1
|
Kar S, Kambis TN, Mishra PK. Hydrogen sulfide-mediated regulation of cell death signaling ameliorates adverse cardiac remodeling and diabetic cardiomyopathy. Am J Physiol Heart Circ Physiol 2019; 316:H1237-H1252. [PMID: 30925069 PMCID: PMC6620689 DOI: 10.1152/ajpheart.00004.2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/18/2019] [Accepted: 03/28/2019] [Indexed: 02/07/2023]
Abstract
The death of cardiomyocytes is a precursor for the cascade of hypertrophic and fibrotic remodeling that leads to cardiomyopathy. In diabetes mellitus (DM), the metabolic environment of hyperglycemia, hyperlipidemia, and oxidative stress causes cardiomyocyte cell death, leading to diabetic cardiomyopathy (DMCM), an independent cause of heart failure. Understanding the roles of the cell death signaling pathways involved in the development of cardiomyopathies is crucial to the discovery of novel targeted therapeutics and biomarkers for DMCM. Recent evidence suggests that hydrogen sulfide (H2S), an endogenous gaseous molecule, has cardioprotective effects against cell death. However, very little is known about signaling by which H2S and its downstream targets regulate myocardial cell death in the DM heart. This review focuses on H2S in the signaling of apoptotic, autophagic, necroptotic, and pyroptotic cell death in DMCM and other cardiomyopathies, abnormalities in H2S synthesis in DM, and potential H2S-based therapeutic strategies to mitigate myocardial cell death to ameliorate DMCM.
Collapse
Affiliation(s)
- Sumit Kar
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center , Omaha, Nebraska
| | - Tyler N Kambis
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center , Omaha, Nebraska
| | - Paras K Mishra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center , Omaha, Nebraska
- Department of Anesthesiology, University of Nebraska Medical Center , Omaha, Nebraska
| |
Collapse
|
2
|
Jung H, Choi EK, Baek SI, Cho C, Jin Y, Kwak KH, Jeon Y, Park SS, Kim S, Lim DG. The Effect of Nitric Oxide on Remote Ischemic Preconditioning in Renal Ischemia Reperfusion Injury in Rats. Dose Response 2019; 17:1559325819853651. [PMID: 31191188 PMCID: PMC6542129 DOI: 10.1177/1559325819853651] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 12/12/2022] Open
Abstract
Although remote ischemic preconditioning (RIPC) is an organ-protective maneuver from subsequent ischemia reperfusion injury (IRI) by application of brief ischemia and reperfusion to other organs, its mechanism remains unclear. However, it is known that RIPC reduces the heart, brain, and liver IRI, and that nitric oxide (NO) is involved in the mechanism of this effect. To identify the role of NO in the protective effect of RIPC in renal IRI, this study examined renal function, oxidative status, and histopathological changes using N-nitro-L-arginine methyl ester (L-NAME), an NO synthase inhibitor. Remote ischemic preconditioning was produced by 3 cycles of 5 minutes ischemia and 5 minutes reperfusion. Blood urea nitrogen, creatinine (Cr), and renal tissue malondialdehyde levels were lower, histopathological damage was less severe, and superoxide dismutase level was higher in the RIPC + IRI group than in the IRI group. The renoprotective effect was reversed by L-NAME. Obtained results suggest that RIPC before renal IRI contributes to improvement of renal function, increases antioxidative marker levels, and decreases oxidative stress marker levels and histopathological damage. Moreover, NO is likely to play an important role in this protective effect of RIPC on renal IRI.
Collapse
Affiliation(s)
- Hoon Jung
- Department of Anesthesiology and Pain Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Eun Kyung Choi
- Department of Anesthesiology and Pain Medicine, Yeungnam University College of Medicine, Daegu, Republic of Korea
| | - Seung Ik Baek
- Department of Anesthesiology and Pain Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Changhee Cho
- Department of Anesthesiology and Pain Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Yehun Jin
- Department of Anesthesiology and Pain Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Kyung Hwa Kwak
- Department of Anesthesiology and Pain Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Younghoon Jeon
- Department of Anesthesiology and Pain Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Sung-Sik Park
- Department of Anesthesiology and Pain Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Sioh Kim
- Department of Anesthesiology and Pain Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Dong Gun Lim
- Department of Anesthesiology and Pain Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
3
|
Demeter-Haludka V, Kovács M, Petrus A, Patai R, Muntean DM, Siklós L, Végh Á. Examination of the Role of Mitochondrial Morphology and Function in the Cardioprotective Effect of Sodium Nitrite Administered 24 h Before Ischemia/Reperfusion Injury. Front Pharmacol 2018; 9:286. [PMID: 29643809 PMCID: PMC5882827 DOI: 10.3389/fphar.2018.00286] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 03/13/2018] [Indexed: 11/13/2022] Open
Abstract
Background: We have previous evidence that in anesthetized dogs the inorganic sodium nitrite protects against the severe ventricular arrhythmias, resulting from coronary artery occlusion and reperfusion, when administered 24 h before. The present study aimed to examine, whether in this effect changes in mitochondrial morphology and function would play a role. Methods: Thirty dogs were infused intravenously either with saline (n = 15) or sodium nitrite (0.2 μmol/kg/min; n = 15) for 20 min, and 24 h later, 10 dogs from each group were subjected to a 25 min period of occlusion and then reperfusion of the left anterior descending coronary artery. The severity of ischaemia and ventricular arrhythmias were examined in situ. Left ventricular tissue samples were collected either before the occlusion (5 saline and 5 nitrite treated dogs) or, in dogs subjected to occlusion, 2 min after reperfusion. Changes in mitochondrial morphology, in complex I and complex II-dependent oxidative phosphorylation (OXPHOS), in ATP, superoxide, and peroxynitrite productions were determined. Results: The administration of sodium nitrite 24 h before ischemia/reperfusion significantly attenuated the severity of ischaemia, and markedly reduced the number and incidence of ventricular arrhythmias. Nitrite also attenuated the ischaemia and reperfusion (I/R)-induced structural alterations, such as reductions in mitochondrial area, perimeter, and Feret diameter, as well as the increase in mitochondrial roundness. The administration of nitrite, however, enhanced the I/R-induced reduction in the mitochondrial respiratory parameters; compared to the controls, 24 h after the infusion of nitrite, there were further significant decreases, e.g., in the complex I-dependent OXPHOS (by -20 vs. -53%), respiratory control ratio (by -14 vs. -61%) and in the P/E control coupling ratio (by 2 vs. -36%). Nitrite also significantly reduced the I/R-induced generation of superoxide, without substantially influencing the ATP production. Conclusions: The results suggest that sodium nitrite may have an effect on the mitochondria; it preserves the mitochondrial structure and modifies the mitochondrial function, when administered 24 h prior to I/R. We propose that nitrite affects primary the phosphorylation system (indicated by the decreased P/E ratio), and the reduction in superoxide production would result from the subsequent suppression of the ROS producing complexes; an effect which may certainly contribute to the antiarrhythmic effect of nitrite.
Collapse
Affiliation(s)
- Vivien Demeter-Haludka
- Department of Pharmacology and Pharmacotherapy, Albert-Szent Györgyi Medical Centre, University of Szeged, Szeged, Hungary
| | - Mária Kovács
- Department of Pharmacology and Pharmacotherapy, Albert-Szent Györgyi Medical Centre, University of Szeged, Szeged, Hungary
| | - Alexandra Petrus
- Department of Pathophysiology, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Roland Patai
- Department of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Danina M Muntean
- Department of Pathophysiology, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - László Siklós
- Department of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Ágnes Végh
- Department of Pharmacology and Pharmacotherapy, Albert-Szent Györgyi Medical Centre, University of Szeged, Szeged, Hungary
| |
Collapse
|
4
|
How Much Extracorporeal Membrane Oxygenation Is Enough? Oxidative Stress and the Goldilocks Principle. Pediatr Crit Care Med 2018; 19:270-271. [PMID: 29499025 DOI: 10.1097/pcc.0000000000001442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Xie F, Rong B, Wang TC, Hao L, Lin MJ, Zhong JQ. Interaction between nitric oxide signaling and gap junctions during ischemic preconditioning: Importance of S-nitrosylation vs. protein kinase G activation. Nitric Oxide 2017; 65:37-42. [PMID: 28216239 DOI: 10.1016/j.niox.2017.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/18/2016] [Accepted: 02/03/2017] [Indexed: 12/13/2022]
Abstract
Much effort has been dedicated to exploring the mechanisms of IPC, and the GJ is one of the proposed targets of IPC. Several lines of evidence have indicated that NO affects GJ permeability regulation and expression of connexin isoforms. NO-induced stimulation of the sGC-cGMP pathway and the subsequent PKG activation could lead directly to connexin phosphorylation and GJ coupling modification. Additionally, because NO-induced cardioprotection against I/R injury beyond the cGMP/PKG-dependent pathway has been reported in isolated cardiomyocytes, it has been posited that NO-mediated GJ coupling might be independent from the activation of the NO-induced cGMP/PKG pathway during IPC. S-nitrosylation by NO exerts a major influence in IPC-induced cardioprotection. It has been suggested that NO-mediated cardioprotection during IPC was not dependent on sGC/cGMP/PKG but on SNO signaling. We need more researches to prove that which signaling pathway (S-nitrosylation or protein kinase G activation) is the major one modulating GJ coupling during IPC. The aim of review article is to discuss the possible signaling pathways of NO in regulating GJ during IPC.
Collapse
Affiliation(s)
- Fei Xie
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China; Emergency Department, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Bing Rong
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China; Cadre Health Department, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Tian-Cheng Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Li Hao
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China; School of Medicine, Shandong University, Jinan, China
| | - Ming-Jie Lin
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China; School of Medicine, Shandong University, Jinan, China
| | - Jing-Quan Zhong
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| |
Collapse
|
6
|
Kisvári G, Kovács M, Seprényi G, Végh Á. The activation of PI 3-kinase/Akt pathway is involved in the acute effects of simvastatin against ischaemia and reperfusion-induced arrhythmias in anaesthetised dogs. Eur J Pharmacol 2015; 769:185-94. [PMID: 26597117 DOI: 10.1016/j.ejphar.2015.11.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 10/01/2015] [Accepted: 11/12/2015] [Indexed: 11/25/2022]
Abstract
The objective of this study was to examine whether the PI3-kinase/Akt pathway is involved in the activation of endothelial nitric oxide synthase (eNOS) and in the subsequent increase of nitric oxide (NO) production that has been proved to play a role in the antiarrhythmic effect of acute simvastatin treatment in anaesthetised dogs, subjected to a 25min occlusion and reperfusion of the left anterior descending coronary artery. Using the same model, 12 dogs out of the 26 controls (given the solvent of simvastatin) and 11 dogs out of the 23 animals treated with intracoronary administered simvastatin (0.1mg/kg), were now received wortmannin (1.5mg/kg, ic.), a selective inhibitor of PI3-kinase. In another 13 dogs the effects of DMSO (0.1%), the vehicle of wortmannin, were examined. Compared to the controls, simvastatin markedly reduced the severity of ischaemia (epicardial ST-segment, inhomogeneity) and ventricular arrhythmias that were reversed (except the occlusion-induced ventricular fibrillation [VF; 50%, 0%, 0%]) by the administration of wortmannin. Thus in these groups there were 310±45, 62±14, 307±59 ectopic beats, 7.1±1.4, 0.3± 0.2, 4.3±1.3 tachycardiac episodes that occurred 93%, 17% and 73% of the dogs during occlusion, whereas survival following reperfusion was 0%, 67% and 0%, respectively. Simvastatin also increased the phosphorylation of eNOS and the plasma nitrate/nitrite levels, but reduced myocardial superoxide production on reperfusion. These effects of simvastatin were also abolished in the presence of wortmannin. We conclude that the NO-dependent antiarrhythmic effect of simvastatin involves the rapid activation of eNOS through the stimulation of the PI3-kinase/Akt pathway.
Collapse
Affiliation(s)
- Gábor Kisvári
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Albert-Szent Györgyi Medical Centre, Szeged, Hungary
| | - Mária Kovács
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Albert-Szent Györgyi Medical Centre, Szeged, Hungary
| | - György Seprényi
- Department of Medical Biology, University of Szeged, Albert-Szent Györgyi Medical Centre, Szeged, Hungary
| | - Ágnes Végh
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Albert-Szent Györgyi Medical Centre, Szeged, Hungary.
| |
Collapse
|
7
|
Kovács M, Kiss A, Gönczi M, Miskolczi G, Seprényi G, Kaszaki J, Kohr MJ, Murphy E, Végh Á. Effect of sodium nitrite on ischaemia and reperfusion-induced arrhythmias in anaesthetized dogs: is protein S-nitrosylation involved? PLoS One 2015; 10:e0122243. [PMID: 25909651 PMCID: PMC4409072 DOI: 10.1371/journal.pone.0122243] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 02/18/2015] [Indexed: 11/21/2022] Open
Abstract
Background and Purpose To provide evidence for the protective role of inorganic nitrite against acute ischaemia and reperfusion-induced ventricular arrhythmias in a large animal model. Experimental Approach Dogs, anaesthetized with chloralose and urethane, were administered intravenously with sodium nitrite (0.2 µmolkg-1min-1) in two protocols. In protocol 1 nitrite was infused 10 min prior to and during a 25 min occlusion of the left anterior descending (LAD) coronary artery (NaNO2-PO; n = 14), whereas in protocol 2 the infusion was started 10 min prior to reperfusion of the occluded vessel (NaNO2-PR; n = 12). Control dogs (n = 15) were infused with saline and subjected to the same period of ischaemia and reperfusion. Severities of ischaemia and ventricular arrhythmias, as well as changes in plasma nitrate/nitrite (NOx) levels in the coronary sinus blood, were assessed throughout the experiment. Myocardial superoxide and nitrotyrosine (NT) levels were determined during reperfusion. Changes in protein S-nitrosylation (SNO) and S-glutathionylation were also examined. Key Results Compared with controls, sodium nitrite administered either pre-occlusion or pre-reperfusion markedly suppressed the number and severity of ventricular arrhythmias during occlusion and increased survival (0% vs. 50 and 92%) upon reperfusion. There were also significant decreases in superoxide and NT levels in the nitrite treated dogs. Compared with controls, increased SNO was found only in NaNO2-PR dogs, whereas S-glutathionylation occurred primarily in NaNO2-PO dogs. Conclusions Intravenous infusion of nitrite profoundly reduced the severity of ventricular arrhythmias resulting from acute ischaemia and reperfusion in anaesthetized dogs. This effect, among several others, may result from an NO-mediated reduction in oxidative stress, perhaps through protein SNO and/or S-glutathionylation.
Collapse
Affiliation(s)
- Mária Kovács
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Attila Kiss
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Márton Gönczi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Gottfried Miskolczi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - György Seprényi
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - József Kaszaki
- Institute of Surgical Research, Albert Szent-Györgyi Medical Center, University of Szeged, Szeged, Hungary
| | - Mark J Kohr
- Systems Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Elizabeth Murphy
- Systems Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ágnes Végh
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
8
|
Kisvári G, Kovács M, Gardi J, Seprényi G, Kaszaki J, Végh Á. The effect of acute simvastatin administration on the severity of arrhythmias resulting from ischaemia and reperfusion in the canine: Is there a role for nitric oxide? Eur J Pharmacol 2014; 732:96-104. [DOI: 10.1016/j.ejphar.2014.03.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 03/14/2014] [Accepted: 03/21/2014] [Indexed: 02/09/2023]
|
9
|
Hernansanz-Agustín P, Izquierdo-Álvarez A, Sánchez-Gómez FJ, Ramos E, Villa-Piña T, Lamas S, Bogdanova A, Martínez-Ruiz A. Acute hypoxia produces a superoxide burst in cells. Free Radic Biol Med 2014; 71:146-156. [PMID: 24637263 DOI: 10.1016/j.freeradbiomed.2014.03.011] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 03/07/2014] [Accepted: 03/08/2014] [Indexed: 01/08/2023]
Abstract
Oxygen is a key molecule for cell metabolism. Eukaryotic cells sense the reduction in oxygen availability (hypoxia) and trigger a series of cellular and systemic responses to adapt to hypoxia, including the optimization of oxygen consumption. Many of these responses are mediated by a genetic program induced by the hypoxia-inducible transcription factors (HIFs), regulated by a family of prolyl hydroxylases (PHD or EGLN) that use oxygen as a substrate producing HIF hydroxylation. In parallel to these oxygen sensors modulating gene expression within hours, acute modulation of protein function in response to hypoxia is known to occur within minutes. Free radicals acting as second messengers, and oxidative posttranslational modifications, have been implied in both groups of responses. Localization and speciation of the paradoxical increase in reactive oxygen species production in hypoxia remain debatable. We have observed that several cell types respond to acute hypoxia with a transient increase in superoxide production for about 10 min, probably originating in the mitochondria. This may explain in part the apparently divergent results found by various groups that have not taken into account the time frame of hypoxic ROS production. We propose that this acute and transient hypoxia-induced superoxide burst may be translated into oxidative signals contributing to hypoxic adaptation and preconditioning.
Collapse
Affiliation(s)
- Pablo Hernansanz-Agustín
- Servicio de Inmunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa, E-28006 Madrid, Spain; Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid and Instituto de Investigaciones Biomédicas Alberto Sols, E-28029 Madrid, Spain
| | - Alicia Izquierdo-Álvarez
- Servicio de Inmunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa, E-28006 Madrid, Spain
| | - Francisco J Sánchez-Gómez
- Laboratorio Mixto, Consejo Superior de Investigaciones Científicas/Fundación Renal "Iñigo Alvarez de Toledo," E-28049 Madrid, Spain; Departamento de Biología Celular e Inmunología, Centro de Biología Molecular "Severo Ochoa," Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Elena Ramos
- Servicio de Inmunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa, E-28006 Madrid, Spain
| | - Tamara Villa-Piña
- Servicio de Inmunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa, E-28006 Madrid, Spain
| | - Santiago Lamas
- Laboratorio Mixto, Consejo Superior de Investigaciones Científicas/Fundación Renal "Iñigo Alvarez de Toledo," E-28049 Madrid, Spain; Departamento de Biología Celular e Inmunología, Centro de Biología Molecular "Severo Ochoa," Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Anna Bogdanova
- Institute of Veterinary Physiology, Vetsuisse Faculty, and Zurich Center for Integrative Human Physiology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Antonio Martínez-Ruiz
- Servicio de Inmunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa, E-28006 Madrid, Spain.
| |
Collapse
|
10
|
Mamou Z, Chahine M, Rhondali O, Dehina L, Chevalier P, Descotes J, Bui-Xuan B, Romestaing C, Timour Q. Effects of amlodipine and perindoprilate on the structure and function of mitochondria in ventricular cardiomyocytes during ischemia-reperfusion in the pig. Fundam Clin Pharmacol 2014; 29:21-30. [DOI: 10.1111/fcp.12070] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 01/27/2014] [Accepted: 02/20/2014] [Indexed: 12/14/2022]
Affiliation(s)
- Zahida Mamou
- EA 4612; Laboratory of Medical Pharmacology; Claude Bernard University; 69373 Lyon France
| | - Mohamed Chahine
- Centre de recherche en neuroscience; Institut universitaire en santé mentale de Québec; Québec G1J 2G3 Canada
| | - Ossam Rhondali
- EA 4612; Laboratory of Medical Pharmacology; Claude Bernard University; 69373 Lyon France
| | - Leila Dehina
- EA 4612; Laboratory of Medical Pharmacology; Claude Bernard University; 69373 Lyon France
| | - Philippe Chevalier
- EA 4612; Laboratory of Medical Pharmacology; Claude Bernard University; 69373 Lyon France
| | - Jacques Descotes
- EA 4612; Laboratory of Medical Pharmacology; Claude Bernard University; 69373 Lyon France
- Poison Center and Pharmacovigilance Department; 162 Ave Lacassagne 69003 Lyon France
| | - Bernard Bui-Xuan
- EA 4612; Laboratory of Medical Pharmacology; Claude Bernard University; 69373 Lyon France
| | - Caroline Romestaing
- Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés; CNRS UMR 5023; Ave Albert Einstein 69100 Villeurbanne France
| | - Quadiri Timour
- EA 4612; Laboratory of Medical Pharmacology; Claude Bernard University; 69373 Lyon France
- Poison Center and Pharmacovigilance Department; 162 Ave Lacassagne 69003 Lyon France
| |
Collapse
|
11
|
Tong G, Aponte AM, Kohr MJ, Steenbergen C, Murphy E, Sun J. Postconditioning leads to an increase in protein S-nitrosylation. Am J Physiol Heart Circ Physiol 2014; 306:H825-32. [PMID: 24441547 DOI: 10.1152/ajpheart.00660.2013] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Previous studies have shown a role for nitric oxide and S-nitrosylation (SNO) in postconditioning (PostC), but specific SNO proteins and sites have not been identified in the myocardium after PostC. In this study, we examined SNO signaling in PostC using a Langendorff-perfused mouse heart model. After 20 min of equilibrium perfusion and 25 min of global ischemia, PostC was applied at the beginning of reperfusion with six cycles of 10 s of reperfusion and 10 s of ischemia. The total period of reperfusion was 90 min. Compared with the ischemia-reperfusion (I/R) control, PostC significantly reduced postischemic contractile dysfunction and infarct size. PostC-induced protection was blocked by treatment with N(G)-nitro-l-arginine methyl ester (l-NAME) (10 μmol/l; a constitutive NO synthase inhibitor), but not by either ODQ (10 μmol/l, a highly selective soluble guanylyl cyclase inhibitor) or KT5823 (1 μmol/l, a specific protein kinase G inhibitor). Two biotin switch based methods, two dimensional CyDye-maleimide difference gel electrophoresis (2D CyDye-maleimide DIGE) and SNO-resin-assisted capture (SNO-RAC), were utilized to identify SNO-modified proteins and sites. Using 2D CyDye-maleimide DIGE analysis, PostC was found to cause a 25% or greater increase in SNO of a number of proteins, which was blocked by treatment with l-NAME in parallel with the loss of protection. Using SNO-RAC, we identified 77 unique proteins with SNO sites after PostC. These results suggest that NO-mediated SNO signaling is involved in PostC-induced cardioprotection and these data provide the first set of candidate SNO proteins in PostC hearts.
Collapse
Affiliation(s)
- Guang Tong
- Department of Cardiovascular Surgery, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, Guangdong Province, China
| | | | | | | | | | | |
Collapse
|
12
|
Kang SW, Kim OK, Seo B, Lee SH, Quan FS, Shin JH, Lee GJ, Park HK. Simultaneous, real-time measurement of nitric oxide and oxygen dynamics during cardiac ischemia–reperfusion of the rat utilizing sol–gel-derived electrochemical microsensors. Anal Chim Acta 2013; 802:74-81. [DOI: 10.1016/j.aca.2013.09.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 08/21/2013] [Accepted: 09/16/2013] [Indexed: 12/29/2022]
|
13
|
Affiliation(s)
- Paul T Schumacker
- Department of Pediatrics, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA.
| |
Collapse
|
14
|
A new flow cytometry method to measure oxidative status: the Peroxidation of Leukocytes Index Ratio (PLIR). J Immunol Methods 2013; 390:113-20. [PMID: 23454245 DOI: 10.1016/j.jim.2013.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 02/04/2013] [Accepted: 02/13/2013] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND AIM A complex relationship between immune system and metabolic pathway exists and can induce oxidative stress. The objective of this study was to design a new methodology allowing the measurement of oxidative status of leukocytes. METHODS AND RESULTS We developed a flow cytometry technique, based on C11-BODIPY 581/591 staining, to evaluate peroxidation in leukocytes. We defined the Peroxidation of Leukocytes Index Ratio (PLIR) as the ratio between the damage after AAPH-induced and PMA-induced peroxidation, using Trolox as standard antioxidant. Sensitivity of the method was assessed by correlating results with plasma antioxidant capacity (TRAP and FRAP), levels of endogenous antioxidants (uric acid and sulfhydryls) and markers of metabolic status (cholesterol, triglycerides, glucose and insulin). PLIR measures the ratio between the resistance to exogenous and endogenous ROS injury, independently from baseline level of oxidation, which was directly correlated with plasma cholesterol on lymphocytes (0.738, p=0.029), monocytes (0.691, p=0.047) and neutrophils (0.690, p=0.047). PLIR of lymphocytes was inversely correlated with uric acid (-0.810, p=0.009) and FRAP (-0.738, p=0.029) levels. On the other hand, PLIR of monocytes was directly correlated with the total scavenger antioxidant capacity attributable to nutritional antioxidants (0.738, p=0.029), calculated as the difference between TRAP and the contribution of uric acid and sulfhydryls to its value. CONCLUSIONS This study reports a feasible and reproducible new flow cytometry assay for assessing the leukocytes redox status. PLIR discriminates between reducing and scavenger activities and is able to appreciate the potentially dangerous effect of uric acid on innate immune response.
Collapse
|
15
|
Sun J, Aponte AM, Kohr MJ, Tong G, Steenbergen C, Murphy E. Essential role of nitric oxide in acute ischemic preconditioning: S-nitros(yl)ation versus sGC/cGMP/PKG signaling? Free Radic Biol Med 2013; 54:105-12. [PMID: 22989471 PMCID: PMC3539417 DOI: 10.1016/j.freeradbiomed.2012.09.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 08/31/2012] [Accepted: 09/10/2012] [Indexed: 12/28/2022]
Abstract
Nitric oxide (NO) plays an important role in acute ischemic preconditioning (IPC). In addition to activating soluble guanylyl cyclase (sGC)/cyclic guanosine monophosphate (cGMP)/protein kinase G (PKG) signaling pathways, NO-mediated protein S-nitros(yl)ation (SNO) has been recently shown to play an essential role in cardioprotection against ischemia-reperfusion (I/R) injury. In our previous studies, we have shown that IPC-induced cardioprotection could be blocked by treatment with either N-nitro-L-arginine methyl ester (L-NAME, a constitutive NO synthase inhibitor) or ascorbate (a reducing agent to decompose SNO). To clarify NO-mediated sGC/cGMP/PKG-dependent or -independent (i.e., SNO) signaling involved in IPC-induced cardioprotection, mouse hearts were Langendorff-perfused in the dark to prevent SNO decomposition by light exposure. Treatment with 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, a highly selective inhibitor of sGC) or KT5823 (a potent and selective inhibitor of PKG) did not abolish IPC-induced acute protection, suggesting that the sGC/cGMP/PKG signaling pathway does not play an important role in NO-mediated cardioprotective signaling during acute IPC. In addition, treatment with ODQ in IPC hearts provided an additional protective effect on functional recovery, in parallel with a higher SNO level in these ODQ+IPC hearts. In conclusion, these results suggest that the protective effect of NO is not related primarily to activation of the sGC/cGMP/PKG signaling pathway, but rather through SNO signaling in IPC-induced acute cardioprotection.
Collapse
Affiliation(s)
- Junhui Sun
- Systems Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Differential redox proteomics allows identification of proteins reversibly oxidized at cysteine residues in endothelial cells in response to acute hypoxia. J Proteomics 2012; 75:5449-62. [PMID: 22800641 DOI: 10.1016/j.jprot.2012.06.035] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 06/13/2012] [Accepted: 06/26/2012] [Indexed: 11/21/2022]
Abstract
Adaptation to decreased oxygen availability (hypoxia) is crucial for proper cell function and survival. In metazoans, this is partly achieved through gene transcriptional responses mediated by hypoxia-inducible factors (HIFs). There is abundant evidence that production of reactive oxygen species (ROS) increases during hypoxia, which contributes to the activation of the HIF pathway. In addition to altering the cellular redox balance, leading to oxidative stress, ROS can transduce signals by reversibly modifying the redox state of cysteine residues in certain proteins. Using the "redox fluorescence switch" (RFS), a thiol redox proteomic technique that fluorescently labels reversibly oxidized cysteines, we analyzed endothelial cells subjected to acute hypoxia and subsequent reoxygenation. We observed a general increase in cysteine oxidation during hypoxia, which was reversed by reoxygenation, and two-dimensional electrophoresis revealed the differential oxidation of specific proteins. Using complementary derivatization techniques, we confirmed the modification of individual target proteins and identified specific cysteine residues that were oxidized in hypoxic conditions, thereby overcoming several limitations associated with fluorescence derivatization. These findings provide an important basis for future studies of the role of these modifications in HIF activation and in other acute adaptive responses to hypoxia.
Collapse
|
17
|
Lv L, Jiang SS, Xu J, Gong JB, Cheng Y. Protective effect of ligustrazine against myocardial ischaemia reperfusion in rats: the role of endothelial nitric oxide synthase. Clin Exp Pharmacol Physiol 2012; 39:20-7. [PMID: 22004361 DOI: 10.1111/j.1440-1681.2011.05628.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1. The aim of the present study was to determine whether ligustrazine (2,3,5,6-tetramethylpyrazine; TMP) exerts a cardioprotective effect during myocardial ischaemia reperfusion (IR), and to investigate the underlying mechanisms and the role of endothelial nitric oxide synthase (eNOS) in cardioprotection. 2. Sprague-Dawley rats were divided into a sham group and five IR groups: IR control, TMP pretreated, TMP + wortmannin (a phosphatidylinositol 3-kinase (PI3K) inhibitor), N(G) -nitro-L-arginine methyl ester (L-NAME; a NOS inhibitor) and TMP + L-NAME. IR was produced by 35 min of regional ischaemia followed by 120 min of reperfusion. Myocardial infarct size, oxidative stress, myocardial apoptosis, nitric oxide (NO) production, and expression of phosphorylated protein kinase B (Akt) and eNOS were measured. 3. TMP markedly decreased infarct size and attenuated myocardial apoptosis, as evidenced by a decrease in the apoptotic index and reduced caspase-3 activity. TMP treatment caused a marked increase in NO production. Cotreatment with wortmannin or L-NAME completely blocked the TMP-induced NO increase. TMP induced phosphorylation of Akt at Ser 473 (1.61 ± 0.18 vs 0.79 ± 0.10 in the IR control group) and phosphorylation of eNOS at Ser1177 (1.87 ± 0.33 vs 0.94 ± 0.22 in the IR control group). Wortmannin abrogated the phosphorylation of Akt and eNOS induced by TMP. 4. These data suggest that ligustrazine has anti-apoptotic and cardioprotective effects against myocardial IR injury and that it acts through the PI3K/Akt pathway. In addition, the phosphorylation of eNOS with subsequent NO production was found to be an important downstream effector that contributes significantly to the cardioprotective effect of TMP.
Collapse
Affiliation(s)
- Lei Lv
- Department of Cardiology, School of Medicine, Nanjing University, Jinling Hospital, Nanjing, Jiangsu, China
| | | | | | | | | |
Collapse
|
18
|
Zhang J, Gu HD, Zhang L, Tian ZJ, Zhang ZQ, Shi XC, Ma WH. Protective effects of apricot kernel oil on myocardium against ischemia–reperfusion injury in rats. Food Chem Toxicol 2011; 49:3136-41. [DOI: 10.1016/j.fct.2011.08.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 08/09/2011] [Accepted: 08/12/2011] [Indexed: 11/28/2022]
|
19
|
Raedschelders K, Ansley DM, Chen DDY. The cellular and molecular origin of reactive oxygen species generation during myocardial ischemia and reperfusion. Pharmacol Ther 2011; 133:230-55. [PMID: 22138603 DOI: 10.1016/j.pharmthera.2011.11.004] [Citation(s) in RCA: 283] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 11/04/2011] [Indexed: 02/07/2023]
Abstract
Myocardial ischemia-reperfusion injury is an important cause of impaired heart function in the early postoperative period subsequent to cardiac surgery. Reactive oxygen species (ROS) generation increases during both ischemia and reperfusion and it plays a central role in the pathophysiology of intraoperative myocardial injury. Unfortunately, the cellular source of these ROS during ischemia and reperfusion is often poorly defined. Similarly, individual ROS members tend to be grouped together as free radicals with a uniform reactivity towards biomolecules and with deleterious effects collectively ascribed under the vague umbrella of oxidative stress. This review aims to clarify the identity, origin, and progression of ROS during myocardial ischemia and reperfusion. Additionally, this review aims to describe the biochemical reactions and cellular processes that are initiated by specific ROS that work in concert to ultimately yield the clinical manifestations of myocardial ischemia-reperfusion. Lastly, this review provides an overview of several key cardioprotective strategies that target myocardial ischemia-reperfusion injury from the perspective of ROS generation. This overview is illustrated with example clinical studies that have attempted to translate these strategies to reduce the severity of ischemia-reperfusion injury during coronary artery bypass grafting surgery.
Collapse
Affiliation(s)
- Koen Raedschelders
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine. The University of British Columbia, Vancouver, BC, Canada.
| | | | | |
Collapse
|
20
|
Shao ZH, Wojcik KR, Qin Y, Li CQ, Hoek TLV, Hamann KJ. Blockade of Caspase-2 Activity Inhibits Ischemia/Reperfusion-Induced Mitochondrial Reactive Oxygen Burst and Cell Death in Cardiomyocytes. J Cell Death 2011. [DOI: 10.4137/jcd.s6723] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
We previously showed that initiator caspases-2 and −8 are prominently activated in ischemia/reperfusion (I/R)-induced injury in cardiomyocytes, but while blockade of caspase-2 activity enhanced cell survival, blockade of caspase-8 activity did not protect cardiomyocytes. Because apoptotic death in these cells is characterized by a burst of reactive oxygen species (ROS) at reperfusion and their survival by inhibition of this burst, we examined the effects of blocking caspase-2 and caspase-8 activities on ROS production. Caspase-2 inhibition blocked the reperfusion-induced ROS burst, while inhibition of caspase-8 did not. We also examined effects of caspase inhibition on mitochondrial membrane potential (ΔΨm) and mitochondrial function and found that blocking caspase-2, but not caspase-8, allowed recovery of ΔΨm and mitochondrial functionality. Furthermore, knockdown of caspase-2 by small-interfering (si)RNA confirmed caspase-2 participation in cytochrome c release, which correlates with loss of ΔΨm and cell death in these cardiomyocytes.
Collapse
Affiliation(s)
- Zuo-Hui Shao
- Emergency Medicine, Department of Medicine and The emergency resuscitation Center, The University of Chicago, Chicago, IL 60637, USA
| | | | - Yimin Qin
- Sections of Pulmonary and Critical Care Medicine
| | - Chang-Qing Li
- Emergency Medicine, Department of Medicine and The emergency resuscitation Center, The University of Chicago, Chicago, IL 60637, USA
| | - Terry L. Vanden Hoek
- Emergency Medicine, Department of Medicine and The emergency resuscitation Center, The University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|
21
|
Raddatz E, Thomas AC, Sarre A, Benathan M. Differential contribution of mitochondria, NADPH oxidases, and glycolysis to region-specific oxidant stress in the anoxic-reoxygenated embryonic heart. Am J Physiol Heart Circ Physiol 2011; 300:H820-35. [DOI: 10.1152/ajpheart.00827.2010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The ability of the developing myocardium to tolerate oxidative stress during early gestation is an important issue with regard to possible detrimental consequences for the fetus. In the embryonic heart, antioxidant defences are low, whereas glycolytic flux is high. The pro- and antioxidant mechanisms and their dependency on glucose metabolism remain to be explored. Isolated hearts of 4-day-old chick embryos were exposed to normoxia (30 min), anoxia (30 min), and hyperoxic reoxygenation (60 min). The time course of ROS production in the whole heart and in the atria, ventricle, and outflow tract was established using lucigenin-enhanced chemiluminescence. Cardiac rhythm, conduction, and arrhythmias were determined. The activity of superoxide dismutase, catalase, gutathione reductase, and glutathione peroxidase as well as the content of reduced and oxidized glutathione were measured. The relative contribution of the ROS-generating systems was assessed by inhibition of mitochondrial complexes I and III (rotenone and myxothiazol), NADPH oxidases (diphenylene iodonium and apocynine), and nitric oxide synthases ( N-monomethyl-l-arginine and N-iminoethyl-l-ornithine). The effects of glycolysis inhibition (iodoacetate), glucose deprivation, glycogen depletion, and lactate accumulation were also investigated. In untreated hearts, ROS production peaked at 10.8 ± 3.3, 9 ± 0.8, and 4.8 ± 0.4 min (means ± SD; n = 4) of reoxygenation in the atria, ventricle, and outflow tract, respectively, and was associated with arrhythmias. Functional recovery was complete after 30–40 min. At reoxygenation, 1) the respiratory chain and NADPH oxidases were the main sources of ROS in the atria and outflow tract, respectively; 2) glucose deprivation decreased, whereas glycogen depletion increased, oxidative stress; 3) lactate worsened oxidant stress via NADPH oxidase activation; 4) glycolysis blockade enhanced ROS production; 5) no nitrosative stress was detectable; and 6) the glutathione redox cycle appeared to be a major antioxidant system. Thus, the glycolytic pathway plays a predominant role in reoxygenation-induced oxidative stress during early cardiogenesis. The relative contribution of mitochondria and extramitochondrial systems to ROS generation varies from one region to another and throughout reoxygenation.
Collapse
Affiliation(s)
- Eric Raddatz
- Department of Physiology, Faculty of Biology and Medicine, and
| | | | - Alexandre Sarre
- Department of Physiology, Faculty of Biology and Medicine, and
- Cardiovascular Assessment Facility, University of Lausanne, Lausanne; and
| | - Messod Benathan
- Department of Plastic and Reconstructive Surgery, University Hospital, Lausanne, Switzerland
| |
Collapse
|
22
|
Kiss A, Juhász L, Seprényi G, Kupai K, Kaszaki J, Végh A. The role of nitric oxide, superoxide and peroxynitrite in the anti-arrhythmic effects of preconditioning and peroxynitrite infusion in anaesthetized dogs. Br J Pharmacol 2010; 160:1263-72. [PMID: 20590618 DOI: 10.1111/j.1476-5381.2010.00774.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Both ischaemia preconditioning (PC) and the intracoronary infusion of peroxynitrite (PN) suppress ischaemia and reperfusion (I/R)-induced arrhythmias and the generation of nitrotyrosine (NT, a marker of PN). However, it is still unclear whether this latter effect is due to a reduction in nitric oxide (NO) or superoxide (O(2)(-)) production. EXPERIMENTAL APPROACH Dogs anaesthetized with chloralose and urethane were infused, twice for 5 min, with either saline (control) or 100 nM PN, or subjected to similar periods of occlusion (PC), 5 min prior to a 25 min occlusion and reperfusion of the left anterior descending coronary artery. Severities of ischaemia and ventricular arrhythmias, as well as changes in the coronary sinus nitrate/nitrite (NOx) levels were assessed throughout the experiment. The production of myocardial NOx, O(2)(-) and NT was determined following reperfusion. KEY RESULTS Both PC and PN markedly suppressed the I/R-induced ventricular arrhythmias, compared to the controls, and increased NOx levels during coronary artery occlusion. Reperfusion induced almost the same increases in NOx levels in all groups, but superoxide production and, consequently, the generation of NT were significantly less in PC- and PN-treated dogs than in controls. CONCLUSIONS AND IMPLICATIONS Since both PC and the administration of PN enhanced NOx levels during I/R, the attenuation of endogenous PN formation in these dogs is primarily due to a reduction in the amount of O(2) produced. Thus, the anti-arrhythmic effect of PC and PN can almost certainly be attributed to the preservation of NO availability during myocardial ischaemia.
Collapse
Affiliation(s)
- Attila Kiss
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Albert Szent-Györgyi Medical Center, Szeged, Hungary
| | | | | | | | | | | |
Collapse
|
23
|
Bassuk JI, Wu H, Arias J, Kurlansky P, Adams JA. Whole body periodic acceleration (pGz) improves survival and allows for resuscitation in a model of severe hemorrhagic shock in pigs. J Surg Res 2010; 164:e281-9. [PMID: 20869084 DOI: 10.1016/j.jss.2010.07.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 07/07/2010] [Accepted: 07/18/2010] [Indexed: 10/19/2022]
Abstract
BACKGROUND Whole body periodic acceleration (pGz), the repetitive, head-foot sinusoidal motion of the body, increases pulsatile shear stress on the vascular endothelium producing increased release of endothelial derived nitric oxide (eNO) into circulation. Based upon prior CPR investigations, we hypothesized that pGz instituted prior to and during hemorrhagic shock (HS) should improve survival. MATERIALS AND METHODS Sixteen anesthetized male pigs, 23 ± 5 kg, were randomized to receive 1 h pGz or no pGz (CONT) prior to and during severe controlled graded HS up to 2-1/2 h. HS was induced by removing blood at 10 mL/kg increments from the circulation at 30-min intervals up to a maximum blood loss of 50 mL/kg. Thirty minutes after maximum blood loss, shed blood and lactated Ringers solution was infused intravenously. RESULTS All animals survived up to 30 mL/kg blood loss. Survival and return to normal blood pressure to 120 min was achieved in 50% of animals receiving pGz compared with none in CONT. Cardiac output, blood pressure, and oxygen delivery decreased equally in both groups but oxygen consumption was significantly lower with pGz than CONT during all hemorrhage time points. Regional blood flow (RBF) was preserved in brain, heart, kidneys, ileum, and stomach in both groups up to 40 mL/kg of blood loss. After 40 mL/kg blood loss, RBF was much better preserved in pGz than CONT. CONCLUSIONS pGz applied 1 h prior to and during severe graded hemorrhagic shock delays onset of irreversible shock, enabling potential restoration of blood loss and survival.
Collapse
Affiliation(s)
- Jorge I Bassuk
- Division of Neonatology, Mount Sinai Medical Center, Miami Beach, Florida 33140, USA
| | | | | | | | | |
Collapse
|
24
|
Aller MA, Arias JI, Alonso-Poza A, Arias J. A review of metabolic staging in severely injured patients. Scand J Trauma Resusc Emerg Med 2010; 18:27. [PMID: 20478066 PMCID: PMC2883961 DOI: 10.1186/1757-7241-18-27] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Accepted: 05/17/2010] [Indexed: 02/07/2023] Open
Abstract
An interpretation of the metabolic response to injury in patients with severe accidental or surgical trauma is made. In the last century, various authors attributed a meaning to the post-traumatic inflammatory response by using teleological arguments. Their interpretations of this response, not only facilitates integrating the knowledge, but also the flow from the bench to the bedside, which is the main objective of modern translational research. The goal of the current review is to correlate the metabolic changes with the three phenotypes -ischemia-reperfusion, leukocytic and angiogenic- that the patients express during the evolution of the systemic inflammatory response. The sequence in the expression of multiple metabolic systems that becomes progressively more elaborate and complex in severe injured patients urges for more detailed knowledge in order to establish the most adequate metabolic support according to the evolutive phase. Thus, clinicians must employ different treatment strategies based on the different metabolic phases when caring for this challenging patient population. Perhaps, the best therapeutic option would be to favor early hypometabolism during the ischemia-reperfusion phase, to boost the antienzymatic metabolism and to reduce hypermetabolism during the leukocytic phase through the early administration of enteral nutrition and the modulation of the acute phase response. Lastly, the early epithelial regeneration of the injured organs and tissues by means of an oxidative metabolism would reduce the fibrotic sequelae in these severely injured patients.
Collapse
Affiliation(s)
- Maria-Angeles Aller
- Surgery I Department, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | | | | | | |
Collapse
|
25
|
Shao ZH, Sharp WW, Wojcik KR, Li CQ, Han M, Chang WT, Ramachandran S, Li J, Hamann KJ, Vanden Hoek TL. Therapeutic hypothermia cardioprotection via Akt- and nitric oxide-mediated attenuation of mitochondrial oxidants. Am J Physiol Heart Circ Physiol 2010; 298:H2164-73. [PMID: 20382860 DOI: 10.1152/ajpheart.00994.2009] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Therapeutic hypothermia (TH) is a promising cardioprotective treatment for cardiac arrest and acute myocardial infarction, but its cytoprotective mechanisms remain unknown. In this study, we developed a murine cardiomyocyte model of ischemia-reperfusion injury to better determine the mechanisms of TH cardioprotection. We hypothesized that TH manipulates Akt, a survival kinase that mediates mitochondrial protection by modulating reactive oxygen species (ROS) and nitric oxide (NO) generation. Cardiomyocytes, isolated from 1- to 2-day-old C57BL6/J mice, were exposed to 90 min simulated ischemia and 3 h reperfusion. For TH, cells were cooled to 32 degrees C during the last 20 min of ischemia and the first hour of reperfusion. Cell viability was evaluated by propidium iodide and lactate dehydrogenase release. ROS production was measured by 6-carboxy-2',7'-dichlorodihydrofluorescein diacetate and mitochondrial membrane potential (DeltaPsim) by 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazoly-carbocyanine iodide (JC-1). Phospho (p)-Akt (Thr308), p-Akt (Ser473), and phosphorylated heat shock protein 27 (p-HSP27) (Ser82) were analyzed by Western blot analysis. TH attenuated reperfusion ROS generation, increased NO, maintained DeltaPsim, and decreased cell death [19.3 + or - 3.3% (n = 11) vs. 44.7 + or - 2.7% (n = 10), P < 0.001]. TH also increased p-Akt during ischemia before reperfusion. TH protection and attenuation of ROS were blocked by the inhibition of Akt and NO synthase but not by a cGMP inhibitor. HSP27, a regulator of Akt, also exhibited increased phosphorylation (Ser82) during ischemia with TH. We conclude that TH cardioprotection is mediated by enhanced Akt/HSP27 phosphorylation and enhanced NO generation, resulting in the attenuation of ROS generation and the maintenance of DeltaPsim following ischemia-reperfusion.
Collapse
Affiliation(s)
- Zuo-Hui Shao
- Section of Emergency Medicine, Department of Medicine, Emergency Resuscitation Center, University of Chicago, Chicago, IL, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Kwak HJ, Park KM, Choi HE, Park HY. Protective mechanisms of NO preconditioning against NO-induced apoptosis in H9c2 cells: role of PKC and COX-2. Free Radic Res 2010; 43:744-52. [DOI: 10.1080/10715760903040602] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
27
|
Shao ZH, Wojcik KR, Dossumbekova A, Hsu C, Mehendale SR, Li CQ, Qin Y, Sharp WW, Chang WT, Hamann KJ, Yuan CS, Hoek TLV. Grape seed proanthocyanidins protect cardiomyocytes from ischemia and reperfusion injury via Akt-NOS signaling. J Cell Biochem 2009; 107:697-705. [PMID: 19388003 DOI: 10.1002/jcb.22170] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Ischemia/reperfusion (I/R) injury in cardiomyocytes is related to excess reactive oxygen species (ROS) generation and can be modulated by nitric oxide (NO). We have previously shown that grape seed proanthocyanidin extract (GSPE), a naturally occurring antioxidant, decreased ROS and may potentially stimulate NO production. In this study, we investigated whether GSPE administration at reperfusion was associated with cardioprotection and enhanced NO production in a cardiomyocyte I/R model. GSPE attenuated I/R-induced cell death [18.0 +/- 1.8% (GSPE, 50 microg/ml) vs. 42.3 +/- 3.0% (I/R control), P < 0.001], restored contractility (6/6 vs. 0/6, respectively), and increased NO release. The NO synthase (NOS) inhibitor Nomega-nitro-L-arginine methyl ester (L-NAME, 200 microM) significantly reduced GSPE-induced NO release and its associated cardioprotection [32.7 +/- 2.7% (GSPE + L-NAME) vs. 18.0 +/- 1.8% (GSPE alone), P < 0.01]. To determine whether GSPE induced NO production was mediated by the Akt-eNOS pathway, we utilized the Akt inhibitor API-2. API-2 (10 microM) abrogated GSPE-induced protection [44.3% +/- 2.2% (GSPE + API-2) vs. 27.0% +/- 4.3% (GSPE alone), P < 0.01], attenuated the enhanced phosphorylation of Akt at Ser473 in GSPE-treated cells and attenuated GSPE-induced NO increases. Simultaneously blocking NOS activation (L-NAME) and Akt (API-2) resulted in decreased NO levels similar to using each inhibitor independently. These data suggest that in the context of GSPE stimulation, Akt may help activate eNOS, leading to protective levels of NO. GSPE offers an alternative approach to therapeutic cardioprotection against I/R injury and may offer unique opportunities to improve cardiovascular health by enhancing NO production and increasing Akt-eNOS signaling.
Collapse
Affiliation(s)
- Zuo-Hui Shao
- Department of Medicine, Emergency Resuscitation Center, University of Chicago, Illinois 60637, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Danz EDB, Skramsted J, Henry N, Bennett JA, Keller RS. Resveratrol prevents doxorubicin cardiotoxicity through mitochondrial stabilization and the Sirt1 pathway. Free Radic Biol Med 2009; 46:1589-97. [PMID: 19303434 DOI: 10.1016/j.freeradbiomed.2009.03.011] [Citation(s) in RCA: 205] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 02/28/2009] [Accepted: 03/09/2009] [Indexed: 12/15/2022]
Abstract
Doxorubicin (DOX) is one of the most effective chemotherapeutic drugs; however, its incidence of cardiotoxicity compromises its therapeutic index. DOX-induced heart failure is thought to be caused by reduction/oxidation cycling of DOX to generate oxidative stress and cardiomyocyte cell death. Resveratrol (RV), a stilbene found in red wine, has been reported to play a cardioprotective role in diseases associated with oxidative stress. The objective of this study was to test the ability of RV to protect against DOX-induced cardiomyocyte death. We hypothesized that RV protects cardiomyocytes from DOX-induced oxidative stress and subsequent cell death through changes in mitochondrial function. DOX induced a rapid increase in reactive oxygen species (ROS) production in cardiac cell mitochondria, which was inhibited by pretreatment with RV, most likely owing to an increase in MnSOD activity. This effect of RV caused additional polarization of the mitochondria in the absence and presence of DOX to increase mitochondrial function. RV pretreatment also prevented DOX-induced cardiomyocyte death. The protective ability of RV against DOX was abolished when Sirt1 was inhibited by nicotinamide. Our data suggest that RV protects against DOX-induced oxidative stress through changes in mitochondrial function, specifically the Sirt1 pathway leading to cardiac cell survival.
Collapse
|
29
|
Dossumbekova A, Berdyshev EV, Gorshkova I, Shao Z, Li C, Long P, Joshi A, Natarajan V, Vanden Hoek TL. Akt activates NOS3 and separately restores barrier integrity in H2O2-stressed human cardiac microvascular endothelium. Am J Physiol Heart Circ Physiol 2008; 295:H2417-26. [PMID: 18931031 DOI: 10.1152/ajpheart.00501.2008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The integrity of microvascular endothelium is an important regulator of myocardial contractility. Microvascular barrier integrity could be altered by increased reactive oxygen species (ROS) stress seen within minutes after cardiac arrest resuscitation. Akt and its downstream target nitric oxide (NO) synthase (NOS)3 can protect barrier integrity during ROS stress, but little work has studied these oxidant stress responses in human cardiac microvascular endothelial cells (HCMVEC). We, therefore, studied how ROS affects barrier function and NO generation via Akt and its downstream target NOS3 in HCMVEC. HCMVEC exposed to 500 microM H2O2 had increased Akt phosphorylation within 10 min at both Ser-473 and Thr-308 sites, an effect blocked by the phosphatidylinositol 3-kinase inhibitor LY-294002. H2O2 also induced NO generation that was associated with NOS3 Ser-1177 site phosphorylation and Thr-495 dephosphorylation, with Ser-1177 effects attenuated by LY-294002 and an Akt inhibitor, Akt/PKB signaling inhibitor-2 (API-2). H2O2 induced significant barrier disruption in HCMVEC within minutes, but recovery started within 30 min and normalized over hours. The NOS inhibitor Nomega-nitro-L-arginine methyl ester (200 microM) blocked NO generation but had no effect on H2O2-induced barrier permeability or the recovery of barrier integrity. By contrast, the Akt inhibitor API-2 abrogated HCMVEC barrier restoration. These results suggest that oxidant stress in HCMVEC activates NOS3 via Akt. NOS3/NO are not involved in the regulation of H2O2-affected barrier function in HCMVEC. Independent of NOS3 regulation, Akt proves to be critical for the restoration of barrier integrity in HCMVEC.
Collapse
Affiliation(s)
- Anar Dossumbekova
- Department of Medicine, MC5068, Section of Emergency Medicine, Emergency Resuscitation Ctr., The University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
One-hit stochastic decline in a mechanochemical model of cytoskeleton-induced neuron death III: diffusion pulse death zones. J Theor Biol 2008; 256:104-16. [PMID: 18824176 DOI: 10.1016/j.jtbi.2008.08.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 07/18/2008] [Accepted: 08/17/2008] [Indexed: 11/22/2022]
Abstract
This is the third of three papers in which we study a mathematical model of cytoskeleton-induced neuron death. In the first two papers of this suite [Lomasko, T., Clarke, G., Lumsden, C., 2007a. One-hit stochastic decline in a mechanochemical model of cytoskeleton-induced neuron death I: cell fate arrival times. J. Theor. Biol. 249, 1-17, doi:10.1016/j.jtbi.2007.05.031; Lomasko, T., Clarke, G., Lumsden, C., 2007b. One-hit stochastic decline in a mechanochemical model of cytoskeleton-induced neuron death II: transition state metastability. J. Theor. Biol. 249, 18-28, doi:10.1016/j.jtbi.2007.05.032], we established that the mean-field limit of our model relates the known patterns of neuron decline to specific scales of cytoskeleton reorganization and cell-cell interaction by diffusible death factors. In the mean-field limit, the spatially variable concentration of diffusing death factor is replaced by a constant average value. Recent empirical advances now permit the actual diffusion of such factors to be followed in intact neuropil. In this paper we therefore extend the model beyond the mean-field limit, to include the diffusion dynamics of death factor bursts released from dying neurons. A range of novel tissue degeneration patterns is observed, for which we confirm and extend the mean-field prediction that sigmoidal patterns of neuron population decay are a principal hallmark of cell death in the presence of death factor release.
Collapse
|
31
|
Klassen SS, Rabkin SW. The metalloporphyrin FeTPPS but not by cyclosporin A antagonizes the interaction of peroxynitrate and hydrogen peroxide on cardiomyocyte cell death. Naunyn Schmiedebergs Arch Pharmacol 2008; 379:149-61. [DOI: 10.1007/s00210-008-0342-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Accepted: 07/25/2008] [Indexed: 11/30/2022]
|
32
|
Isenberg JS, Maxhimer JB, Powers P, Tsokos M, Frazier WA, Roberts DD. Treatment of liver ischemia-reperfusion injury by limiting thrombospondin-1/CD47 signaling. Surgery 2008; 144:752-61. [PMID: 19081017 DOI: 10.1016/j.surg.2008.07.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2008] [Accepted: 07/10/2008] [Indexed: 11/19/2022]
Abstract
BACKGROUND Ischemia-reperfusion (I/R) injury remains a primary complication of transplant surgery, accounting for about 80% of liver transplant failures, and is a major source of morbidity in other pathologic conditions. Activation of endothelium and inflammatory cell recruitment are central to the initiation and promulgation of I/R injury, which can be limited by the bioactive gas nitric oxide (NO). The discovery that thrombsospondin-1 (TSP1), via CD47, limits NO signaling in vascular cells and ischemic injuries in vivo suggested that I/R injury could be another important target of this signaling pathway. METHODS Wild-type, TSP1-null, and CD47-null mice underwent liver I/R injury. Wild-type animals were pretreated with CD47 or control antibodies before liver I/R injury. Tissue perfusion via laser Doppler imaging, serum enzymes, histology, and immunohistology were assessed. RESULTS TSP1-null and CD47-null mice subjected to subtotal liver I/R injury showed improved perfusion relative to wild-type mice. Null mice subjected to liver I/R had decreased liver enzyme release and less histologic evidence of injury. Elevated TSP1 expression in liver tissue after I/R injury suggested that preventing its interaction with CD47 could be protective. Thus, pretreatment of wild-type mice using a blocking CD47 antibody improved recovery of tissue perfusion and preserved liver integrity after I/R injury. CONCLUSIONS Tissue survival and perfusion after liver I/R injury are limited by TSP1 and CD47. Targeting CD47 before I/R injury enhances tissue survival and perfusion in a model of liver I/R injury and suggests therapeutics for enhancing organ survival in transplantation surgery.
Collapse
Affiliation(s)
- Jeff S Isenberg
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Exline MC, Crouser ED. Mitochondrial mechanisms of sepsis-induced organ failure. FRONTIERS IN BIOSCIENCE : A JOURNAL AND VIRTUAL LIBRARY 2008; 13:5030-41. [PMID: 18508567 DOI: 10.2741/3061] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Sepsis is the leading cause of death in medical intensive care units. Though progress has been made in the early treatment of sepsis associated with hemodynamic collapse (septic shock), little is known about the pathogenesis of delayed organ dysfunction during sepsis. A growing body of data indicates that sepsis is associated with acute changes in cell metabolism, and that mitochondria are particularly susceptible. The severity of mitochondrial pathology varies according to host and pathogen factors, and appears to correlate with loss of organ dysfunction. In this regard, low levels of cell apoptosis and mitochondrial turnover are normally observed in all metabolically active tissues; however, these homeostatic mechanisms are frequently overwhelmed during sepsis and contribute to cell and tissue pathology. Thus, a better understanding of the mechanisms regulating mitochondrial damage and repair during severe sepsis may provide new treatment options and better outcomes for this deadly disease (30-60% mortality). Herein, we present compelling evidence linking mitochondrial apoptosis pathways to sepsis-induced cell and organ failure and discuss the implications in terms of future sepsis research.
Collapse
Affiliation(s)
- Matthew C Exline
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, The Ohio State University Medical Center, Columbus, Ohio 43210-1252, USA.
| | | |
Collapse
|
34
|
Rodrigo R, Cereceda M, Castillo R, Asenjo R, Zamorano J, Araya J, Castillo-Koch R, Espinoza J, Larraín E. Prevention of atrial fibrillation following cardiac surgery: basis for a novel therapeutic strategy based on non-hypoxic myocardial preconditioning. Pharmacol Ther 2008; 118:104-27. [PMID: 18346791 DOI: 10.1016/j.pharmthera.2008.01.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Accepted: 01/24/2008] [Indexed: 02/06/2023]
Abstract
Atrial fibrillation is the most common complication of cardiac surgical procedures performed with cardiopulmonary bypass. It contributes to increased hospital length of stay and treatment costs. At present, preventive strategies offer only suboptimal benefits, despite improvements in anesthesia, surgical technique, and medical therapy. The pathogenesis of postoperative atrial fibrillation is considered to be multifactorial. However oxidative stress is a major contributory factor representing the unavoidable consequences of ischemia/reperfusion cycle occurring in this setting. Considerable evidence suggests the involvement of reactive oxygen species (ROS) in the pathogenic mechanism of this arrhythmia. Interestingly, the deleterious consequences of high ROS exposure, such as inflammation, cell death (apoptosis/necrosis) or fibrosis, may be abrogated by a myocardial preconditioning process caused by previous exposure to moderate ROS concentration known to trigger survival response mechanisms. The latter condition may be created by n-3 PUFA supplementation that could give rise to an adaptive response characterized by increased expression of myocardial antioxidant enzymes and/or anti-apoptotic pathways. In addition, a further reinforcement of myocardial antioxidant defenses could be obtained through vitamins C and E supplementation, an intervention also known to diminish enzymatic ROS production. Based on this paradigm, this review presents clinical and experimental evidence supporting the pathophysiological and molecular basis for a novel therapeutic approach aimed to diminish the incidence of postoperative atrial fibrillation through a non-hypoxic preconditioning plus a reinforcement of the antioxidant defense system in the myocardial tissue.
Collapse
Affiliation(s)
- Ramón Rodrigo
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile.
| | | | | | | | | | | | | | | | | |
Collapse
|