1
|
Zhang D, Krause BM, Schmalz HG, Wohlfart P, Yard BA, Schubert R. ET-CORM Mediated Vasorelaxation of Small Mesenteric Arteries: Involvement of Kv7 Potassium Channels. Front Pharmacol 2021; 12:702392. [PMID: 34552483 PMCID: PMC8451721 DOI: 10.3389/fphar.2021.702392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/24/2021] [Indexed: 11/18/2022] Open
Abstract
Although the vasoactive properties of carbon monoxide (CO) have been extensively studied, the mechanism by which CO mediates vasodilation is not completely understood. Through-out published studies on CO mediated vasodilation there is inconsistency on the type of K+-channels that are activated by CO releasing molecules (CORMs). Since the vasorelaxation properties of enzyme triggered CORMs (ET-CORMs) have not been studied thus far, we first assessed if ET-CORMs can mediate vasodilation of small mesenteric arteries and subsequently addressed the role of soluble guanylate cyclase (sGC) and that of K-channels herein. To this end, 3 different types of ET-CORMs that either contain acetate (rac-1 and rac-4) or pivalate (rac-8) as ester functionality, were tested ex vivo on methoxamine pre-contracted small rat mesenteric arteries in a myograph setting. Pre-contracted mesenteric arteries strongly dilated upon treatment with both types of acetate containing ET-CORMs (rac-1 and rac-4), while treatment with the pivalate containing ET-CORM (rac-8) resulted in no vasodilation. Pre-treatment of mesenteric arteries with the sGC inhibitor ODQ abolished rac-4 mediated vasodilation, similar as for the known sGC activator SNP. Likewise, rac-4 mediated vasodilation did not occur in KCL pretreated mesenteric arteries. Although mesenteric arteries abundantly expressed a variety of K+-channels only Kv7 channels were found to be of functional relevance for rac-4 mediated vasodilation. In conclusion the current results identified Kv7 channels as the main channel by which rac-4 mediates vasodilation. In keeping with the central role of Kv7 in the control of vascular tone and peripheral resistance these promising ex-vivo data warrant further in vivo studies, particularly in models of primary hypertension or cardiac diseases, to assess the potential use of ET-CORMs in these diseases.
Collapse
Affiliation(s)
- Danfeng Zhang
- Department of Nephrology, Endocrinology and Rheumatology, Fifth Medical Department of Medicine, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.,Department of Nephrology, the Second Hospital of Anhui Medical University, Hefei, China
| | | | | | - Paulus Wohlfart
- Diabetes Research, Sanofi Aventis Deutschland GmbH, Frankfurt, Germany
| | - Benito A Yard
- Department of Nephrology, Endocrinology and Rheumatology, Fifth Medical Department of Medicine, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.,European Center of Angioscience (ECAS), Research Division Cardiovascular Physiology, Medical Faculty Mannheim, Heidelberg University, Frankfurt, Germany
| | - Rudolf Schubert
- European Center of Angioscience (ECAS), Research Division Cardiovascular Physiology, Medical Faculty Mannheim, Heidelberg University, Frankfurt, Germany.,Physiology, Institute of Theoretical Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
| |
Collapse
|
2
|
Heme Oxygenase-1 Activity as a Correlate to Exercise-Mediated Amelioration of Cognitive Decline and Neuropathological Alterations in an Aging Rat Model of Dementia. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7212861. [PMID: 29662895 PMCID: PMC5831053 DOI: 10.1155/2018/7212861] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 11/24/2017] [Accepted: 01/01/2018] [Indexed: 11/17/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder with cognitive impairment. Physical exercise has long been proven to be beneficial in the disorder. The present study was designed to examine the effect of voluntary exercise on spatial memory, imaging, and pathological abnormalities. Particular focus has been given to the role of heme oxygenase-1 (HO-1)—an important cellular cytoprotectant in preserving mental acuity—using an aging rat model of dementia. Male and female Wistar rats were segregated into six groups—namely, (i) aged sedentary (control) females (ASF, n = 8); (ii) aged sedentary (control) males (ASM, n = 8); (iii) aged running females (ARF, n = 8); (iv) aged running males (ARM, n = 8); (v) young control females (YCF, n = 8); and (vi) young control males (YCM, n = 8). Rats in the ARF and ARM groups had free access to a standardized inbuilt running wheel during the 3-month evaluation period. Spatial memory was investigated using the Morris Water Test, imaging and pathological alterations were assessed using positron emission tomography (PET) imaging and histopathological examinations (H&E, Congo red staining), respectively, and HO-1 enzyme activity assays were also conducted. The outcomes suggest that voluntary physical exercise mitigates impaired spatial memory and neuropathological changes exhibited by the aging sedentary group, via elevated HO-1 activity, contributing to the antioxidant capacity in the aging brain.
Collapse
|
3
|
Jiang X, Wang H, Feng Y, Gu E, Liu X. Electrochemically probing the correlation between photo-induced CO-releasing behaviours and their LUMO energies of three diiron carbonyl complexes. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2017.04.053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
4
|
Łukasiak A, Skup A, Chlopicki S, Łomnicka M, Kaczara P, Proniewski B, Szewczyk A, Wrzosek A. SERCA, complex I of the respiratory chain and ATP-synthase inhibition are involved in pleiotropic effects of NS1619 on endothelial cells. Eur J Pharmacol 2016; 786:137-147. [PMID: 27262382 DOI: 10.1016/j.ejphar.2016.05.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 05/17/2016] [Accepted: 05/30/2016] [Indexed: 01/10/2023]
Abstract
A large conductance potassium (BKCa) channel opener, NS1619 (1,3-dihydro-1- [2-hydroxy-5-(trifluoromethyl) phenyl]-5-(trifluoromethyl)-2H-benzimidazole-2-one), is well known for its protective effects against ischemia-reperfusion injury; however, the exact mode of its action remains unclear. The aim of this study was to characterize the effect of NS1619 on endothelial cells. The endothelial cell line EA.hy926, guinea pig hearts and submitochondrial particles isolated from the heart were used. In the isolated guinea pig hearts, which were perfused using the Langendorff technique, NS1619 caused a dose-dependent increase in coronary flow that was inhibited by L-NAME. In EA.hy926 cells, NS1619 also caused a dose-dependent increase in the intracellular calcium ion concentration [Ca(2+)]i, as measured using the FURA-2 fluorescent probe. Moreover, NS1619 decreased the oxygen consumption rate in EA.hy926 cells, as assessed using a Clark-type oxygen electrode. However, when NS1619 was applied in the presence of oligomycin, the oxygen consumption increased. NS1619 also decreased the mitochondrial membrane potential, as measured using a JC-1 fluorescent probe in the presence and absence of oligomycin. Additionally, the application of NS1619 to submitochondrial particles inhibited ATP synthase. In summary, NS1619 has pleiotropic actions on EA.hy926 cells and acts not only as an opener of the BKCa channel in EA.hy926 cells but also as an inhibitor of the respiratory chain component, sarcoplasmic reticulum ATPase, which leads to the release of Ca(2+) from the endoplasmic reticulum. Furthermore, NS1619 has the oligomycin-like property of inhibiting mitochondrial ATP synthase.
Collapse
Affiliation(s)
- Agnieszka Łukasiak
- Department of Biophysics, Warsaw University of Life Sciences SGGW, 159 Nowoursynowska St., 02-776 Warsaw, Poland.
| | - Agata Skup
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, 3 Pasteura St., 02-093 Warsaw, Poland
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow, Poland; Chair of Pharmacology, Jagiellonian University, Medical College, 16 Grzegorzecka, 31-531 Krakow, Poland
| | - Magdalena Łomnicka
- Chair of Pharmacology, Jagiellonian University, Medical College, 16 Grzegorzecka, 31-531 Krakow, Poland
| | - Patrycja Kaczara
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow, Poland
| | - Bartosz Proniewski
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow, Poland
| | - Adam Szewczyk
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, 3 Pasteura St., 02-093 Warsaw, Poland
| | - Antoni Wrzosek
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, 3 Pasteura St., 02-093 Warsaw, Poland
| |
Collapse
|
5
|
Huo L, Zhang J, Qu Z, Chen H, Li Y, Gao W. Vasorelaxant effects of Shunaoxin pill are mediated by NO/cGMP pathway, HO/CO pathway and calcium channel blockade in isolated rat thoracic aorta. JOURNAL OF ETHNOPHARMACOLOGY 2015; 173:352-360. [PMID: 26239154 DOI: 10.1016/j.jep.2015.07.048] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 07/27/2015] [Accepted: 07/31/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shunaoxin pill (SNX), one of the famous classical recipes in traditional Chinese medicine, is developed from the "Decoction of Xionggui". It has been used for treatment of cerebrovascular related diseases. It is well known that vasodilatation plays a very important role in cerebrovascular diseases. The effect of SNX on vasorelaxant activity has not yet been explored. Therefore, we aimed to investigate the vasorelaxant effects of SNX on isolated rat thoracic aorta so as to assess some of the possible mechanisms. We also investigate the gasotransmitter signaling pathway involved which has been rarely reported in isolated rat thoracic aorta before. AIM OF THE STUDY The present study was performed to examine the vasodilative activity of SNX and its mechanisms in isolated rat thoracic aorta. MATERIALS AND METHODS SNX was studied on isolated rat thoracic aorta in vitro, including endothelium-intact and endothelium-denuded aortic rings. In present study, specific inhibitors including soluble guanylate cyclase (sGC) inhibitor 1 H-[1,2,4]oxadiazolo[4,3-a]quinoxaline-1-one (ODQ), cyclooxygenase (COX) inhibitor indomethacin (INDO), NO synthase inhibitor NG-nitro-l-arginine methyl ester (L-NAME), heme oxygenase-1 (HO-1) inhibitor zinc-protoporphyrin (ZnPP), cystathionine γ-lyase (CSE) inhibitor DL-Propargylglycine (PAG), non-selective K(+) channel inhibitor tetraethylammonium chloride (TEA), KV channel inhibitor 4-Aminopyridine (4-AP), and KATP channel inhibitor Glibenclamide (Gli) were used, they were added 20min before NE contraction and then added SNX to induce vasodilation. RESULTS Removal of endothelium or pretreatment of aortic rings (intact endothelium) with L-NAME, ODQ or ZnPP significantly blocked SNX-induced relaxation. Pretreatment with the non-selective K(+) channel inhibitor TEA, KV channel inhibitor 4-AP or the KATP channel inhibitor Gli, none of them had influences on the SNX-induced response (p>0.05). Besides, SNX inhibited the contraction triggered by NE in endothelium-denuded rings in Ca(2+)-free medium. SNX also produced rightward parallel displacement of CaCl2 curves. CONCLUSIONS These results suggest that SNX can induce less endothelium-dependent and more endothelium-independent vascular relaxation. The NO/cGMP and HO/CO pathways, blockade of Ca(2+) channels are inhibition of IP3R mediated Ca(2+) mobilization from intracellular stores, are likely involved in this relaxation. Furthermore, the underlying mechanisms of combined compositions in SNX await further investigations.
Collapse
Affiliation(s)
- Liqin Huo
- School of Pharmaceutical Science and Technology, Tianjin University, Weijin Road, Tianjin 300072, China
| | - Jingze Zhang
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Logistics College of Chinese People's Armed Police Forces, Tianjin 300162, China; Department of Pharmacy, Logistics College of Chinese People's Armed Police Forces, Tianjin 300162, China
| | - Zhuo Qu
- School of Pharmaceutical Science and Technology, Tianjin University, Weijin Road, Tianjin 300072, China
| | - Hong Chen
- Department of Pharmacy, Logistics College of Chinese People's Armed Police Forces, Tianjin 300162, China
| | - Yuming Li
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Logistics College of Chinese People's Armed Police Forces, Tianjin 300162, China
| | - Wenyuan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, Weijin Road, Tianjin 300072, China.
| |
Collapse
|
6
|
Abstract
Diabetic retinopathy is a common condition that occurs in patients with diabetes with long-standing hyperglycemia that is characterized by inappropriate angiogenesis. This pathological angiogenesis could be a sort of physiological proliferative response to injury by the endothelium. Recent studies suggested that reactive oxygen species (ROS) play a significant role in this angiogenesis. Vascular endothelial growth factor (VEGF) is a potent angiogenic growth factor that plays a significant role in diabetic retinopathy. The interaction between VEGF and ROS, and theirs in turn with pro- and anti-inflammatory cytokines and anti-inflammatory bioactive lipid molecules such as lipoxins, resolvins, protectins, and maresins is particularly relevant to understand the pathophysiology of diabetic retinopathy and develop future therapeutic interventions.
Collapse
Affiliation(s)
- Qi Ma
- a Department of Food Science and Nutrition , Zhejiang University , Hangzhou , 310029 , China
| | | | | | | |
Collapse
|
7
|
Abstract
Since the discovery that CO acts as a cytoprotective and homeostatic molecule, increasing research efforts have been devoted to the exploitation of its therapeutic effects. Both endogenous and exogenous CO improves experimental lung, vascular and cardiac injuries and protects against several inflammatory states. The technology is now in place to bring CO to clinical applications, but the use of the gaseous molecule poses several problems. The challenges associated with the clinical implementation of the gas have in part been answered by the development of CO-releasing molecules (CO-RMs). As stable solid forms of CO, these molecules represent an alternative to the administration of carbon monoxide (orally or by injection). In this article, we present insights into the biochemical action of CO and discuss the efficacy of CO and CO-RMs in preclinical disease models. Recent advances in the CO-RMs field are critically addressed.
Collapse
|
8
|
The Janus face of the heme oxygenase/biliverdin reductase system in Alzheimer disease: it's time for reconciliation. Neurobiol Dis 2013; 62:144-59. [PMID: 24095978 DOI: 10.1016/j.nbd.2013.09.018] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 09/24/2013] [Indexed: 12/23/2022] Open
Abstract
Alzheimer disease (AD) is the most common form of dementia among the elderly and is characterized by progressive loss of memory and cognition. These clinical features are due in part to the increase of reactive oxygen and nitrogen species that mediate neurotoxic effects. The up-regulation of the heme oxygenase-1/biliverdin reductase-A (HO-1/BVR-A) system is one of the earlier events in the adaptive response to stress. HO-1/BVR-A reduces the intracellular levels of pro-oxidant heme and generates equimolar amounts of the free radical scavengers biliverdin-IX alpha (BV)/bilirubin-IX alpha (BR) as well as the pleiotropic gaseous neuromodulator carbon monoxide (CO) and ferrous iron. Two main and opposite hypotheses for a role of the HO-1/BVR-A system in AD propose that this system mediates neurotoxic and neuroprotective effects, respectively. This apparent controversy was mainly due to the fact that for over about 20years HO-1 was the only player on which all the analyses were focused, excluding the other important and essential component of the entire system, BVR. Following studies from the Butterfield laboratory that reported alterations in BVR activity along with decreased phosphorylation and increased oxidative/nitrosative post-translational modifications in the brain of subjects with AD and amnestic mild cognitive impairment (MCI) subjects, a debate was opened on the real pathophysiological and clinical significance of BVR-A. In this paper we provide a review of the main discoveries about the HO/BVR system in AD and MCI, and propose a mechanism that reconciles these two hypotheses noted above of neurotoxic and the neuroprotective aspects of this important stress responsive system.
Collapse
|
9
|
Chakravartula SVS, Balazy M. Characterization of Nitro Arachidonic Acid and Nitro Linoleic Acid by Mass Spectrometry. ANAL LETT 2012. [DOI: 10.1080/00032719.2012.693558] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
10
|
Lang E, Qadri SM, Jilani K, Zelenak C, Lupescu A, Schleicher E, Lang F. Carbon monoxide-sensitive apoptotic death of erythrocytes. Basic Clin Pharmacol Toxicol 2012; 111:348-55. [PMID: 22726235 DOI: 10.1111/j.1742-7843.2012.00915.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 06/19/2012] [Indexed: 11/29/2022]
Abstract
Carbon monoxide (CO) intoxication severely interferes with the oxygen-transporting function of haemoglobin. Beyond that, CO participates in the regulation of apoptosis. CO could be generated from CO-releasing molecules (CORM), such as the tricarbonyl-dichlororuthenium (II) dimer (CORM-2), which is presently considered for the treatment of vascular dysfunction, inflammation, tissue ischaemia and organ rejection. CORM-2 is at least partially effective by modifying gene expression and mitochondrial potential. Erythrocytes lack nuclei and mitochondria but may undergo suicidal cell death or eryptosis, characterized by cell shrinkage and phospholipid scrambling of the cell membrane. Eryptosis is triggered by the increase in cytosolic Ca²⁺ activity ([Ca²⁺](i)). The present study explored whether CORM-2 influences eryptosis. To this end, [Ca²⁺](i) was estimated from Fluo-3-fluorescence, cell volume from forward scatter, phospholipid scrambling from annexin-V-binding and haemolysis from haemoglobin release. CO-binding haemoglobin (COHb) was estimated utilizing a blood gas analyser. As a result, exposure of erythrocytes for 24 hr to CORM-2 (≥5 μM) significantly increased COHb, [Ca²⁺](i) , forward scatter, annexin-V-binding and haemolysis. Annexin-V-binding was significantly blunted by 100% oxygen and was virtually abolished in the nominal absence of Ca²⁺. In conclusion, CORM-2 stimulates cell membrane scrambling of erythrocytes, an effect largely due to Ca²⁺ entry and partially reversed by O₂.
Collapse
Affiliation(s)
- Elisabeth Lang
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
11
|
Das UN. Lipoxins, resolvins, and protectins in the prevention and treatment of diabetic macular edema and retinopathy. Nutrition 2012; 29:1-7. [PMID: 22677359 DOI: 10.1016/j.nut.2012.02.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Revised: 01/17/2012] [Accepted: 02/10/2012] [Indexed: 10/28/2022]
Abstract
Diabetic macular edema and retinopathy are low-grade inflammatory conditions. Infusions of antitumor necrosis factor-α (anti-TNF-α) antibody and antivascular endothelial growth factor (anti-VEGF) antibody have been shown to be at least partly effective in the treatment of diabetic macular edema and proliferative diabetic retinopathy. Intravitreal therapy of diabetic macular edema by the anti-TNF-α antibody has been found to produce significant side effects and anti-VEGF therapy to be ineffective. Nevertheless, these studies have indicated that the suppression of TNF-α and other proinflammatory cytokines and VEGF could be of benefit in diabetic macular edema and retinopathy. The retina is rich in polyunsaturated fatty acids, especially in ω-3, and several studies have shown that polyunsaturated fatty acids prevent diabetic retinopathy. Lipoxins, resolvins, and protectins derived from various polyunsaturated fatty acids possess anti-inflammatory actions and suppress the production of interleukin-6, and TNF-α and VEGF have antiangiogenic actions. In view of these evidences, I propose that lipoxins, resolvins, and protectins could be of significant benefit in the prevention and management of diabetic macular edema and retinopathy.
Collapse
Affiliation(s)
- Undurti N Das
- School of Biotechnology, Jawaharlal Nehru Technological University, Kakinada, India.
| |
Collapse
|
12
|
Antioxidant roles of heme oxygenase, carbon monoxide, and bilirubin in cerebral circulation during seizures. J Cereb Blood Flow Metab 2012; 32:1024-34. [PMID: 22354150 PMCID: PMC3367218 DOI: 10.1038/jcbfm.2012.13] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Postictal cerebrovascular dysfunction is an adverse effect of seizures in newborn piglets. The brain heme oxygenase (HO) provides protection against cerebrovascular dysfunction. We investigated the contribution of reactive oxygen species (ROS) to seizure-induced vascular damage and the mechanism of HO vasoprotection. In a bicuculline model of seizures, we addressed the hypotheses: (1) seizures increase brain ROS; (2) ROS contribute to cerebral vascular dysfunction; (3) ROS initiate a vasoprotective mechanisms by activating endogenous HO; and (4) HO products have antioxidant properties. As assessed by dihydroethidium oxidation (ox-DHE), seizures increased ROS in cerebral vessels and cortical astrocytes; ox-DHE elevation was prevented by tiron and apocynin. An HO inhibitor, tin protoporphyrin, potentiated, whereas an HO-1 inducer, cobalt protoporphyrin, blocked seizure-induced increase in DHE oxidation. Heme oxygenase products carbon monoxide (CO) (CORM-A1) and bilirubin attenuated ox-DHE elevation during seizures. Antioxidants tiron and bilirubin prevented the loss of postictal cerebrovascular dilations to bradykinin, glutamate, and sodium nitroprusside. Tiron and apocynin abrogated activation of the brain HO during seizures. Overall, these data suggest that long-term adverse cerebrovascular effects of seizures are attributed to oxidative stress. On the other hand, seizure-induced ROS are required for activation of the endogenous antioxidant HO/CO/bilirubin system that alleviates oxidative stress-induced loss of postictal cerebrovascular function in piglets.
Collapse
|
13
|
Riddle MA, Walker BR. Regulation of endothelial BK channels by heme oxygenase-derived carbon monoxide and caveolin-1. Am J Physiol Cell Physiol 2012; 303:C92-C101. [PMID: 22555843 DOI: 10.1152/ajpcell.00356.2011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A novel vasodilatory influence of endothelial cell (EC) large-conductance Ca(2+)-activated K(+) (BK) channels is present after in vivo exposure to chronic hypoxia (CH) and may exist in other pathological states. However, the mechanism of channel activation that results in altered vasoreactivity is unknown. Previously, we demonstrated that inhibition of either BK channels or heme oxygenase (HO) restores vasoconstrictor reactivity after CH. Additionally, administration of the scaffolding domain of caveolin (Cav)-1 inhibits EC BK activity and restores vasoconstrictor reactivity in this setting. These results led us to hypothesize that CH exposure results in a loss in Cav-1 inhibition of EC BK channels, resulting in their activation by HO-derived carbon monoxide (CO). Experiments were conducted on freshly dispersed aortic ECs from control and CH-exposed (barometric pressure: 380 mmHg for 48 h) rats. In electrophysiology experiments, outward currents were greater in cells from CH rats as well as from cells from control rats treated with the cholesterol-depleting agent methyl-β-cyclodextrin. These enhanced currents were returned to control by HO inhibition. Channel activity could be restored by the CO donor CO-releasing molecule (CORM)-2 during HO inhibition. Administration of the Cav-1 scaffolding domain eliminated BK currents in cells from CH rats, and current was not restored by the addition of CORM-2. Colocalization experiments in ECs from control and CH rats demonstrated an association between HO-2, Cav-1, and BK. We conclude that EC BK channel activity is HO dependent in the absence of the inhibitory effect of the Cav-1 scaffolding domain.
Collapse
Affiliation(s)
- Melissa A Riddle
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, USA
| | | |
Collapse
|
14
|
Sakuma S, Kitamura T, Kuroda C, Takeda K, Nakano S, Hamashima T, Kohda T, Wada SI, Arakawa Y, Fujimoto Y. All-trans Arachidonic acid generates reactive oxygen species via xanthine dehydrogenase/xanthine oxidase interconversion in the rat liver cytosol in vitro. J Clin Biochem Nutr 2012; 51:55-60. [PMID: 22798714 PMCID: PMC3391864 DOI: 10.3164/jcbn.11-97] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 08/27/2011] [Indexed: 01/10/2023] Open
Abstract
We previously reported that the all-cis isomer of arachidonic acid, the most naturally occurring isoform of this fatty acid, reduced cuprous copper ion-induced conversion of xanthine dehydrogenase into its reactive oxygen species generating form, xanthine oxidase. In the present study, the effects of all-trans isomer of arachidonic acid, in comparison with cis isomer of arachidonic acid, on the xanthine dehydrogenase/xanthine oxidase interconversion were explored. cis isomer of arachidonic acid alone did not have any significant effect on the activities of xanthine dehydrogenase and xanthine oxidase, but it inhibited the cuprous copper ion-induced conversion of xanthine dehydrogenase to xanthine oxidase in rat liver cytosol in vitro. In contrast, trans isomer of arachidonic acid elicited an increase in xanthine oxidase activity concomitant with a decrease in xanthine dehydrogenase activity, and further potentiated the cuprous copper ion-induced xanthine dehydrogenase/xanthine oxidase interconversion. In primary rat hepatocyte cultures, trans isomer of arachidonic acid increased 2',7'-dichlorofluorescein-fluorescence intensity in the cytosolic fraction from 2',7'-dichlorodihydrofluorescein, an indicator of reactive oxygen species generation. The pretreatment of allopurinol, an xanthine oxidase inhibitor, diminished the trans isomer of arachidonic acid-induced increase in the 2',7'-dichlorofluorescein-fluorescence intensity, indicating the role of xanthine dehydrogenase/xanthine oxidase in mediating trans isomer of arachidonic acid-induced reactive oxygen species generation. These observations suggest that, in contrast to all-cis arachidonic acid, all-trans arachidonic acid has the potential to enhance reactive oxygen species generation via xanthine dehydrogenase/xanthine oxidase interconversion in the liver cytosol in vitro.
Collapse
Affiliation(s)
- Satoru Sakuma
- Laboratory of Physiological Chemistry, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Leffler CW, Parfenova H, Jaggar JH. Carbon monoxide as an endogenous vascular modulator. Am J Physiol Heart Circ Physiol 2011; 301:H1-H11. [PMID: 21498777 DOI: 10.1152/ajpheart.00230.2011] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Carbon monoxide (CO) is produced by heme oxygenase (HO)-catalyzed heme degradation to CO, iron, and biliverdin. HO has two active isoforms, HO-1 (inducible) and HO-2 (constitutive). HO-2, but not HO-1, is highly expressed in endothelial and smooth muscle cells and in adjacent astrocytes in the brain. HO-1 is expressed basally only in the spleen and liver but can be induced to a varying extent in most tissues. Elevating heme, protein phosphorylation, Ca(2+) influx, and Ca(2+)/calmodulin-dependent processes increase HO-2 activity. CO dilates cerebral arterioles and may constrict or dilate skeletal muscle and renal arterioles. Selected vasodilatory stimuli, including seizures, glutamatergic stimulation, hypoxia, hypotension, and ADP, increase CO, and the inhibition of HO attenuates the dilation to these stimuli. Astrocytic HO-2-derived CO causes glutamatergic dilation of pial arterioles. CO dilates by activating smooth muscle cell large-conductance Ca(2+)-activated K(+) (BK(Ca)) channels. CO binds to BK(Ca) channel-bound heme, leading to an increase in Ca(2+) sparks-to-BK(Ca) channel coupling. Also, CO may bind directly to the BK(Ca) channel at several locations. Endothelial nitric oxide and prostacyclin interact with HO/CO in circulatory regulation. In cerebral arterioles in vivo, in contrast to dilation to acute CO, a prolonged exposure of cerebral arterioles to elevated CO produces progressive constriction by inhibiting nitric oxide synthase. The HO/CO system is highly protective to the vasculature. CO suppresses apoptosis and inhibits components of endogenous oxidant-generating pathways. Bilirubin is a potent reactive oxygen species scavenger. Still many questions remain about the physiology and biochemistry of HO/CO in the circulatory system and about the function and dysfunction of this gaseous mediator system.
Collapse
|
16
|
|
17
|
Rihakova L, Quiniou C, Hamdan FF, Kaul R, Brault S, Hou X, Lahaie I, Sapieha P, Hamel D, Shao Z, Gobeil F, Hardy P, Joyal JS, Nedev H, Duhamel F, Beauregard K, Heveker N, Saragovi HU, Guillon G, Bouvier M, Lubell WD, Chemtob S. VRQ397 (CRAVKY): a novel noncompetitive V2 receptor antagonist. Am J Physiol Regul Integr Comp Physiol 2009; 297:R1009-18. [PMID: 19641130 DOI: 10.1152/ajpregu.90766.2008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Vasopressin type 2 receptor (V2R) exhibits mostly important properties for hydroosmotic equilibrium and, to a lesser extent, on vasomotricity. Drugs currently acting on this receptor are analogs of the natural neuropeptide, arginine vasopressin (AVP), and hence are competitive ligands. Peptides that reproduce specific sequences of a given receptor have lately been reported to interfere with its action, and if such molecules arise from regions remote from the binding site they would be anticipated to exhibit noncompetitive antagonism, but this has yet to be shown for V2R. Six peptides reproducing juxtamembranous regions of V2R were designed and screened; the most effective peptide, cravky (labeled VRQ397), was characterized. VRQ397 was potent (IC(50) = 0.69 +/- 0.25 nM) and fully effective in inhibiting V2R-dependent physiological function, specifically desmopressin-L-desamino-8-arginine-vasopressin (DDAVP)-induced cremasteric vasorelaxation; this physiological functional assay was utilized to avoid overlooking interference of specific signaling events. A dose-response profile revealed a noncompetitive property of VRQ397; correspondingly, VRQ397 bound specifically to V2R-expressing cells could not displace its natural ligand, AVP, but modulated AVP binding kinetics (dissociation rate). Specificity of VRQ397 was further confirmed by its inability to bind to homologous V1 and oxytocin receptors and its inefficacy to alter responses to stimulation of these receptors. VRQ397 exhibited pharmacological permissiveness on V2R-induced signals, as it inhibited DDAVP-induced PGI(2) generation but not that of cAMP or recruitment of beta-arrestin2. Consistent with in vitro and ex vivo effects as a V2R antagonist, VRQ397 displayed anticipated in vivo aquaretic efficacy. We hereby describe the discovery of a first potent noncompetitive antagonist of V2R, which exhibits functional selectivity, in line with properties of a negative allosteric modulator.
Collapse
Affiliation(s)
- L Rihakova
- Departments of Pediatrics and Pharmacology, Hôpital Ste Justine, Research Center, Montreal, QC, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Jain K, Siddam A, Marathi A, Roy U, Falck JR, Balazy M. The mechanism of oleic acid nitration by *NO(2). Free Radic Biol Med 2008; 45:269-83. [PMID: 18457679 DOI: 10.1016/j.freeradbiomed.2008.04.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 03/31/2008] [Accepted: 04/03/2008] [Indexed: 12/27/2022]
Abstract
Fatty acid nitration is a recently discovered process that generates biologically active nitro lipids; however, its mechanism has not been fully characterized. For example, some structural details such as vinyl and allyl isomers of the nitro fatty acids have not been established. To characterize lipids that originated from a biomimetic reaction of *NO(2) with oleic acid, we synthesized several isomers of nitro oleic acids and studied their chromatography and mass spectra by various techniques of mass spectrometry. LC/MS analysis performed on a high resolution micro column detected molecular carboxylic anions of various oleic acid nitro isomers (NO(2)OA). Esterification of NO(2)OA with pentafluorobenzyl bromide and diisopropylethylamine as a catalyst produced a unique isoxazole ester derivative exclusively from allyl NO(2)OA isomers via dehydration of the nitro group at ambient temperatures. This new analytical procedure revealed that *NO(2) generated two vinyl and two allyl isomers of NO(2)OA. The vinyl isomers showed high regioselectivity with the 1.8:1 preference for the 10-NO(2)OA isomer that was absent among allylic isomers. The nitration also generated elaidic acid via cis-trans isomerization and diatereoisomers of vicinal nitro hydroxy, nitro keto and alpha-nitro epoxy stearic acids with high stereo and regioselectivity. Nitration of small unilamelar phospholipid vesicles resulted in several phospholipids containing nitro lipids and elaidic acid amenable to hydrolysis by phospholipase A(2).
Collapse
Affiliation(s)
- Kavita Jain
- New York Medical College, Valhalla, NY 10595, USA
| | | | | | | | | | | |
Collapse
|
19
|
Balazy M, Chemtob S. Trans-arachidonic acids: new mediators of nitro-oxidative stress. Pharmacol Ther 2008; 119:275-90. [PMID: 18606454 DOI: 10.1016/j.pharmthera.2008.05.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Accepted: 05/14/2008] [Indexed: 10/22/2022]
Abstract
A reaction of arachidonic acid with the nitrogen dioxide radical (*NO2) or its precursors (peroxynitrite, nitrous acid, nitrogen trioxide) generates a group of nitro lipids named nitroeicosanoids. A distinct feature of this reaction is abundant formation of four trans isomers of arachidonic acid (TAA) via reversible addition of the NO2 radical to the arachidonic acid cis double bonds. This cis-trans isomerization is biologically relevant because many pathologies that involve NO formation such as inflammation, hyperoxia, hypercapnia or exposure to cigarette smoke increase the TAA levels in cells, tissues and in the systemic circulation. Inflammatory conditions have been known to stimulate formation of a variety of oxidized lipids from unsaturated fatty acid precursors via lipid peroxidation mechanisms; however, nitration-dependent cis-trans-isomerization of arachidonic acid is a characteristic process for *NO2. TAA are likely to function as specific and selective biomarkers of the pathologic conditions that define nitro-oxidative stress. Diet independent biosynthesis of trans fatty acids as a result of disease is our new observation. In the past, experimental feeding and clinical studies have supported the concerns that dietary trans fatty acids are cardiovascular risk factors, however, clinical consequences of the endogenous formation of trans fatty acids are not known but potentially important given available studies on TAA. This review aims to summarize the emerging role of TAA as a unique group of biomarkers that target microcirculation and other systems. A biological mechanism that generates endogenous trans fatty acids poses new challenges for pharmacologic intervention and we suggest approaches that may limit TAA effects.
Collapse
|