oxidative stress in cardiac myocytes and describes the role of the nitroso/redox balance in cardiac pathophysiology. Although the exact mechanism of ROS production by nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (Nox's) is not completely understood, Nox2 and Nox4 have particularly important roles within the myocardium. Increasing evidence suggests that Nox2 produces superoxide and Nox4 generates only hydrogen peroxide. We also discuss the key role of nitric oxide synthases (NOSs) in the maintenance of the nitroso/redox balance: uncoupled endothelial NOS has been suggested to shift from nitric oxide to ROS production, contributing to increased oxidative stress within the myocardium. Furthermore, we highlight the importance of sequentially targeting and/or regulating the specific sources of oxidative and nitrosative stress to prevent and/or reverse myocardial dysfunction. Inhibition of NADPH oxidase-dependent ROS is considered to be a potential strategy for treatment of cardiomyopathy. Neither in vivo nor clinical data are available for NADPH oxidase inhibitors. Specifically targeting the mitochondria with the antioxidant MitoQ would be a very promising translation approach, because it could prevent mitochondrial permeability transition pore opening when ROS are produced during heart reperfusion. Enhancing NO signaling could also be a promising therapeutic approach against myocardial dysfunction.
Collapse
Affiliation(s)
- Yixuan Zhang
- Department of Cardiology, Maastricht University Medical Center, Cardiovascular Research Institute Maastricht, 6202 AZ Maastricht, The Netherlands
| | | | | | | |
Collapse
|
23
|
Zaobornyj T, Ghafourifar P. Strategic localization of heart mitochondrial NOS: a review of the evidence. Am J Physiol Heart Circ Physiol 2012; 303:H1283-93. [PMID: 23023869 DOI: 10.1152/ajpheart.00674.2011] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Heart mitochondria play a central role in cell energy provision and in signaling. Nitric oxide (NO) is a free radical with primary regulatory functions in the heart and involved in a broad array of key processes in cardiac metabolism. Specific NO synthase (NOS) isoforms are confined to distinct locations in cardiomyocytes. The present article reviews the chemical reactions through which NO interacts with biomolecules and exerts some of its crucial roles. Specifically, the article discusses the reactions of NO with mitochondrial targets and the subcellular localization of NOS within the myocardium and analyzes the available data about heart mitochondrial NOS activity and identity. The article also describes the regulation of heart mtNOS by the distinctive mitochondrial environment by showing the effects of Ca(2+), O(2), l-arginine, mitochondrial transmembrane potential, and the metabolic states on heart mitochondrial NO production. The article depicts the effects of NO on heart function and highlights the relevance of NO production within mitochondria. Finally, the evidence on the functional implications of heart mitochondrial NOS is delineated with emphasis on chronic hypoxia and ischemia-reperfusion studies.
Collapse
Affiliation(s)
- Tamara Zaobornyj
- Laboratory of Free Radical Biology, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina.
| | | |
Collapse
|
24
|
McGee MA, Abdel-Rahman AA. Enhanced vascular neuronal nitric-oxide synthase-derived nitric-oxide production underlies the pressor response caused by peripheral N-methyl-D-aspartate receptor activation in conscious rats. J Pharmacol Exp Ther 2012; 342:461-71. [PMID: 22580349 PMCID: PMC11047766 DOI: 10.1124/jpet.112.194464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 05/09/2012] [Indexed: 04/28/2024] Open
Abstract
Although the N-methyl-D-aspartate (NMDA) receptor (NMDAR) obligatory unit NMDAR1 is expressed in the vasculature and myocardium, the impact of peripheral NMDAR activation on blood pressure (BP) has received little attention. We demonstrate, for the first time, dose-related pressor responses elicited by systemic NMDA (125, 250, 500, and 1000 μg/kg) in conscious rats. The pressor response was peripheral NMDAR-mediated because: 1) it persisted after ganglion blockade (hexamethonium; 5 mg/kg i.v.); 2) it was attenuated by the selective NMDAR blocker DL-2-amino-5-phosphonopentanoic acid (5 mg/kg, i.v.) or the glycine/NMDAR antagonist R-(+)-3-amino-1-hydroxypyrrolid-2-one [R-(+)-HA-966; 10 mg/kg i.v.]; and 3) NMDA (1.25-10 mM) increased contractile force of rat aorta in vitro. It is noteworthy that ex vivo studies revealed enhanced nitric oxide (NO) and reactive oxygen species (ROS) generation in vascular tissues collected at the peak of the NMDAR-mediated pressor response. Pharmacological, ex vivo, and in vitro findings demonstrated attenuation of the NMDAR-mediated increases in BP and vascular NO and ROS by the nonselective NO synthase (NOS) inhibitor N(ω)-nitro-L-arginine methyl ester hydrochloride (10 mg/kg i.v.) or the neuronal NOS (nNOS) inhibitor N(ω)-propyl-L-arginine hydrochloride (150 μg/kg i.p.) but not by the endothelial NOS inhibitor N(5)-(1-iminoethyl)-L-ornithine (4 or 10 mg/kg i.v.). Furthermore, R-(+)-HA-966 attenuated NMDA-evoked generation of vascular NO and ROS. The findings suggest a pivotal role for enhanced vascular nNOS-derived NO in ROS generation and in the subsequent pressor response elicited by peripheral NMDAR in conscious rats.
Collapse
Affiliation(s)
- Marie A McGee
- Department of Pharmacology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | | |
Collapse
|
25
|
Rainer PP, Doleschal B, Kirk JA, Sivakumaran V, Saad Z, Groschner K, Maechler H, Hoefler G, Bauernhofer T, Samonigg H, Hutterer G, Kass DA, Pieske B, von Lewinski D, Pichler M. Sunitinib causes dose-dependent negative functional effects on myocardium and cardiomyocytes. BJU Int 2012; 110:1455-62. [PMID: 22508007 DOI: 10.1111/j.1464-410x.2012.11134.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVES To examine the acute effects of sunitinib on inotropic function, intracellular Ca(2+) transients, myofilament Ca(2+) sensitivity and generation of reactive oxygen species (ROS) in human multicellular myocardium and isolated mouse cardiomyocytes. To search for microRNAs as suitable biomarkers for indicating toxic cardiac effects. PATIENTS AND METHODS After exposure to sunitinib (0.1-10 µg/mL) developed force, diastolic tension and kinetic variables were assessed in isolated human myocardium. Changes in myocyte sarcomere length, whole-cell calcium transients, myofilament force-Ca(2+) relationship, and ROS generation were examined in isolated ventricular mouse cardiomyocytes. Microarray and realtime-PCR were used to screen for differentially expressed microRNAs in cultured cardiomyocytes that were exposed for 24 h to sunitinib. RESULTS We found that higher concentrations of sunitinib (1 and 10 µg/mL) decreased developed force at 30 minutes 76.9 + 2.8 and 54.5 + 6.3%, compared to 96.1 + 2.6% in controls (P < 0.01). Sunitinib exposure significantly decreased sarcomere shortening and Ca2+ transients. Myofilament Ca(2+) sensitivity was not altered, while ROS levels were significantly increased after exposure to the drug. MicroRNA expression patterns were not altered by sunitinib. CONCLUSIONS Sunitinib elicits a dose-dependent negative inotropic effect in myocardium, accompanied by a decline in intracellular Ca(2+) and increased ROS generation. In clinical practice, these cardiotoxic effects should be considered in cases where cardiac concentrations of sunitinib could be increased.
Collapse
Affiliation(s)
- Peter P Rainer
- Division of Cardiology, Department of Internal Medicine, Medical University Graz, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Dietary inorganic nitrate alleviates doxorubicin cardiotoxicity: mechanisms and implications. Nitric Oxide 2012; 26:274-84. [PMID: 22484629 DOI: 10.1016/j.niox.2012.03.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 02/11/2012] [Accepted: 03/22/2012] [Indexed: 11/21/2022]
Abstract
Doxorubicin (DOX) is one of the most powerful and widely prescribed chemotherapeutic agents to treat divergent human cancers. However, the clinical use of DOX is restricted due to its severe cardiotoxic side-effects. There has been ongoing search for cardioprotectants against DOX toxicity. Inorganic nitrate has emerged as a bioactive compound that can be reduced into nitrite and nitric oxide in vivo and in turn plays a therapeutic role in diseases associated with nitric oxide insufficiency or dysregulation. In this review, we describe a novel concept of using dietary supplementation of inorganic nitrate to reduce DOX-induced cardiac cellular damage and dysfunction, based on our recent promising studies in a mouse model of DOX cardiotoxicity. Our data show that chronic oral ingestion of sodium nitrate, at a dose equivalent to ~400% of the Acceptable Daily Intake of the World Health Organization, alleviated DOX-induced left ventricular dysfunction and mitochondrial respiratory chain damage. Such cardioprotective effects were associated with reduction of cardiomyocyte necrosis/apoptosis, tissue lipid peroxidation, and mitochondrial H(2)O(2) generation following DOX treatment. Furthermore, proteomic studies revealed enhanced cardiac expression of mitochondrial antioxidant enzyme - peroxiredoxin 5 in the nitrate-treated animals. These studies suggest that inorganic nitrate could be an inexpensive therapeutic agent for long-term oral administration in preventing DOX-induced cardiac toxicity and myopathy during the prolonged pathological process. Future clinical trials in the cancer patients undergoing DOX chemotherapy are warranted to translate these experimental findings into an effective new therapy in preventing the DOX-induced cardiomyopathy.
Collapse
|
27
|
Tocchetti CG, Stanley BA, Murray CI, Sivakumaran V, Donzelli S, Mancardi D, Pagliaro P, Gao WD, van Eyk J, Kass DA, Wink DA, Paolocci N. Playing with cardiac "redox switches": the "HNO way" to modulate cardiac function. Antioxid Redox Signal 2011; 14:1687-98. [PMID: 21235349 PMCID: PMC3066693 DOI: 10.1089/ars.2010.3859] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The nitric oxide (NO(•)) sibling, nitroxyl or nitrosyl hydride (HNO), is emerging as a molecule whose pharmacological properties include providing functional support to failing hearts. HNO also preconditions myocardial tissue, protecting it against ischemia-reperfusion injury while exerting vascular antiproliferative actions. In this review, HNO's peculiar cardiovascular assets are discussed in light of its unique chemistry that distinguish HNO from NO(•) as well as from reactive oxygen and nitrogen species such as the hydroxyl radical and peroxynitrite. Included here is a discussion of the possible routes of HNO formation in the myocardium and its chemical targets in the heart. HNO has been shown to have positive inotropic/lusitropic effects under normal and congestive heart failure conditions in animal models. The mechanistic intricacies of the beneficial cardiac effects of HNO are examined in cellular models. In contrast to β-receptor/cyclic adenosine monophosphate/protein kinase A-dependent enhancers of myocardial performance, HNO uses its "thiophylic" nature as a vehicle to interact with redox switches such as cysteines, which are located in key components of the cardiac electromechanical machinery ruling myocardial function. Here, we will briefly review new features of HNO's cardiovascular effects that when combined with its positive inotropic/lusitropic action may render HNO donors an attractive addition to the current therapeutic armamentarium for treating patients with acutely decompensated congestive heart failure.
Collapse
Affiliation(s)
- Carlo G Tocchetti
- Division of Cardiology, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Mukhopadhyay P, Rajesh M, Bátkai S, Patel V, Kashiwaya Y, Liaudet L, Evgenov OV, Mackie K, Haskó G, Pacher P. CB1 cannabinoid receptors promote oxidative stress and cell death in murine models of doxorubicin-induced cardiomyopathy and in human cardiomyocytes. Cardiovasc Res 2010; 85:773-784. [PMID: 19942623 PMCID: PMC2819835 DOI: 10.1093/cvr/cvp369] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 10/23/2009] [Accepted: 11/09/2009] [Indexed: 02/06/2023] Open
Abstract
AIMS Here we investigated the mechanisms by which cardiovascular CB1 cannabinoid receptors may modulate the cardiac dysfunction, oxidative stress, and interrelated cell death pathways associated with acute/chronic cardiomyopathy induced by the widely used anti-tumour compound doxorubicin (DOX). METHODS AND RESULTS Both load-dependent and -independent indices of left-ventricular function were measured by the Millar pressure-volume conductance system. Mitogen-activated protein kinase (MAPK) activation, cell-death markers, and oxidative/nitrosative stress were measured by molecular biology/biochemical methods and flow cytometry. DOX induced left-ventricular dysfunction, oxidative/nitrosative stress coupled with impaired antioxidant defense, activation of MAPK (p38 and JNK), and cell death and/or fibrosis in hearts of wide-type mice (CB1(+/+)), and these effects were markedly attenuated in CB1 knockouts (CB1(-/-)). In human primary cardiomyocytes expressing CB1 receptors (demonstrated by RT-PCR, western immunoblot, and flow cytometry) DOX, likewise the CB1 receptor agonist HU210 and the endocannabinoid anandamide (AEA), induced MAPK activation and cell death. The DOX-induced MAPK activation and cell death were significantly enhanced when DOX was co-administered with CB1 agonists AEA or HU210. Remarkably, cell death and MAPK activation induced by AEA, HU210, and DOX +/- AEA/HU210 were largely attenuated by either CB1 antagonists (rimonabant and AM281) or by inhibitors of p38 and JNK MAPKs. Furthermore, AEA or HU210 in primary human cardiomyocytes triggered increased reactive oxygen species generation. CONCLUSION CB1 activation in cardiomyocytes may amplify the reactive oxygen/nitrogen species-MAPK activation-cell death pathway in pathological conditions when the endocannabinoid synthetic or metabolic pathways are dysregulated by excessive inflammation and/or oxidative/nitrosative stress, which may contribute to the pathophysiology of various cardiovascular diseases.
Collapse
MESH Headings
- Amidohydrolases/metabolism
- Animals
- Antibiotics, Antineoplastic/toxicity
- Apoptosis/physiology
- Cannabinoid Receptor Modulators/metabolism
- Cardiomyopathies/chemically induced
- Cardiomyopathies/metabolism
- Cardiomyopathies/pathology
- Caspase 3/metabolism
- Caspase 7/metabolism
- Cells, Cultured
- Cytochromes c/metabolism
- Disease Models, Animal
- Doxorubicin/toxicity
- Endomyocardial Fibrosis/chemically induced
- Endomyocardial Fibrosis/metabolism
- Endomyocardial Fibrosis/pathology
- Humans
- MAP Kinase Signaling System/physiology
- Male
- Mice
- Mice, Knockout
- Myocytes, Cardiac/cytology
- Myocytes, Cardiac/metabolism
- Oxidative Stress/physiology
- Poly(ADP-ribose) Polymerases/metabolism
- Reactive Nitrogen Species/metabolism
- Reactive Oxygen Species/metabolism
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Ventricular Function, Left/physiology
Collapse
Affiliation(s)
- Partha Mukhopadhyay
- Section on Oxidative Stress and Tissue Injury, Laboratory of Physiological Studies, NIH/NIAAA, 5625 Fishers Lane, MSC-9413, Bethesda 20892-9413 MD, USA
| | - Mohanraj Rajesh
- Section on Oxidative Stress and Tissue Injury, Laboratory of Physiological Studies, NIH/NIAAA, 5625 Fishers Lane, MSC-9413, Bethesda 20892-9413 MD, USA
| | - Sándor Bátkai
- Section on Oxidative Stress and Tissue Injury, Laboratory of Physiological Studies, NIH/NIAAA, 5625 Fishers Lane, MSC-9413, Bethesda 20892-9413 MD, USA
| | - Vivek Patel
- Section on Oxidative Stress and Tissue Injury, Laboratory of Physiological Studies, NIH/NIAAA, 5625 Fishers Lane, MSC-9413, Bethesda 20892-9413 MD, USA
| | | | - Lucas Liaudet
- Department of Intensive Care Medicine, University Hospital, Lausanne, Switzerland
| | - Oleg V. Evgenov
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ken Mackie
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - György Haskó
- Department of Surgery, UMDNJ-New Jersey Medical School, Newark, USA
| | - Pál Pacher
- Section on Oxidative Stress and Tissue Injury, Laboratory of Physiological Studies, NIH/NIAAA, 5625 Fishers Lane, MSC-9413, Bethesda 20892-9413 MD, USA
| |
Collapse
|
29
|
Han F, Lu YM, Hasegawa H, Kanai H, Hachimura E, Shirasaki Y, Fukunaga K. Inhibition of dystrophin breakdown and endothelial nitric-oxide synthase uncoupling accounts for cytoprotection by 3-[2-[4-(3-chloro-2-methylphenyl)-1-piperazinyl]ethyl]-5,6-dimethoxy-1-(4-imidazolylmethyl)-1H-indazole dihydrochloride 3.5 hydrate (DY-9760e) in left ventricular hypertrophied Mice. J Pharmacol Exp Ther 2010; 332:421-8. [PMID: 19889795 DOI: 10.1124/jpet.109.161646] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2025] Open
Abstract
Using a heart ischemia/reperfusion model in rats, we recently demonstrated that 3-[2-[4-(3-chloro-2-methylphenyl)-1-piperazinyl]ethyl]-5,6-dimethoxy-1-(4-imidazolylmethyl)-1H-indazole dihydrochloride 3.5 hydrate (DY-9760e), a calmodulin inhibitor, is a cardioprotective drug. Here, we examined cardioprotective mechanisms of DY-9760e in hypertrophy and heart failure using a mouse transverse aortic constriction (TAC) model. Mice were subjected to TAC and 2 weeks later they were administered DY-9760e for another 6 weeks (at 10 or 20 mg/kg/day p.o.). Chronic administration inhibited TAC-induced increased heart-to-body weight ratio dose-dependently. Consistent with inhibition of hypertrophy, fraction shortening, an indicator of heart contractile function, assessed by echocardiography was completely restored by DY-9760e (20 mg/kg/day) administration. Inhibition of TAC-induced atrial natriuretic peptide (ANP) up-regulation further confirmed an antihypertrophic effect of DY-9760e. It is noteworthy that we found that breakdown of dystrophin and spectrin by calpain was associated with heart failure in TAC mice. Caveolin-3 breakdown was closely associated with endothelial nitric-oxide synthase (eNOS) dissociation from the plasma membrane and its subsequent uncoupling. Uncoupled monomeric eNOS formation was associated with increased protein tyrosine nitration, suggesting peroxynitrite production and NO and superoxide formation. It is important to note that 6 weeks of DY-9760e treatment significantly blocked hypertrophic responses, such as increased heart weight and ANP induction. Overall, we show that inhibition of both dystrophin/spectrin breakdown and uncoupling of eNOS probably underlies the cardioprotective mechanisms of DY-9760e. The observed protection of sarcolemmal proteins and eNOS by DY-9760e during pressure overload suggests a novel therapeutic strategy to rescue the heart from hypertrophy-induced failure.
Collapse
Affiliation(s)
- Feng Han
- Institute of Pharmacology, Toxicology, and Biochemical Pharmaceutics, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | |
Collapse
|
30
|
Kohr MJ, Kaludercic N, Tocchetti CG, Dong Gao W, Kass DA, Janssen PML, Paolocci N, Ziolo MT. Nitroxyl enhances myocyte Ca2+ transients by exclusively targeting SR Ca2+-cycling. Front Biosci (Elite Ed) 2010; 2:614-26. [PMID: 20036906 DOI: 10.2741/e118] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Nitroxyl (HNO), the 1-electron reduction product of nitric oxide, improves myocardial contraction in normal and failing hearts. Here we test whether the HNO donor Angeli's salt (AS) will change myocyte action potential (AP) waveform by altering the L-type Ca2+ current (ICa) and contrast the contractile effects of HNO with that of the hydroxyl radical (.OH) and nitrite (NO2-), two potential breakdown products of AS. We confirmed the positive effect of AS/HNO on basal cardiomyocyte function, as opposed to the detrimental effect of .OH and the negligible effect of NO2-. Upon examination of the myocyte AP, we observed no change in resting membrane potential or AP duration to 20 per cent repolarization with AS/HNO, whereas AP duration to 90 per cent repolarization was slightly prolonged. However, perfusion with AS/HNO did not elicit a change in basal ICa, but did hasten ICa inactivation. Upon further examination of the SR, the AS/HNO-induced increase in cardiomyocyte Ca2+ transients was abolished with inhibition of SR Ca2+-cycling. Therefore, the HNO-induced increase in Ca2+ transients results exclusively from changes in SR Ca2+-cycling, and not from ICa.
Collapse
Affiliation(s)
- Mark J Kohr
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Fukuto JM, Bianco CL, Chavez TA. Nitroxyl (HNO) signaling. Free Radic Biol Med 2009; 47:1318-24. [PMID: 19539748 DOI: 10.1016/j.freeradbiomed.2009.06.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 06/10/2009] [Accepted: 06/11/2009] [Indexed: 11/16/2022]
Abstract
Nitroxyl (HNO) has become a nitrogen oxide of significant interest due to its reported biological activity. The actions of HNO in the cardiovascular system appear to make it a good candidate for therapeutic applications for cardiovascular disorders and other potentially important effects have been noted as well. Although the chemistry associated with this activity has not been firmly established, the propensity for HNO to react with thiols and metals are likely mechanisms. Herein, are described the biological activity of HNO and some of the chemistry of HNO that may be responsible for its biological effects.
Collapse
Affiliation(s)
- Jon M Fukuto
- Department of Chemistry, Sonoma State University, Rohnert Park, CA 94928, USA.
| | | | | |
Collapse
|
32
|
Jackson MI, Han TH, Serbulea L, Dutton A, Ford E, Miranda KM, Houk K, Wink DA, Fukuto JM. Kinetic feasibility of nitroxyl reduction by physiological reductants and biological implications. Free Radic Biol Med 2009; 47:1130-9. [PMID: 19577638 PMCID: PMC7370859 DOI: 10.1016/j.freeradbiomed.2009.06.034] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 06/17/2009] [Accepted: 06/26/2009] [Indexed: 10/20/2022]
Abstract
Nitroxyl (HNO), the one-electron reduced and protonated congener of nitric oxide (NO), is a chemically unique species with potentially important biological activity. Although HNO-based pharmaceuticals are currently being considered for the treatment of chronic heart failure or stroke/transplant-derived ischemia, the chemical events leading to therapeutic responses are not established. The interaction of HNO with oxidants results in the well-documented conversion to NO, but HNO is expected to be readily reduced as well. Recent thermodynamic calculations predict that reduction of HNO is biologically accessible. Herein, kinetic analysis suggests that the reactions of HNO with several mechanistically distinct reductants are also biologically feasible. Product analysis verified that the reductants had in fact been oxidized and that in several instances HNO had been converted to hydroxylamine. Moreover, a theoretical analysis suggests that in the reaction of HNO with thiol reductants, the pathway producing sulfinamide is significantly more favorable than that leading to disulfide. Additionally, simultaneous production of HNO and NO yielded a biphasic oxidative capacity.
Collapse
Affiliation(s)
- Matthew I. Jackson
- Interdepartmental Program in Molecular Toxicology, School of Public Health, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Tae H. Han
- Department of Chemical Engineering, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Laura Serbulea
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Andrew Dutton
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Eleonora Ford
- Department of Molecular and Medical Pharmacology, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | | | - K.N. Houk
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - David A. Wink
- Radiation Biology Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | - Jon M. Fukuto
- Department of Chemistry, Sonoma State University, Rohnert Park, CA 94928, USA
- Corresponding author. Fax: +1 707 664 3378. (J.M. Fukuto)
| |
Collapse
|
33
|
Ritchie RH, Irvine JC, Rosenkranz AC, Patel R, Wendt IR, Horowitz JD, Kemp-Harper BK. Exploiting cGMP-based therapies for the prevention of left ventricular hypertrophy: NO* and beyond. Pharmacol Ther 2009; 124:279-300. [PMID: 19723539 DOI: 10.1016/j.pharmthera.2009.08.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Accepted: 08/14/2009] [Indexed: 02/07/2023]
Abstract
Left ventricular hypertrophy (LVH), an increased left ventricular (LV) mass, is common to many cardiovascular disorders, initially developing as an adaptive response to maintain myocardial function. In the longer term, this LV remodelling becomes maladaptive, with progressive decline in LV contractility and diastolic function. Indeed LVH is recognised as an important blood-pressure independent predictor of cardiovascular morbidity and mortality. The clinical efficacy of current treatments for LVH is reduced, however, by their tendency to slow disease progression rather than induce its reversal, and thus the development of new therapies for LVH is paramount. The signalling molecule cyclic guanosine-3',5'-monophosphate (cGMP), well-recognised for its role in regulating vascular tone, is now being increasingly identified as an important anti-hypertrophic mediator. This review is focused on the various means by which cGMP can be stimulated in the heart, such as via the natriuretic peptides, to exert anti-hypertrophic actions. In particular we address the limitations of traditional nitric oxide (NO*) donors in the face of the potential therapeutic advantages offered by novel alternatives; NO* siblings, ligands of the cGMP-generating enzymes, soluble (sGC) and particulate guanylyl cyclases (pGC), and phosphodiesterase inhibitors. Further impact of cGMP within the cardiovascular system is also discussed with a view to representing cGMP-based therapies as innovative pharmacotherapy, alone or concurrent with standard care, for the management of LVH.
Collapse
Affiliation(s)
- Rebecca H Ritchie
- Heart Failure Pharmacology, Baker IDI Heart & Diabetes Institute Melbourne, Victoria, Australia.
| | | | | | | | | | | | | |
Collapse
|
34
|
Gurusamy N, Das DK. Autophagy, redox signaling, and ventricular remodeling. Antioxid Redox Signal 2009; 11:1975-88. [PMID: 19327038 PMCID: PMC2848474 DOI: 10.1089/ars.2009.2524] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2009] [Revised: 02/21/2009] [Accepted: 02/25/2009] [Indexed: 12/19/2022]
Abstract
Autophagy is a catabolic process through which damaged or long-lived proteins, macromolecules, or organelles are recycled by using lysosomal degradation machinery. Although the occurrence of autophagy in several cardiac diseases including ischemic or dilated cardiomyopathy, heart failure, hypertrophy, and during ischemia/reperfusion injury have been reported, the exact role of autophagy in these diseases is not known. Emerging studies indicate that oxidative stress in cellular system could induce autophagy, and oxidatively modified macromolecules and organelles can be selectively removed by autophagy. Mild oxidative stress-induced autophagy could provide the first line of protection against major damage like apoptosis and necrosis. Cardiac-specific loss of Atg5, an autophagic gene involved in the formation of autophagosome, causes cardiac hypertrophy, left ventricular dilation, and contractile dysfunction. Recently, it was revealed that Atg4, another autophagic gene involved in the formation of autophagosomes, is controlled through redox regulation under the condition of starvation-induced autophagy. In this review, we discuss the function of autophagy in association with oxidative stress and redox signaling in the remodeling of cardiac myocardium. Further research is needed to explore the possibilities of redox regulation of other autophagic genes and the role of redox signaling-mediated autophagy in the heart.
Collapse
Affiliation(s)
- Narasimman Gurusamy
- Cardiovascular Research Center, University of Connecticut School of Medicine, Farmington, Connecticut 06030-1110, USA
| | | |
Collapse
|
35
|
Lancel S, Zhang J, Evangelista A, Trucillo MP, Tong X, Siwik DA, Cohen RA, Colucci WS. Nitroxyl activates SERCA in cardiac myocytes via glutathiolation of cysteine 674. Circ Res 2009; 104:720-3. [PMID: 19265039 PMCID: PMC3046805 DOI: 10.1161/circresaha.108.188441] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nitroxyl (HNO) exerts inotropic and lusitropic effects in myocardium, in part via activation of SERCA (sarcoplasmic reticulum calcium ATPase). To elucidate the molecular mechanism, adult rat ventricular myocytes were exposed to HNO derived from Angeli's salt. HNO increased the maximal rate of thapsigargin-sensitive Ca2+ uptake mediated by SERCA in sarcoplasmic vesicles and caused reversible oxidative modification of SERCA thiols. HNO increased the S-glutathiolation of SERCA, and adenoviral overexpression of glutaredoxin-1 prevented both the HNO-stimulated oxidative modification of SERCA and its activation, as did overexpression of a mutated SERCA in which cysteine 674 was replaced with serine. Thus, HNO increases the maximal activation of SERCA via S-glutathiolation at cysteine 674.
Collapse
Affiliation(s)
- Steve Lancel
- Cardiovascular Medicine Section, Boston University Medical Center, 88 E Newton St, Boston, MA 02118, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Paolocci N, Wink DA. The shy Angeli and his elusive creature: the HNO route to vasodilation. Am J Physiol Heart Circ Physiol 2009; 296:H1217-20. [PMID: 19286958 DOI: 10.1152/ajpheart.00243.2009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
37
|
Matavelli LC, Kadowitz PJ, Navar LG, Majid DSA. Renal hemodynamic and excretory responses to intra-arterial infusion of peroxynitrite in anesthetized rats. Am J Physiol Renal Physiol 2008; 296:F170-6. [PMID: 18987112 DOI: 10.1152/ajprenal.90487.2008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Peroxynitrite (ONOO(-)) is formed endogenously by the reaction of nitric oxide (NO) and superoxide (O(2)(-)). To examine the hypothesis that OONO(-) cause renal vasodilation at low concentrations but cause vasoconstriction at higher concentrations, we examined renal responses to intra-arterial infusion of incremental doses of OONO(-) (10, 20, and 40 microg.kg(-1).min(-1); 45 min each) in anesthetized rats. Renal blood flow (RBF) and glomerular filtration rate (GFR) were determined by PAH and inulin clearance. In control rats (n = 6), low dose (10 microg.kg(-1).min(-1)) of OONO(-) increased RBF by 10 +/- 3% and GFR by 15 +/- 5%. The higher doses (20 and 40 microg.kg(-1).min(-1)) mostly reversed these responses which were -7 +/- 4 and -27 +/- 7% (P < 0.05) in RBF and -0.1 +/- 4.8 and -14 +/- 12% in GFR, respectively. There were no appreciable changes in urine flow (V) and sodium excretion (U(Na)V) during OONO(-) infusion. However, in rats pretreated with NO synthase (NOS) inhibitor, l-NAME (50 microg.kg(-1).min(-1); n = 5), these doses of ONOO(-) significantly reduced RBF (-26 +/- 7, -27 +/- 6, and -44 +/- 3%) and GFR (-21 +/- 6, -25 +/- 8, and -32 +/- 12%) with variable increases in V or U(Na)V. Long-term infusion of OONO(-) (10 microg.kg(-1).min(-1) for 75 min) in another set of control rats (n = 5) also showed similar vasodilator and hyperfiltration responses. These data indicate that ONOO(-) acts as an oxidant at high concentration but provides renoprotective function at low concentration that depends on intact NOS activity.
Collapse
Affiliation(s)
- Luis C Matavelli
- Dept. of Physiology, Tulane Univ. Health Sciences Center, 1430 Tulane Ave., SL 39, New Orleans, LA 70112, USA
| | | | | | | |
Collapse
|
38
|
Donzelli S, Espey MG, Flores-Santana W, Switzer CH, Yeh GC, Huang J, Stuehr DJ, King SB, Miranda KM, Wink DA. Generation of nitroxyl by heme protein-mediated peroxidation of hydroxylamine but not N-hydroxy-L-arginine. Free Radic Biol Med 2008; 45:578-84. [PMID: 18503778 PMCID: PMC2562766 DOI: 10.1016/j.freeradbiomed.2008.04.036] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 04/04/2008] [Accepted: 04/21/2008] [Indexed: 11/29/2022]
Abstract
The chemical reactivity, toxicology, and pharmacological responses to nitroxyl (HNO) are often distinctly different from those of nitric oxide (NO). The discovery that HNO donors may have pharmacological utility for treatment of cardiovascular disorders such as heart failure and ischemia reperfusion has led to increased speculation of potential endogenous pathways for HNO biosynthesis. Here, the ability of heme proteins to utilize H2O2 to oxidize hydroxylamine (NH2OH) or N-hydroxy-L-arginine (NOHA) to HNO was examined. Formation of HNO was evaluated with a recently developed selective assay in which the reaction products in the presence of reduced glutathione (GSH) were quantified by HPLC. Release of HNO from the heme pocket was indicated by formation of sulfinamide (GS(O)NH2), while the yields of nitrite and nitrate signified the degree of intramolecular recombination of HNO with the heme. Formation of GS(O)NH2 was observed upon oxidation of NH2OH, whereas NOHA, the primary intermediate in oxidation of L-arginine by NO synthase, was apparently resistant to oxidation by the heme proteins utilized. In the presence of NH2OH, the highest yields of GS(O)NH2 were observed with proteins in which the heme was coordinated to a histidine (horseradish peroxidase, lactoperoxidase, myeloperoxidase, myoglobin, and hemoglobin) in contrast to a tyrosine (catalase) or cysteine (cytochrome P450). That peroxidation of NH2OH by horseradish peroxidase produced free HNO, which was able to affect intracellular targets, was verified by conversion of 4,5-diaminofluorescein to the corresponding fluorophore within intact cells.
Collapse
Affiliation(s)
- Sonia Donzelli
- Tumor Biology Section, Radiation Biology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Nitric oxide signaling and the regulation of myocardial function. J Mol Cell Cardiol 2008; 45:625-32. [PMID: 18722380 DOI: 10.1016/j.yjmcc.2008.07.015] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Revised: 06/12/2008] [Accepted: 07/17/2008] [Indexed: 12/25/2022]
Abstract
Nitric oxide, which is produced endogenously within cardiac myocytes by three distinct isoforms of nitric oxide synthase, is a key regulator of myocardial function. This review will focus on the regulation of myocardial function by each nitric oxide synthase isoform during health and disease, with a specific emphasis on the proposed end-targets and signaling pathways.
Collapse
|
40
|
Hertelendi Z, Tóth A, Borbély A, Galajda Z, Édes I, Tósaki Á, Papp Z. The peroxynitrite evoked contractile depression can be partially reversed by antioxidants in human cardiomyocytes. J Cell Mol Med 2008; 13:2200-2209. [PMID: 18671759 DOI: 10.1111/j.1582-4934.2008.00445.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In this study, we aimed to determine the contribution of peroxynitrite-dependent sulfhydryl group (SH) oxidation to the contractile dysfunction in permeabilized left ventricular human cardiomyocytes using a comparative approach with the SH-oxidant 2,2'-dithiodipyridine (DTDP). Additionally, different antioxidants: dithiothreitol (DTT), reduced glutathione (GSH) or N-acetyl-L-cysteine (NAC) were employed to test reversibility. Maximal isometric active force production (F(o)) and the maximal turnover rate of the cross-bridge cycle (k(tr,max)) illustrated cardiomyocyte mechanics. SH oxidation was monitored by a semi-quantitative Ellman's assay and by SH-specific protein biotinylation. Both peroxynitrite and DTDP diminished F(o) in a concentration-dependent manner (EC(50,peroxynitrite) = 49 microM; EC(50,DTDP) = 2.75 mM). However, k(tr,max) was decreased only by 2.5-mM DTDP, but not by 50 microM peroxynitrite. The diminution of F(o) to zero by DTDP was paralleled by the complete elimination of the free SH groups, while the peroxynitrite-induced maximal reduction in free SH groups was only to 58 +/- 6% of the control (100%). The diminutions in F(o) and free SH groups evoked by 2.5-mM DTDP were completely reverted by DTT. In contrast, DTT induced only a partial restoration in F(o) (DeltaF(o,): approximately 13%; P < 0.05) despite full reversion in protein SH content after 50 microM peroxynitrite. Although, NAC or DTT were equally effective on F(o) after peroxynitrite exposures, NAC or GSH did not restore F(o) or k(tr,max) after DTDP treatments. Our results revealed that the peroxynitrite-evoked cardiomyocyte dysfunction has a small, but significant component resulting from reversible SH oxidation, and thereby illustrated the potential benefit of antioxidants during cardiac pathologies with excess peroxynitrite production.
Collapse
Affiliation(s)
- Zita Hertelendi
- Division of Clinical Physiology, Institute of Cardiology, Faculty of Medicine, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | - Attila Tóth
- Division of Clinical Physiology, Institute of Cardiology, Faculty of Medicine, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | - Attila Borbély
- Division of Clinical Physiology, Institute of Cardiology, Faculty of Medicine, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | - Zoltán Galajda
- Center of Cardiac Surgery, Institute of Cardiology, Faculty of Medicine, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | - István Édes
- Division of Clinical Physiology, Institute of Cardiology, Faculty of Medicine, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | - Árpád Tósaki
- Department of Pharmacology, Faculty of Pharmacy, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | - Zoltán Papp
- Division of Clinical Physiology, Institute of Cardiology, Faculty of Medicine, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
41
|
Kohr MJ, Wang H, Wheeler DG, Velayutham M, Zweier JL, Ziolo MT. Biphasic effect of SIN-1 is reliant upon cardiomyocyte contractile state. Free Radic Biol Med 2008; 45:73-80. [PMID: 18433725 PMCID: PMC2493607 DOI: 10.1016/j.freeradbiomed.2008.03.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Accepted: 03/19/2008] [Indexed: 11/28/2022]
Abstract
Many studies have demonstrated a biphasic effect of peroxynitrite in the myocardium, but few studies have investigated this biphasic effect on beta-adrenergic responsiveness and its dependence on contractile state. We have previously shown that high 3-morpholinosydnonimine (SIN-1) (source of peroxynitrite, 200 micromol/L) produced significant anti-adrenergic effects during maximal beta-adrenergic stimulation in cardiomyocytes. In the current study, we hypothesize that the negative effects of high SIN-1 will be greatest during high contractile states, whereas the positive effects of low SIN-1 (10 micromol/L) will predominate during low contractility. Isolated murine cardiomyocytes were field stimulated at 1 Hz, and [Ca(2+)](i) transients and shortening were recorded. After submaximal isoproterenol (ISO) (beta-adrenergic agonist, 0.01 micromol/L) stimulation, 200 micromol/L SIN-1 induced two distinct phenomena. Cardiomyocytes undergoing a large response to ISO showed a significant reduction in contractility, whereas cardiomyocytes exhibiting a modest response to ISO showed a further increase in contractility. Additionally, 10 micromol/L SIN-1 always increased contractility during low ISO stimulation, but had no effect during maximal ISO (1 micromol/L) stimulation. SIN-1 at 10 micromol/L also increased basal contractility. Interestingly, SIN-1 produced a contractile effect under only one condition in phospholamban-knockout cardiomyocytes, providing a potential mechanism for the biphasic effect of peroxynitrite. These results provide clear evidence for a biphasic effect of peroxynitrite, with high peroxynitrite modulating high levels of beta-adrenergic responsiveness and low peroxynitrite regulating basal function and low levels of beta-adrenergic stimulation.
Collapse
Affiliation(s)
- Mark J Kohr
- Department of Physiology & Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Honglan Wang
- Department of Physiology & Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Debra G Wheeler
- Department of Physiology & Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Murugesan Velayutham
- Department of Internal Medicine: Division of Cardiovascular Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Jay L Zweier
- Department of Internal Medicine: Division of Cardiovascular Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Mark T Ziolo
- Department of Physiology & Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
42
|
Rabkin SW, Klassen SS. Metalloporphyrins as a therapeutic drug class against peroxynitrite in cardiovascular diseases involving ischemic reperfusion injury. Eur J Pharmacol 2008; 586:1-8. [DOI: 10.1016/j.ejphar.2008.02.078] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 01/18/2008] [Accepted: 02/06/2008] [Indexed: 10/22/2022]
|
43
|
Song P, Xie Z, Wu Y, Xu J, Dong Y, Zou MH. Protein kinase Czeta-dependent LKB1 serine 428 phosphorylation increases LKB1 nucleus export and apoptosis in endothelial cells. J Biol Chem 2008; 283:12446-55. [PMID: 18321849 DOI: 10.1074/jbc.m708208200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
LKB1 is a serine-threonine protein kinase that, when inhibited, may result in unregulated cell growth and tumor formation. However, how LKB1 is regulated remains poorly understood. The aim of the present study was to define the upstream signaling events responsible for peroxynitrite (ONOO(-))-induced LKB1 activation. Exposure of cultured human umbilical vein endothelial cells to a low concentration of ONOO(-) (5 microM) significantly increased the phosphorylation of LKB1 at Ser(428) and protein kinase Czeta (PKCzeta) at Thr(410). These effects were accompanied by increased activity of the lipid phosphatase PTEN, decreased activity and phosphorylation (Ser(473)) of Akt, and induction of apoptosis. ONOO(-) enhanced Akt-Ser(473) phosphorylation in LKB1-deficient HeLa S3 cells or in HeLa S3 cells transfected with kinase-dead LKB1. Conversely, ONOO(-) inhibited Akt Ser(473) phosphorylation when wild type LKB1 were reintroduced in HeLa S3 cells. Further analysis revealed that PKCzeta directly phosphorylated LKB1 at Ser(428) in vitro and in intact cells, resulting in increased PTEN phosphorylation at Ser(380)/Thr(382/383). Finally, ONOO(-) enhanced PKCzeta nuclear import and LKB1 nuclear export. We conclude that PKCzeta mediates LKB1-dependent Akt inhibition in response to ONOO(-), resulting in endothelial apoptosis.
Collapse
Affiliation(s)
- Ping Song
- Section of Endocrinology and Diabetes, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA
| | | | | | | | | | | |
Collapse
|
44
|
Ziolo MT. The fork in the nitric oxide road: cyclic GMP or nitrosylation? Nitric Oxide 2008; 18:153-6. [PMID: 18312860 DOI: 10.1016/j.niox.2008.01.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Accepted: 01/30/2008] [Indexed: 10/22/2022]
Affiliation(s)
- Mark T Ziolo
- Department of Physiology and Cell Biology, The Ohio State University, 304 Hamilton Hall, 1645 Neil Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
45
|
Abstract
Leptin, among the best known hormone markers for obesity, exerts pleiotropic actions on multiple organ systems. In this review, we summarize major leptin signaling pathways, namely Janus-activated kinase/signal transducers and activators of transcription and mitogen-activated protein kinase, including possible mechanisms of leptin resistance in obesity. The effects of leptin on the cardiovascular system are discussed in detail, including its contributions to hypertension, atherosclerosis, depressed myocardial contractile function, fatty acid metabolism, hypertrophic remodeling, and reduction of ischemic/reperfusion injury. The overall goal is to summarize current understanding of how altered leptin signaling in obesity contributes to obesity-related cardiovascular disease.
Collapse
Affiliation(s)
- Ronghua Yang
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | | |
Collapse
|
46
|
Kohr MJ, Wang H, Wheeler DG, Velayutham M, Zweier JL, Ziolo MT. Targeting of phospholamban by peroxynitrite decreases beta-adrenergic stimulation in cardiomyocytes. Cardiovasc Res 2007; 77:353-61. [PMID: 18006474 DOI: 10.1093/cvr/cvm018] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
AIMS Peroxynitrite production increases during the pathogenesis of numerous cardiac disorders (e.g. heart failure). However, limited studies have investigated the mechanism through which peroxynitrite exerts anti-adrenergic effects. Thus, the purpose of this study is to investigate the contribution of phospholamban (PLB), a critical excitation-contraction coupling protein, to the peroxynitrite-induced dysfunction. METHODS AND RESULTS Isolated myocytes from wild-type (WT, CF-1) and PLB knockout (PLB(-/-)) mice were stimulated at 1 Hz, and myocyte shortening and Ca(2+) transients were simultaneously recorded. PLB phosphorylation was measured via western blot. Myocytes were superfused with isoproterenol, a beta-adrenergic agonist, and SIN-1, a peroxynitrite donor. SIN-1 superfusion dramatically decreased isoproterenol-stimulated Ca(2+) transients and myocyte shortening in WT myocytes. These effects were inhibited upon addition of the peroxynitrite decomposition catalyst, FeTPPS. Surprisingly, SIN-1 had no functional effect on beta-adrenergic-stimulated PLB(-/-) myocytes. Western blot analyses revealed that SIN-1 significantly decreased isoproterenol-stimulated PLB(Ser16) phosphorylation. Experiments with the protein phosphatase inhibitor, okadaic acid, alleviated the SIN-1-induced functional effects and the decrease in PLB phosphorylation. CONCLUSIONS The peroxynitrite donor SIN-1 decreases beta-adrenergic stimulation by reducing PLB(Ser16) phosphorylation via protein phosphatase activation. This peroxynitrite-induced decrease in PLB phosphorylation may be a key mechanism in the beta-adrenergic dysfunction observed in many cardiomyopathies.
Collapse
Affiliation(s)
- Mark J Kohr
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, 304 Hamilton Hall, 1645 Neil Avenue, Columbus, OH 43210, USA
| | | | | | | | | | | |
Collapse
|
47
|
Affiliation(s)
- Eiki Takimoto
- Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA
| | | |
Collapse
|