1
|
Liu J, Zhong J. Landscape evolution in China's key ecological function zones during 1990-2015. Sci Rep 2024; 14:2655. [PMID: 38302526 PMCID: PMC10834530 DOI: 10.1038/s41598-024-52863-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 01/24/2024] [Indexed: 02/03/2024] Open
Abstract
Landscape evolution has profound effects on ecosystems. Recently, some studies suggest that China has implemented plans leading in the greening of the world by mainly describing the changes based on satellite data. However, few studies have analyzed the policy effect on ecosystem improvement from the perspective of landscape pattern evolution. Among the numerous ecological policy plans, China's key ecological function zones plan is an important one. In this study, we focus on depicting the long-term and large-scale landscape evolution in China's key ecological function zones, which are accounting for 40.2% of China's land area, and include four-type ecoregions where ecosystems are fragile or important, to comprehensively explore the environmental influences of policy planning. For this purpose, we first described the landscape composition changes and conversion mechanisms in China's key ecological function zones from 1990 to 2015. Then we captured the detailed pattern evolution characteristics by landscape indices. The results show that these ecoregions were mostly evolving in an unfavorable direction in these 25 years, i.e. destruction of habitats and increment of fragmentation. Although greening areas increased based on other recent researches, the landscape pattern became worse, indicating it is necessary for the detailed analysis of landscape ecology and more accurate ecological planning. We also found the deterioration of the ecological environment had been uncharacteristically stopped or even improved in wind prevention and sand fixation ecoregions and biodiversity maintenance ecoregions after the implementation of this plan. Furthermore, we assumed that the policy is more prominent in these prohibiting sabotages and protecting areas with fragile ecological bases, which may be caused by the differentiated transfer payments in different ecoregions. Finally, some planning suggestions, such as stricter land use control, the regional balance of ecological transfer payments and deepening of ecological migration policies, etc., were proposed for promoting better future environmental changes.
Collapse
Affiliation(s)
- Jiafeng Liu
- China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, 267 North Fourth Ring Middle Road, Beijing, 100083, People's Republic of China.
- Key Laboratory of Digital Mapping and Land Information Application, Ministry of Natural Resources, 129 Luoyu Road, Wuhan, 430079, People's Republic of China.
| | - Jing Zhong
- School of Resource and Environmental Sciences, Wuhan University, 129 Luoyu Road, Wuhan, 430079, People's Republic of China
| |
Collapse
|
3
|
Quispe RL, Canto RFS, Jaramillo ML, Barbosa FAR, Braga AL, de Bem AF, Farina M. Design, Synthesis, and In Vitro Evaluation of a Novel Probucol Derivative: Protective Activity in Neuronal Cells Through GPx Upregulation. Mol Neurobiol 2018; 55:7619-7634. [PMID: 29430618 DOI: 10.1007/s12035-018-0939-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/28/2018] [Indexed: 12/23/2022]
Abstract
Recent studies have shown that probucol (PB), a hipocholesterolemic agent with antioxidant and anti-inflammatory properties, presents neuroprotective properties. On the other hand, adverse effects have limited PB's clinical application. Thus, the search for PB derivatives with no or less adverse effects has been a topic of research. In this study, we present a novel organoselenium PB derivative (RC513) and investigate its potential protective activity in an in vitro experimental model of oxidative toxicity induced by tert-butyl hydroperoxide (tBuOOH) in HT22 neuronal cells, as well as exploit potential protective mechanisms. tBuOOH exposure caused a significant decrease in the cell viability, which was preceded by (i) increased reactive species generation and (ii) decreased mitochondrial maximum oxygen consumption rate. RC513 pretreatment (48 h) significantly prevented the tBuOOH-induced decrease of cell viability, RS generation, and mitochondrial dysfunction. Of note, RC513 significantly increased glutathione peroxidase (GPx) activity and mRNA expression of GPx1, a key enzyme involved in peroxide detoxification. The use of mercaptosuccinic acid, an inhibitor of GPx, significantly decreased the protective activity of RC513 against tBuOOH-induced cytotoxicity in HT22 cells, highlighting the importance of GPx upregulation in the observed protection. In summary, the results showed a significant protective activity of a novel PB derivative against tBuOOH-induced oxidative stress and mitochondrial dysfunction, which was related to the upregulation of GPx. Our results point to RC513 as a promising neuroprotective molecule, even though studies concerning potential beneficial effects and safety aspects of RC513 under in vivo conditions are well warranted.
Collapse
Affiliation(s)
- Ruth Liliám Quispe
- Programa de Pós-Graduação em Neurociências, Universidade Federal de Santa Catarina, Campus Universitário, Florianópolis, SC, Brazil.
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Bloco C, CEP, Florianópolis, Santa Catarina, Brazil.
| | - Rômulo Faria Santos Canto
- Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Michael Lorenz Jaramillo
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Campus Universitário, Florianópolis, SC, Brazil
| | - Flavio Augusto Rocha Barbosa
- Departamento de Química, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Antônio Luiz Braga
- Departamento de Química, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Andreza Fabro de Bem
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Bloco C, CEP, Florianópolis, Santa Catarina, Brazil
| | - Marcelo Farina
- Programa de Pós-Graduação em Neurociências, Universidade Federal de Santa Catarina, Campus Universitário, Florianópolis, SC, Brazil.
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Bloco C, CEP, Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
4
|
Khan AA, Rahmani AH, Aldebasi YH, Aly SM. Biochemical and pathological studies on peroxidases -an updated review. Glob J Health Sci 2014; 6:87-98. [PMID: 25168993 PMCID: PMC4825458 DOI: 10.5539/gjhs.v6n5p87] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 04/17/2014] [Indexed: 12/31/2022] Open
Abstract
Peroxidases represent a family of isoenzymes actively involved in oxidizing reactive oxygen species, innate immunity, hormone biosynthesis and pathogenesis of several diseases. Different types of peroxidases have organ, tissues, cellular and sub-cellular level of specificities in their function. Different diseases lead to varied expressions of peroxidases based on several mechanisms proposed. Several researches are going on to understand its deficiency, over-expression and malfunction in relation with different diseases. Some common diseases of mankind like cancer, cardiovascular diseases and diabetes directly or indirectly involve the role of peroxidases. So the status of peroxidase levels may also function as a marker of different diseases. Although many types of diseases in human beings have a strong correlation with tissue specific peroxidases, the clear role of these oxido-reductases is not yet fully understood. Here we are focusing on the role of peroxidases in relations with different diseases occurring due to oxidative stress.
Collapse
Affiliation(s)
- Amjad A Khan
- Dept. of Basic Health Sciences, College of Applied Medical Science, Qassim University, Saudi Arabia.
| | | | | | | |
Collapse
|
5
|
Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS, Cheah JH, Clemons PA, Shamji AF, Clish CB, Brown LM, Girotti AW, Cornish VW, Schreiber SL, Stockwell BR. Regulation of ferroptotic cancer cell death by GPX4. Cell 2014; 156:317-331. [PMID: 24439385 DOI: 10.1016/j.cell.2013.12.010] [Citation(s) in RCA: 4883] [Impact Index Per Article: 443.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 08/30/2013] [Accepted: 12/04/2013] [Indexed: 02/06/2023]
Abstract
Ferroptosis is a form of nonapoptotic cell death for which key regulators remain unknown. We sought a common mediator for the lethality of 12 ferroptosis-inducing small molecules. We used targeted metabolomic profiling to discover that depletion of glutathione causes inactivation of glutathione peroxidases (GPXs) in response to one class of compounds and a chemoproteomics strategy to discover that GPX4 is directly inhibited by a second class of compounds. GPX4 overexpression and knockdown modulated the lethality of 12 ferroptosis inducers, but not of 11 compounds with other lethal mechanisms. In addition, two representative ferroptosis inducers prevented tumor growth in xenograft mouse tumor models. Sensitivity profiling in 177 cancer cell lines revealed that diffuse large B cell lymphomas and renal cell carcinomas are particularly susceptible to GPX4-regulated ferroptosis. Thus, GPX4 is an essential regulator of ferroptotic cancer cell death.
Collapse
Affiliation(s)
- Wan Seok Yang
- Department of Biological Sciences, Columbia University, 1208 Northwest Corner Building, 12 Floor, 550 West 120 Street, MC 4846, New York, NY 10027, USA
| | - Rohitha SriRamaratnam
- Department of Chemistry, Columbia University, 1208 Northwest Corner Building, 12 Floor, 550 West 120 Street, MC 4846, New York, NY 10027, USA
| | - Matthew E Welsch
- Department of Chemistry, Columbia University, 1208 Northwest Corner Building, 12 Floor, 550 West 120 Street, MC 4846, New York, NY 10027, USA
| | - Kenichi Shimada
- Department of Biological Sciences, Columbia University, 1208 Northwest Corner Building, 12 Floor, 550 West 120 Street, MC 4846, New York, NY 10027, USA
| | - Rachid Skouta
- Department of Biological Sciences, Columbia University, 1208 Northwest Corner Building, 12 Floor, 550 West 120 Street, MC 4846, New York, NY 10027, USA
| | - Vasanthi S Viswanathan
- Department of Biological Sciences, Columbia University, 1208 Northwest Corner Building, 12 Floor, 550 West 120 Street, MC 4846, New York, NY 10027, USA.,Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Jaime H Cheah
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Paul A Clemons
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | | | - Clary B Clish
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Lewis M Brown
- Department of Biological Sciences, Columbia University, 1208 Northwest Corner Building, 12 Floor, 550 West 120 Street, MC 4846, New York, NY 10027, USA.,Quantitative Proteomics Center, Columbia University, New York, NY 10027, USA
| | - Albert W Girotti
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Virginia W Cornish
- Department of Chemistry, Columbia University, 1208 Northwest Corner Building, 12 Floor, 550 West 120 Street, MC 4846, New York, NY 10027, USA
| | | | - Brent R Stockwell
- Department of Biological Sciences, Columbia University, 1208 Northwest Corner Building, 12 Floor, 550 West 120 Street, MC 4846, New York, NY 10027, USA.,Department of Chemistry, Columbia University, 1208 Northwest Corner Building, 12 Floor, 550 West 120 Street, MC 4846, New York, NY 10027, USA.,Howard Hughes Medical Institute, Columbia University, 1208 Northwest Corner Building, 12 Floor, 550 West 120 Street, MC 4846, New York, NY 10027, USA.,Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
6
|
Abstract
Oxidative stress induced by reactive oxygen and nitrogen species has been implicated in the pathogenesis of various disorders and diseases. Biomarkers are needed for assessment of oxidative stress status in vivo and also for health examination, diagnosis at early stage, prognosis, safe and efficient drug development, and evaluation of efficacy of drugs, foods, beverages, and supplements. Lipids are susceptible to oxidation and lipid peroxidation products are potential biomarkers for oxidative stress status in vivo and its related diseases. Recently, isoprostane, isoprostaglandin homologues from arachidonic acid, neuroprostanes from docosahexaenoic acid, hydroxyoctadecadienoic acid from linoleic acid, and oxysterols from cholesterol have received much attention as potential biomarkers for oxidative stress status in vivo. The physiological levels of these lipid peroxidation products and potential application as biomarkers will be reviewed.
Collapse
Affiliation(s)
- Etsuo Niki
- Health Technology Research Center, National Institute of Advanced Industrial Science & Technology, Ikeda, Japan.
| |
Collapse
|