1
|
Chan JYH, Chan SHH. Differential impacts of brain stem oxidative stress and nitrosative stress on sympathetic vasomotor tone. Pharmacol Ther 2019; 201:120-136. [PMID: 31153955 DOI: 10.1016/j.pharmthera.2019.05.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 05/24/2019] [Indexed: 02/07/2023]
Abstract
Based on work-done in the rostral ventrolateral medulla (RVLM), this review presents four lessons learnt from studying the differential impacts of oxidative stress and nitrosative stress on sympathetic vasomotor tone and their clinical and therapeutic implications. The first lesson is that an increase in sympathetic vasomotor tone because of augmented oxidative stress in the RVLM is responsible for the generation of neurogenic hypertension. On the other hand, a shift from oxidative stress to nitrosative stress in the RVLM underpins the succession of increase to decrease in sympathetic vasomotor tone during the progression towards brain stem death. The second lesson is that, by having different cellular sources, regulatory mechanisms on synthesis and degradation, kinetics of chemical reactions, and downstream signaling pathways, reactive oxygen species and reactive nitrogen species should not be regarded as a singular moiety. The third lesson is that well-defined differential roles of oxidative stress and nitrosative stress with distinct regulatory mechanisms in the RVLM during neurogenic hypertension and brain stem death clearly denote that they are not interchangeable phenomena with unified cellular actions. Special attention must be paid to their beneficial or detrimental roles under a specific disease or a particular time-window of that disease. The fourth lesson is that, to be successful, future antioxidant therapies against neurogenic hypertension must take into consideration the much more complicated picture than that presented in this review on the generation, maintenance, regulation or modulation of the sympathetic vasomotor tone. The identification that the progression towards brain stem death entails a shift from oxidative stress to nitrosative stress in the RVLM may open a new vista for therapeutic intervention to slow down this transition.
Collapse
Affiliation(s)
- Julie Y H Chan
- Institute for Translational Research in Biomedicine, Chang Gung Memorial Hospital, Kaohsiung, Taiwan, Republic of China
| | - Samuel H H Chan
- Institute for Translational Research in Biomedicine, Chang Gung Memorial Hospital, Kaohsiung, Taiwan, Republic of China.
| |
Collapse
|
2
|
Becker BK, Wang H, Zucker IH. Central TrkB blockade attenuates ICV angiotensin II-hypertension and sympathetic nerve activity in male Sprague-Dawley rats. Auton Neurosci 2017; 205:77-86. [PMID: 28549782 DOI: 10.1016/j.autneu.2017.05.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 05/17/2017] [Accepted: 05/17/2017] [Indexed: 02/07/2023]
Abstract
Increased sympathetic nerve activity and the activation of the central renin-angiotensin system are commonly associated with cardiovascular disease states such as hypertension and heart failure, yet the precise mechanisms contributing to the long-term maintenance of this sympatho-excitation are incompletely understood. Due to the established physiological role of neurotrophins contributing toward neuroplasticity and neuronal excitability along with recent evidence linking the renin-angiotensin system and brain-derived neurotrophic factor (BDNF) along with its receptor (TrkB), it is likely the two systems interact to promote sympatho-excitation during cardiovascular disease. However, this interaction has not yet been fully demonstrated, in vivo. Thus, we hypothesized that central angiotensin II (Ang II) treatment will evoke a sympatho-excitatory state mediated through the actions of BDNF/TrkB. We infused Ang II (20ng/min) into the right lateral ventricle of male Sprague-Dawley rats for twelve days with or without the TrkB receptor antagonist, ANA-12 (50ng/h). We found that ICV infusion of Ang II increased mean arterial pressure (+40.4mmHg), increased renal sympathetic nerve activity (+19.4% max activity), and induced baroreflex dysfunction relative to vehicle. Co-infusion of ANA-12 attenuated the increase in blood pressure (-20.6mmHg) and prevented the increase in renal sympathetic nerve activity (-22.2% max) and baroreflex dysfunction relative to Ang II alone. Ang II increased thirst and decreased food consumption, and Ang II+ANA-12 augmented the thirst response while attenuating the decrease in food consumption. We conclude that TrkB signaling is a mediator of the long-term blood pressure and sympathetic nerve activity responses to central Ang II activity. These findings demonstrate the involvement of neurotrophins such as BDNF in promoting Ang II-induced autonomic dysfunction and further implicate TrkB signaling in modulating presympathetic autonomic neurons during cardiovascular disease.
Collapse
Affiliation(s)
- Bryan K Becker
- Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Hanjun Wang
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE, USA.; Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Irving H Zucker
- Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA..
| |
Collapse
|
3
|
Labandeira-Garcia JL, Rodríguez-Perez AI, Garrido-Gil P, Rodriguez-Pallares J, Lanciego JL, Guerra MJ. Brain Renin-Angiotensin System and Microglial Polarization: Implications for Aging and Neurodegeneration. Front Aging Neurosci 2017; 9:129. [PMID: 28515690 PMCID: PMC5413566 DOI: 10.3389/fnagi.2017.00129] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 04/18/2017] [Indexed: 12/12/2022] Open
Abstract
Microglia can transform into proinflammatory/classically activated (M1) or anti-inflammatory/alternatively activated (M2) phenotypes following environmental signals related to physiological conditions or brain lesions. An adequate transition from the M1 (proinflammatory) to M2 (immunoregulatory) phenotype is necessary to counteract brain damage. Several factors involved in microglial polarization have already been identified. However, the effects of the brain renin-angiotensin system (RAS) on microglial polarization are less known. It is well known that there is a “classical” circulating RAS; however, a second RAS (local or tissue RAS) has been observed in many tissues, including brain. The locally formed angiotensin is involved in local pathological changes of these tissues and modulates immune cells, which are equipped with all the components of the RAS. There are also recent data showing that brain RAS plays a major role in microglial polarization. Level of microglial NADPH-oxidase (Nox) activation is a major regulator of the shift between M1/proinflammatory and M2/immunoregulatory microglial phenotypes so that Nox activation promotes the proinflammatory and inhibits the immunoregulatory phenotype. Angiotensin II (Ang II), via its type 1 receptor (AT1), is a major activator of the NADPH-oxidase complex, leading to pro-oxidative and pro-inflammatory effects. However, these effects are counteracted by a RAS opposite arm constituted by Angiotensin II/AT2 receptor signaling and Angiotensin 1–7/Mas receptor (MasR) signaling. In addition, activation of prorenin-renin receptors may contribute to activation of the proinflammatory phenotype. Aged brains showed upregulation of AT1 and downregulation of AT2 receptor expression, which may contribute to a pro-oxidative pro-inflammatory state and the increase in neuron vulnerability. Several recent studies have shown interactions between the brain RAS and different factors involved in microglial polarization, such as estrogens, Rho kinase (ROCK), insulin-like growth factor-1 (IGF-1), tumor necrosis factor α (TNF)-α, iron, peroxisome proliferator-activated receptor gamma, and toll-like receptors (TLRs). Metabolic reprogramming has recently been involved in the regulation of the neuroinflammatory response. Interestingly, we have recently observed a mitochondrial RAS, which is altered in aged brains. In conclusion, dysregulation of brain RAS plays a major role in aging-related changes and neurodegeneration by exacerbation of oxidative
stress (OS) and neuroinflammation, which may be attenuated by pharmacological manipulation of RAS components.
Collapse
Affiliation(s)
- Jose L Labandeira-Garcia
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de CompostelaSantiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED)Madrid, Spain
| | - Ana I Rodríguez-Perez
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de CompostelaSantiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED)Madrid, Spain
| | - Pablo Garrido-Gil
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de CompostelaSantiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED)Madrid, Spain
| | - Jannette Rodriguez-Pallares
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de CompostelaSantiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED)Madrid, Spain
| | - Jose L Lanciego
- Networking Research Center on Neurodegenerative Diseases (CIBERNED)Madrid, Spain.,Neurosciences Division, Center for Applied Medical Research (CIMA), University of NavarraPamplona, Spain
| | - Maria J Guerra
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de CompostelaSantiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED)Madrid, Spain
| |
Collapse
|
4
|
Tsai CY, Su CH, Chan JYH, Chan SHH. Nitrosative Stress-Induced Disruption of Baroreflex Neural Circuits in a Rat Model of Hepatic Encephalopathy: A DTI Study. Sci Rep 2017; 7:40111. [PMID: 28079146 PMCID: PMC5228038 DOI: 10.1038/srep40111] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 12/02/2016] [Indexed: 12/11/2022] Open
Abstract
The onset of hepatic encephalopathy (HE) in liver failure is associated with high mortality; the underlying mechanism is undecided. Here we report that in an acute liver failure model employing intraperitoneal administration of thioacetamide in Sprague-Dawley rats, diffusion weighted imaging revealed a progressive reduction in apparent diffusion coefficient in the brain stem. Diffusion tensor imaging further showed that the connectivity between nucleus tractus solitarii (NTS), the terminal site of baroreceptor afferents in brain stem and rostral ventrolateral medulla (RVLM), the origin of sympathetic innervation of blood vessels, was progressively disrupted until its disappearance, coincidental with the irreversible cessation of baroreflex-mediated sympathetic vasomotor tone signifying clinically the occurrence of brain death. In addition, superoxide, nitric oxide, peroxynitrite and ammonia levels in the NTS or RVLM were elevated, alongside swelling of astroctytes. A scavenger of peroxynitrite, but not an antioxidant, delivered intracisternally reversed all these events. We conclude that nitrosative stress because of augmented peroxynitrite related to accumulation of ammonia and swelling of astrocytes in the NTS or RVLM, leading to cytotoxic edema in the brain stem and severance of the NTS-RVLM connectivity, underpins the defunct baroreflex-mediated sympathetic vasomotor tone that accounts for the high mortality associated with HE.
Collapse
Affiliation(s)
- Ching-Yi Tsai
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan, Republic of China
| | - Chia-Hao Su
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan, Republic of China
| | - Julie Y H Chan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan, Republic of China
| | - Samuel H H Chan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan, Republic of China
| |
Collapse
|
5
|
Su CH, Tsai CY, Chang AY, Chan JY, Chan SH. MRI/DTI of the Brain Stem Reveals Reversible and Irreversible Disruption of the Baroreflex Neural Circuits: Clinical Implications. Theranostics 2016; 6:837-48. [PMID: 27162554 PMCID: PMC4860892 DOI: 10.7150/thno.14837] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 03/06/2016] [Indexed: 01/29/2023] Open
Abstract
Baroreflex is the physiological mechanism for the maintenance of blood pressure and heart rate. Impairment of baroreflex is not a disease per se. However, depending on severity, the eventuality of baroreflex dysfunction varies from inconvenience in daily existence to curtailment of mobility to death. Despite universal acceptance, neuronal traffic within the contemporary neural circuits during the execution of baroreflex has never been visualized. By enhancing signal detection and fine-tuning the scanning parameters, we have successfully implemented tractographic analysis of the medulla oblongata in mice that allowed for visualization of connectivity between key brain stem nuclei in the baroreflex circuits. When viewed in conjunction with radiotelemetric analysis of the baroreflex, we found that under pathophysiological conditions when the disrupted connectivity between key nuclei in the baroreflex circuits was reversible, the associated disease condition (e.g. neurogenic hypertension) was amenable to remedial measures. Nevertheless, fatality ensues under pathological conditions (e.g. hepatic encephalopathy) when the connectivity between key substrates in the baroreflex circuits was irreversibly severed. MRI/DTI also prompted partial re-wiring of the contemporary circuit for baroreflex-mediated sympathetic vasomotor tone, and unearthed an explanation for the time lapse between brain death and the inevitable asystole signifying cardiac death that follows.
Collapse
Affiliation(s)
- Chia-Hao Su
- 1. Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan, Republic of China
| | - Ching-Yi Tsai
- 1. Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan, Republic of China
| | - Alice Y.W. Chang
- 2. Institute of Physiology, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Julie Y.H. Chan
- 1. Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan, Republic of China
| | - Samuel H.H. Chan
- 1. Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan, Republic of China
| |
Collapse
|
6
|
Sanchez R, Mercau ME, Repetto EM, Martinez Calejman C, Astort F, Perez MN, Arias P, Cymeryng CB. Crosstalk between nitric oxide synthases and cyclooxygenase 2 in the adrenal cortex of rats under lipopolysaccharide treatment. Endocrine 2014; 46:659-67. [PMID: 24272593 DOI: 10.1007/s12020-013-0104-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 10/26/2013] [Indexed: 01/22/2023]
Abstract
The effect of lipopolysaccharide on the modulation of steroid production by adrenal cells has been recently acknowledged. The purpose of this study was to determine the in vivo effects of LPS on adrenal cyclooxygenase 2 (COX-2) expression, analyze its crosstalk with the nitric oxide synthase (NOS) system, and assess its involvement on the modulation of glucocorticoid production. Male Wistar rats were injected with LPS and with specific inhibitors for NOS and COX activities. PGE2 and corticosterone levels were determined by RIA. Protein levels were analyzed by immunoprecipitation and western blotting. Transfection assays were performed in murine adrenocortical Y1 cells. Results show that LPS treatment increases PGE2 production and COX-2 protein levels in the rat adrenal cortex. Systemic inhibition of COX-2 blunted the glucocorticoid response to ACTH, as well as the increase in NOS activity and the NOS-2 expression levels induced by LPS. Conversely, NOS inhibition prevented the LPS-dependent increase in PGE2 production, COX-2 protein levels, and the nitrotyrosine modification of COX-2 protein. Treatment of adrenocortical cells with a NO-donor significantly potentiated the LPS-dependent increase in NFκB activity and COX-2 expression levels. In conclusion, our results show a significant crosstalk between COX-2 and NOS in the adrenal cortex upon LPS stimulation, in which each activity has a positive impact on the other. In particular, as both the activities differently affect adrenal steroid production, we hypothesize that this kind of fine modulation enables the gland to adjust steroidogenesis to prevent either an excessive or an insufficient response to the endotoxin challenge.
Collapse
Affiliation(s)
- Rocío Sanchez
- Departamento de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires-CEFYBO-CONICET, Paraguay 2155 5º, CP ABG1121, Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Augmented renal prostacyclin by intrarenal bicistronic cyclo-oxygenase-1/prostacyclin synthase gene transfer attenuates renal ischemia-reperfusion injury. Transplantation 2014; 96:1043-51. [PMID: 24092384 DOI: 10.1097/tp.0b013e3182a77e52] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND We elucidated the protective mechanism of increased prostacyclin (PGI2) derived from adenoviral cyclo-oxygenase (COX)-1/prostacyclin synthase (PGIS) (Adv-COPI) gene transfer in rat kidneys with ischemia-reperfusion (I/R) injury. METHODS We tended to augment PGI2 production by intrarenal arterial Adv-COPI administration with renal venous clamping in female Wistar rats. After Adv-COPI transfection, we evaluated the renal COX-1 and PGIS protein expression and PGI2 and prostaglandin E2 (PGE2) levels in the kidney and renal venous plasma. We evaluated the protective effect of PGI2 on hypoxia/reoxygenation-induced tubular cells injury or I/R kidneys by measuring oxidative stress, necrosis, apoptosis, and autophagy in tubules and kidneys and determining renal function, microcirculation, and accumulation of tubular 4-hydroxynonenal in the kidney in vivo. RESULTS Adv-COPI treatment selectively augmented COX-1 and PGIS protein expression in the renal proximal and distal tubules and significantly increased PGI2, not PGE2, production in the renal venous plasma and kidney at the baseline level. I/R markedly depressed renal blood flow and increased the production in O2, PGE2, the expression in P47 and Rac-1 expression of two nicotinamide adenine dinucleotide phosphate oxidase subunits, cytosolic cytochrome C release, proapoptotic marker lamin expression, the pathologic appearance of necrosis, apoptosis, and autophagy, and blood urea nitrogen and creatinine levels in the damaged kidneys. Adv-COPI protected distal and proximal tubules against hypoxia/reoxygenation-enhanced oxidative stress and autophagic, apoptotic, and necrotic cell death. Adv-COPI significantly improved renal function by restoring renal blood flow, reducing nicotinamide adenine dinucleotide phosphate oxidase-derived and mitochondria-derived oxidative stress, and necrosis, apoptosis, and autophagy. CONCLUSIONS Increased PGI2 by Adv-COPI protects the kidney against I/R-induced oxidative stress, necrosis, apoptosis and autophagy.
Collapse
|
8
|
Aging-related dysregulation of dopamine and angiotensin receptor interaction. Neurobiol Aging 2014; 35:1726-38. [PMID: 24529758 DOI: 10.1016/j.neurobiolaging.2014.01.017] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 01/10/2014] [Accepted: 01/13/2014] [Indexed: 12/22/2022]
Abstract
It is not known whether the aging-related decrease in dopaminergic function leads to the aging-related higher vulnerability of dopaminergic neurons and risk for Parkinson's disease. The renin-angiotensin system (RAS) plays a major role in the inflammatory response, neuronal oxidative stress, and dopaminergic vulnerability via type 1 (AT1) receptors. In the present study, we observed a counterregulatory interaction between dopamine and angiotensin receptors. We observed overexpression of AT1 receptors in the striatum and substantia nigra of young adult dopamine D1 and D2 receptor-deficient mice and young dopamine-depleted rats, together with compensatory overexpression of AT2 receptors or compensatory downregulation of angiotensinogen and/or angiotensin. In aged rats, we observed downregulation of dopamine and dopamine receptors and overexpression of AT1 receptors in aged rats, without compensatory changes observed in young animals. L-Dopa therapy inhibited RAS overactivity in young dopamine-depleted rats, but was ineffective in aged rats. The results suggest that dopamine may play an important role in modulating oxidative stress and inflammation in the substantia nigra and striatum via the RAS, which is impaired by aging.
Collapse
|
9
|
Chan SHH, Chan JYH. Brain stem oxidative stress and its associated signaling in the regulation of sympathetic vasomotor tone. J Appl Physiol (1985) 2012; 113:1921-8. [PMID: 22837172 DOI: 10.1152/japplphysiol.00610.2012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
There is now compelling evidence from studies in humans and animals that overexcitation of the sympathetic nervous system plays an important role in the pathogenesis of cardiovascular diseases. An excellent example is neurogenic hypertension, in which central sympathetic overactivation is involved in the development, staging, and progression of the disease, and one of the underlying mechanisms involves oxidative stress in key brain stem sites that are engaged in the regulation of sympathetic vasomotor tone. Using the rostral ventrolateral medulla (RVLM) and nucleus tractus solitarii (NTS) as two illustrative brain stem neural substrates, this article provides an overview of the impact of reactive oxygen species and antioxidants on RVLM and NTS in the pathogenesis of neurogenic hypertension. This is followed by a discussion of the redox-sensitive signaling pathways, including several kinases, ion channels, and transcription factors that underpin the augmentation in sympathetic vasomotor tone. In addition, the emerging view that brain stem oxidative stress is also causally related to a reduction in sympathetic vasomotor tone and hypotension during brain stem death, methamphetamine intoxication, and temporal lobe status epilepticus will be presented, along with the causal contribution of the oxidant peroxynitrite formed by a reaction between nitric oxide synthase II (NOS II)-derived nitric oxide and superoxide. Also discussed as a reasonable future research direction is dissection of the cellular mechanisms and signaling cascades that may underlie the contributory role of nitric oxide generated by different NOS isoforms in the differential effects of oxidative stress in the RVLM or NTS on sympathetic vasomotor tone.
Collapse
Affiliation(s)
- Samuel H H Chan
- Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan, Republic of China
| | | |
Collapse
|
10
|
Abstract
This study investigated the neuroprotective effects of coenzyme Q10 (CoQ10) against oxidative stress induced by kainic acid (KA) in organotypic hippocampal slice culture of rats. Cultured slices were injured by exposure to 5 µM of KA for 18 h and then treated with different concentrations of CoQ10. Neuronal cell death measured as propidium iodide uptake was reduced at 24 h after treatment with 1 µM of CoQ10. We also observed an increased number of surviving CA3 neurons in 0.1 and 1 µM concentrations of CoQ10-treated groups using cresyl violet staining. CoQ10 (0.01, 0.1, and 1 µM) treatment significantly decreased the 2',7'-dichlorofluorescein fluorescence and the expression of NQO1 in the CoQ10-treated groups was significantly lower than that in the KA-only group. These results suggest that CoQ10 may protect hippocampal neurons against oxidative stress.
Collapse
|
11
|
Lopes-Pires ME, Casarin AL, Pereira-Cunha FG, Lorand-Metze I, Antunes E, Marcondes S. Lipopolysaccharide treatment reduces rat platelet aggregation independent of intracellular reactive-oxygen species generation. Platelets 2011; 23:195-201. [PMID: 21806496 DOI: 10.3109/09537104.2011.603065] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
High production of reactive-oxygen species (ROS) by blood cells is involved in damage of the vascular endothelium and multiple organ dysfunction in sepsis. However, little is known about the intraplatelet ROS production in sepsis and its consequences on platelet reactivity. In this study, we evaluated whether the treatment of rats with lipopolysaccharide (LPS) affects platelet aggregation through intraplatelet ROS generation. Rats were injected with LPS (1 mg/kg, i.p.), and at 2 to 72 h thereafter, adenosine diphosphate (ADP) (3-10 µM) induced platelet aggregation was evaluated. Production of ROS in platelets was measured by flow cytometry using 2',7'-dichlorofluorescein diacetate (DCFH-DA). Treatment of rats with LPS time-dependently inhibited ADP-induced platelet aggregation within 72 h. The inhibitory effect of LPS on platelet aggregation was further increased when the platelets were incubated with polyethylene glycol-superoxide dismutase (PEG-SOD; 30 U/mL), polyethylene glycol-catalase (PEG-CAT; 1000 U/mL) or the NADPH oxidase inhibitor diphenyleneiodonium (DPI; 10 µM). The ROS production in non-stimulated platelets did not differ between control and LPS-treated rats. However, in ADP-activated platelets, generation of ROS was increased by 3.0- and 7.0-fold, as evaluated at 8 and 48 h after LPS injection, respectively. This increased ROS production was significantly reduced when platelets were incubated in vitro with DPI, PEG-SOD or PEG-CAT. In contrast, treatment of rats with N-acetylcysteine (150 mg/kg, i.p.) significantly reduced the inhibitory effect of LPS on platelet aggregation, and prevented the increased ROS production by in vivo LPS. Our results indicate that the increased intraplatelet ROS production does not contribute to the inhibitory effect of LPS on platelet aggregation; however, the maintenance of redox balance in LPS-treated rats is fundamental to restore the normal platelet response in these animals.
Collapse
Affiliation(s)
- M Elisa Lopes-Pires
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas, Campinas (SP), Brazil
| | | | | | | | | | | |
Collapse
|
12
|
Parga JA, Rodríguez-Pallares J, Joglar B, Diaz-Ruiz C, Guerra MJ, Labandeira-Garcia JL. Effect of inhibitors of NADPH oxidase complex and mitochondrial ATP-sensitive potassium channels on generation of dopaminergic neurons from neurospheres of mesencephalic precursors. Dev Dyn 2011; 239:3247-59. [PMID: 21046630 DOI: 10.1002/dvdy.22474] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Reactive oxygen species signaling has been suggested to regulate stem cell development. In the present study, we treated neurospheres of rat mesencephalic precursors with inhibitors of the NADPH oxidase complex and mitochondrial ATP-sensitive potassium (mitoKATP) channel blockers during the proliferation and/or the differentiation periods to study the effects on generation of dopaminergic neurons. Treatment with low doses (100 or 250 μM) of the NADPH inhibitor apocynin during the proliferation period increased the generation of dopaminergic neurons. However, higher doses (1 mM) were necessary during the differentiation period to induce the same effect. Treatment with general (glibenclamide) or mitochondrial (5-hydroxydecanoate) KATP channel blockers during the proliferation and differentiation periods increased the number of dopaminergic neurons. Furthermore, neither increased proliferation rate nor apoptosis had a major role in the observed increase in generation of dopaminergic neurons, which suggests that the redox state is able to regulate differentiation of precursors into dopaminergic neurons.
Collapse
Affiliation(s)
- J A Parga
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, University of Santiago de Compostela, Santiago de Compostela, Spain
| | | | | | | | | | | |
Collapse
|
13
|
Sympathoinhibition induced by centrally administered atorvastatin is associated with alteration of NAD(P)H and Mn superoxide dismutase activity in rostral ventrolateral medulla of stroke-prone spontaneously hypertensive rats. J Cardiovasc Pharmacol 2010; 55:184-90. [PMID: 20040888 DOI: 10.1097/fjc.0b013e3181ce9681] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Oxidative stress in the rostral ventrolateral medulla (RVLM) increases sympathetic nervous system activity (SNA). Oral treatment with atorvastatin decreases SNA through antioxidant effects in the RVLM of stroke-prone spontaneously hypertensive rats (SHRSP). We aimed to examine whether centrally administered atorvastain reduces SNA in SHRSP and, if so, to determine whether it is associated with the reduction of oxidative stress induced by alteration of activities of nicotinamide adenine dinucleotide phosphate [NAD(P)H] oxidase and superoxide dismutase (SOD) in the RVLM of SHRSP. SHRSP received atorvastatin (S-ATOR) or vehicle (S-VEH) by continuous intracerebroventricular infusion for 14 days. Mean blood pressure, heart rate, and SNA were significantly lower in S-ATOR than in S-VEH. Oxidative stress, Rac1 activity, NAD(P)H oxidase activity, Rac1, gp91(phox) and p22(phox) expression in the membrane fraction, and p47(phox) and p40(phox) expression in the cytosolic fraction in the RVLM were significantly lower in S-ATOR than in S-VEH. Rac1 expression in the cytosolic fraction and Mn-SOD activity, however, were significantly higher in S-ATOR than in S-VEH. Our findings suggest that centrally administered atorvastatin decreases SNA and is associated with decreasing NAD(P)H oxidase activity and upregulation of Mn-SOD activity in the RVLM of SHRSP, leading to suppressing oxidative stress.
Collapse
|
14
|
Wu KLH, Hsu C, Chan JYH. Nitric oxide and superoxide anion differentially activate poly(ADP-ribose) polymerase-1 and Bax to induce nuclear translocation of apoptosis-inducing factor and mitochondrial release of cytochrome c after spinal cord injury. J Neurotrauma 2010; 26:965-77. [PMID: 19473058 DOI: 10.1089/neu.2008.0692] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
We reported previously that complete spinal cord transection (SCT) results in depression of mitochondrial respiratory chain enzyme activity that triggers apoptosis via sequential activations of apoptosis-inducing factor (AIF)- and caspase-dependent cascades in the injured spinal cord. This study tested the hypothesis that nitric oxide (NO) and superoxide anion (O(2)(.-)) serve as the interposing signals between SCT and impaired mitochondrial respiratory functions. Adult Sprague-Dawley rats manifested a significant increase in NO or O(2)(.-) level in the injured spinal cord during the first 3 days after SCT. The augmented O(2)(.-) production, along with concomitant reduction in mitochondrial respiratory chain enzyme activity or ATP level, nuclear translocation of AIF, cytosolic release of cytochrome c, and DNA fragmentation were reversed by osmotic minipump infusion of a NO trapping agent, carboxy-PTIO, or a superoxide dismutase mimetic, tempol, into the epicenter of the transected spinal cord. Intriguingly, carboxy-PTIO significantly suppressed upregulation of poly(ADP-ribose) polymerase-1 (PARP-1) in the nucleus, attenuated nuclear translocation of AIF, inhibited mitochondrial translocation of Bax and antagonized mitochondrial release of cytochrome c; whereas tempol only inhibited the later two cellular events after SCT. We conclude that overproduction of NO and O(2)(.-) in the injured spinal cord promulgates mitochondrial dysfunction and triggers AIF- and caspase-dependent apoptotic signaling cascades via differential upregulation of nuclear PARP-1 and mitochondrial translocation of Bax.
Collapse
Affiliation(s)
- Kay L H Wu
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, Republic of China
| | | | | |
Collapse
|
15
|
Chang AYW, Chan JYH, Chuang YC, Chan SHH. Brain stem death as the vital determinant for resumption of spontaneous circulation after cardiac arrest in rats. PLoS One 2009; 4:e7744. [PMID: 19888468 PMCID: PMC2766834 DOI: 10.1371/journal.pone.0007744] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Accepted: 10/05/2009] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Spontaneous circulation returns to less than half of adult cardiac arrest victims who received in-hospital resuscitation. One clue for this disheartening outcome arises from the prognosis that asystole invariably takes place, after a time lag, on diagnosis of brain stem death. The designation of brain stem death as the point of no return further suggests that permanent impairment of the brain stem cardiovascular regulatory machinery precedes death. It follows that a crucial determinant for successful revival of an arrested heart is that spontaneous circulation must resume before brain stem death commences. Here, we evaluated the hypothesis that maintained functional integrity of the rostral ventrolateral medulla (RVLM), a neural substrate that is intimately related to brain stem death and central circulatory regulation, holds the key to the vital time-window between cardiac arrest and resumption of spontaneous circulation. METHODOLOGY/PRINCIPAL FINDINGS An animal model of brain stem death employing the pesticide mevinphos as the experimental insult in Sprague-Dawley rats was used. Intravenous administration of lethal doses of mevinphos elicited an abrupt cardiac arrest, accompanied by elevated systemic arterial pressure and anoxia, augmented neuronal excitability and enhanced microvascular perfusion in RVLM. This period represents the vital time-window between cardiac arrest and resumption of spontaneous circulation in our experimental model. Animals with restored spontaneous circulation exhibited maintained neuronal functionality in RVLM beyond this critical time-window, alongside resumption of baseline tissue oxygen and enhancement of local blood flow. Intriguingly, animals that subsequently died manifested sustained anoxia, diminished local blood flow, depressed mitochondrial electron transport activities and reduced ATP production, leading to necrotic cell death in RVLM. That amelioration of mitochondrial dysfunction and bioenergetic failure in RVLM by coenzyme Q10, the mobile electron carrier in mitochondrial respiratory chain, or oxygenation restored spontaneous circulation further established a causal relationship between functionality of RVLM and resumed spontaneous circulation after cardiac arrest. CONCLUSIONS/SIGNIFICANCE We conclude that whereas necrotic cell death because of bioenergetic failure triggered by anoxia in RVLM, which precipitates brain stem death, negates resuscitation of an arrested heart, maintained functional integrity of this neural substrate holds the key to resumption of spontaneous circulation after cardiac arrest in rats.
Collapse
Affiliation(s)
- Alice Y. W. Chang
- Center for Translational Research in Biomedical Sciences, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Kaohsiung County, Taiwan, Republic of China
- Center for Neuroscience, National Sun Yat-sen University, Kaohsiung, Taiwan, Republic of China
- * E-mail: (AYWC); (SHHC)
| | - Julie Y. H. Chan
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, Republic of China
| | - Yao-Chung Chuang
- Center for Translational Research in Biomedical Sciences, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Kaohsiung County, Taiwan, Republic of China
- Department of Neurology, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung County, Taiwan, Republic of China
| | - Samuel H. H. Chan
- Center for Translational Research in Biomedical Sciences, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Kaohsiung County, Taiwan, Republic of China
- Center for Neuroscience, National Sun Yat-sen University, Kaohsiung, Taiwan, Republic of China
- * E-mail: (AYWC); (SHHC)
| |
Collapse
|
16
|
Chan SH, Wu KL, Chang AY, Tai MH, Chan JY. Oxidative Impairment of Mitochondrial Electron Transport Chain Complexes in Rostral Ventrolateral Medulla Contributes to Neurogenic Hypertension. Hypertension 2009; 53:217-27. [PMID: 19114648 DOI: 10.1161/hypertensionaha.108.116905] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The role for mitochondrial electron transport chain (ETC) in neurogenic hypertension is unidentified. We evaluated the hypothesis that feedforward depression of mitochondrial ETC functions by superoxide anion (O
2
·−
) and hydrogen peroxide (H
2
O
2
) in rostral ventrolateral medulla (RVLM), a brain stem site that maintains sympathetic vasomotor tone and contributes to oxidative stress and neural mechanism of hypertension. Compared with normotensive Wistar-Kyoto rats, spontaneously hypertensive rats exhibited mitochondrial ETC dysfunctions in RVLM in the forms of depressed complex I or III activity and reduced electron coupling capacity between complexes I and III or II and III. Microinjection of coenzyme Q
10
into RVLM of spontaneously hypertensive rats reversed the depressed ETC activity and augmented O
2
·−
production and hypertensive phenotypes. This mobile electron carrier also antagonized the elevated H
2
O
2
in RVLM and vasopressor responses to complex I (rotenone) or III (antimycin A) inhibitor in Wistar-Kyoto or prehypertensive rats. Intracerebroventricular infusion of angiotensin II promoted mitochondrial ETC dysfunctions in Wistar-Kyoto rats, and coenzyme Q
10
or gene knockdown of the p22
phox
subunit of NADPH oxidase antagonized the resultant elevation of H
2
O
2
in RVLM. Overexpression of superoxide dismutase or catalase in RVLM of spontaneously hypertensive rats by gene transfer reversed mitochondrial dysfunctions and blunted the augmented O
2
·−
and H
2
O
2
in RVLM. We conclude that O
2
·−
- and H
2
O
2
-dependent feedforward impairment of mitochondrial ETC complexes because of predisposed downregulation of superoxide dismutase or catalase and a cross-talk between NADPH oxidase-derived O
2
·−
and ETC enzymes contribute to chronic oxidative stress in the RVLM of spontaneously hypertensive rats, leading to augmented sympathetic vasomotor tone and hypertension.
Collapse
Affiliation(s)
- Samuel H.H. Chan
- From the Center for Translational Research in Biomedical Sciences, Chang Gung Memorial Hospital-Kaohsiung Medical Center (S.H.H.C., A.Y.W.C.), and Department of Medical Education and Research, Kaohsiung Veterans General Hospital (K.L.H.W., M.H.T., J.Y.H.C.), Kaohsiung, Taiwan, Republic of China
| | - Kay L.H. Wu
- From the Center for Translational Research in Biomedical Sciences, Chang Gung Memorial Hospital-Kaohsiung Medical Center (S.H.H.C., A.Y.W.C.), and Department of Medical Education and Research, Kaohsiung Veterans General Hospital (K.L.H.W., M.H.T., J.Y.H.C.), Kaohsiung, Taiwan, Republic of China
| | - Alice Y.W. Chang
- From the Center for Translational Research in Biomedical Sciences, Chang Gung Memorial Hospital-Kaohsiung Medical Center (S.H.H.C., A.Y.W.C.), and Department of Medical Education and Research, Kaohsiung Veterans General Hospital (K.L.H.W., M.H.T., J.Y.H.C.), Kaohsiung, Taiwan, Republic of China
| | - Ming-Hon Tai
- From the Center for Translational Research in Biomedical Sciences, Chang Gung Memorial Hospital-Kaohsiung Medical Center (S.H.H.C., A.Y.W.C.), and Department of Medical Education and Research, Kaohsiung Veterans General Hospital (K.L.H.W., M.H.T., J.Y.H.C.), Kaohsiung, Taiwan, Republic of China
| | - Julie Y.H. Chan
- From the Center for Translational Research in Biomedical Sciences, Chang Gung Memorial Hospital-Kaohsiung Medical Center (S.H.H.C., A.Y.W.C.), and Department of Medical Education and Research, Kaohsiung Veterans General Hospital (K.L.H.W., M.H.T., J.Y.H.C.), Kaohsiung, Taiwan, Republic of China
| |
Collapse
|
17
|
Chuang YC, Chen SD, Liou CW, Lin TK, Chang WN, Chan SHH, Chang AYW. Contribution of nitric oxide, superoxide anion, and peroxynitrite to activation of mitochondrial apoptotic signaling in hippocampal CA3 subfield following experimental temporal lobe status epilepticus. Epilepsia 2008; 50:731-46. [PMID: 19178557 DOI: 10.1111/j.1528-1167.2008.01778.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
PURPOSE One cellular consequence of status epilepticus is apoptosis in the hippocampal CA3 subfield. We evaluated the hypothesis that the repertoire of cellular events that underlie such elicited cell death entails mitochondrial dysfunction induced by an excessive production of nitric oxide synthase II (NOS II)-derived NO, increased superoxide anion (O(2)(-)) production, and peroxynitrite formation. METHODS In Sprague-Dawley rats, kainic acid was microinjected unilaterally into the hippocampal CA3 subfield to induce bilateral seizure-like electroencephalography (EEG) activity. The effects of pretreatments with various test agents on the induced O(2)(-) production, peroxynitrite formation, mitochondrial respiratory chain enzyme activities, cytochrome c/caspase-3 signaling, and DNA fragmentation in bilateral CA3 subfields were examined. RESULTS Significantly and temporally correlated increase in O(2)(-) and peroxynitrite levels (3 to 24 h), depressed mitochondrial Complex I activity (3 h), enhanced translocation of cytochrome c to cytosol (day 1), and augmented activated caspase-3 (day 7) and DNA fragmentation (day 7) were detected bilaterally in hippocampal CA3 subfields after the elicitation of sustained seizure. Pretreatment with microinjection into the bilateral hippocampal CA3 subfield of a water-soluble formulation of coenzyme Q(10); a selective NOS II inhibitor, S-methylisothiourea; a superoxide dismutase mimetic, 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl; an active peroxynitrite decomposition catalyst, 5,10, 15,20-tetrakis-(N-methyl-4-pyridyl)- porphyrinato iron (III); or a peroxynitrite scavenger, L-cysteine significantly blunted these cellular events. DISCUSSION Prolonged seizures prompted NO-, O(2)(-)-, and peroxynitrite-dependent reduction in mitochondrial respiratory enzyme Complex I activity, leading to cytochrome c/caspase-3-dependent apoptotic cell death in the hippocampal CA3 subfield after induction of experimental temporal lobe status epilepticus.
Collapse
Affiliation(s)
- Yao-Chung Chuang
- Department of Neurology, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Chang Gung University College of Medicine, Taiwan, Republic of China
| | | | | | | | | | | | | |
Collapse
|