1
|
Ma X, Zhao H, Song JK, Zhang Z, Gao CJ, Luo Y, Ding XJ, Xue TT, Zhang Y, Zhang MJ, Zhou M, Wang RP, Kuai L, Li B. Retracing from Outcomes to Causes: NRF2-Driven GSTA4 Transcriptional Regulation Controls Chronic Inflammation and Oxidative Stress in Atopic Dermatitis Recurrence. J Invest Dermatol 2025; 145:334-345.e11. [PMID: 38879155 DOI: 10.1016/j.jid.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/23/2024] [Accepted: 05/09/2024] [Indexed: 07/14/2024]
Abstract
Atopic dermatitis (AD), a chronic and recurrent inflammatory skin disorder, presents a high incidence and imposes a substantial economic burden. Preventing its recurrence remains a significant challenge in dermatological therapy owing to poorly understood underlying mechanisms. In our study, we adopted a strategy of tracing the mechanisms of recurrence from clinical outcomes. We developed a mouse model of recurrent AD and applied clinically validated treatment regimens. Transcriptomic analyses revealed a pronounced enrichment in the glutathione metabolic pathway in the treated group. Through integrated bioinformatics and in vivo validation, we identified glutathione S-transferase alpha 4 (GSTA4) as a pivotal mediator in AD recurrence. Immunohistochemical analysis demonstrated decreased GSTA4 expression in lesions from patients with AD. Functionally, in vitro overexpression of GSTA4 significantly curtailed AD-like inflammatory responses and ROS production. Moreover, we discovered that NRF2 transcriptional activity regulates GSTA4 expression and function. Our treatment notably augmented NRF2-mediated GSTA4 transcription, yielding pronounced anti-inflammatory and ROS-neutralizing effects. Conclusively, our findings implicate GSTA4 as a critical factor in the recurrence of AD, particularly in the context of oxidative stress and chronic inflammation. Targeting the NRF2-GSTA4 axis emerges as a promising anti-inflammatory and antioxidative strategy for preventing AD recurrence.
Collapse
Affiliation(s)
- Xin Ma
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China; Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hang Zhao
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Jian-Kun Song
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China; Institute of Dermatology, School of Medicine, Tongji University, Shanghai, China
| | - Zhan Zhang
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Chun-Jie Gao
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China; Institute of Dermatology, School of Medicine, Tongji University, Shanghai, China
| | - Ying Luo
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Xiao-Jie Ding
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Ting-Ting Xue
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Ying Zhang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China; Institute of Dermatology, School of Medicine, Tongji University, Shanghai, China
| | - Meng-Jie Zhang
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Mi Zhou
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Rui-Ping Wang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China; Institute of Dermatology, School of Medicine, Tongji University, Shanghai, China
| | - Le Kuai
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China.
| | - Bin Li
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China; Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
2
|
Fujiyama S, Okui T, Kato T. Detection of hypoxia in the pulmonary tissues of Xenopus laevis over repeated dives. Dev Growth Differ 2023; 65:94-99. [PMID: 36637347 DOI: 10.1111/dgd.12837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 11/25/2022] [Accepted: 12/12/2022] [Indexed: 01/14/2023]
Abstract
The oxygen environment in African clawed frogs (Xenopus laevis) continuously changes during their development, which involves a rapid increase in the body size, metamorphosis, and transition to adulthood. Nevertheless, there are limited reports on experimental models that are available for studying fluctuations in the oxygen environment in X. laevis. Thus, this study aimed to develop an experimental model on intermittent hypoxia in X. laevis and evaluate hypoxia and oxidative stress in the same. X. laevis were submerged in water with a dissolved oxygen concentration of 2 mg/L for 30 min; they were then removed from the water and allowed to freely absorb oxygen for 5 min. Immunostaining of pimonidazole-containing frozen tissue sections of the lung and liver using anti-pimonidazole antibodies as the hypoxia probes revealed that more than 95% of the submerged X. laevis cells were pimonidazole positive, providing direct evidence of tissue hypoxia. When the amount of oxidative stress in the lungs and liver was evaluated in terms of the amount of lipid peroxides, the diving group showed a 2.08-fold and 3.20-fold increase over the normal group, respectively. Following hypoxia exposure, the dry-to-wet weight ratios of the lung tissues was 1.27 times higher (p < .05), while the liver tissues was 1.06 times higher (although not significant). Thus, the degree of damage depended on the tissues affected. In the future, we believe that this model will be a promising option for analyzing the physiological responses of X. laevis to hypoxia and oxidative stress.
Collapse
Affiliation(s)
- Shingo Fujiyama
- Integrative Bioscience and Biomedical Engineering, Graduate School of Advanced Science and Engineering, Center for Advanced Life and Medical Science, Waseda University, Tokyo, Japan
| | - Takehito Okui
- Integrative Bioscience and Biomedical Engineering, Graduate School of Advanced Science and Engineering, Center for Advanced Life and Medical Science, Waseda University, Tokyo, Japan
| | - Takashi Kato
- Integrative Bioscience and Biomedical Engineering, Graduate School of Advanced Science and Engineering, Center for Advanced Life and Medical Science, Waseda University, Tokyo, Japan.,Department of Biology, School of Education, Waseda University, Tokyo, Japan
| |
Collapse
|
3
|
Fujii J, Homma T, Kobayashi S, Warang P, Madkaikar M, Mukherjee MB. Erythrocytes as a preferential target of oxidative stress in blood. Free Radic Res 2021; 55:562-580. [PMID: 33427524 DOI: 10.1080/10715762.2021.1873318] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Red blood cells (RBC) are specifically differentiated to transport oxygen and carbon dioxide in the blood and they lack most organelles, including mitochondria. The autoxidation of hemoglobin constitutes a major source of reactive oxygen species (ROS). Nitric oxide, which is produced by endothelial nitric oxide synthase (NOS3) or via the hemoglobin-mediated conversion of nitrite, interacts with ROS and results in the production of reactive nitrogen oxide species. Herein we present an overview of anemic diseases that are closely related to oxidative damage. Because the compensation of proteins by means of gene expression does not proceed in enucleated cells, antioxidative and redox systems play more important roles in maintaining the homeostasis of RBC against oxidative insult compared to ordinary cells. Defects in hemoglobin and enzymes that are involved in energy production and redox reactions largely trigger oxidative damage to RBC. The results of studies using genetically modified mice suggest that antioxidative enzymes, notably superoxide dismutase 1 and peroxiredoxin 2, play essential roles in coping with oxidative damage in erythroid cells, and their absence limits erythropoiesis, the life-span of RBC and consequently results in the development of anemia. The degeneration of the machinery involved in the proteolytic removal of damaged proteins appears to be associated with hemolytic events. The ubiquitin-proteasome system is the dominant machinery, not only for the proteolytic removal of damaged proteins in erythroid cells but also for the development of erythropoiesis. Hence, despite the fact that it is less abundant in RBC compared to ordinary cells, the aberrant ubiquitin-proteasome system may be associated with the development of anemic diseases via the accumulation of damaged proteins, as typified in sickle cell disease, and impaired erythropoiesis.
Collapse
Affiliation(s)
- Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata, Japan
| | - Takujiro Homma
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata, Japan
| | - Sho Kobayashi
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata, Japan
| | - Prashant Warang
- ICMR - National Institute of Immunohaematology, Mumbai, India
| | | | | |
Collapse
|
4
|
Tsuneda PP, Tsuneda BH, Hatamoto-Zervoudakis LK, Zervoudakis JT, Marinho WADS, Duarte Júnior MF, Araújo EB, Motheo TF, Silva LESE. SUPLEMENTAÇÃO DE SELÊNIO NA DIETA E QUALIDADE ESPERMÁTICA DO SÊMEN DE TOUROS BRANGUS. CIÊNCIA ANIMAL BRASILEIRA 2019. [DOI: 10.1590/1089-6891v20e-48586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Resumo Objetivou-se avaliar a qualidade espermática do sêmen de touros suplementados com selênio (Se) na dieta. Foram utilizados 16 touros Brangus, igualmente distribuídos em grupo controle (GC) e grupo Se (GSe − 0,1mg de Se/kg de MS de dieta). O experimento teve duração de 75 dias, e os animais foram suplementados por 60 dias. Foram realizadas quatro coletas de sêmen durante o período (0, 30, 60 e 75 dias) por animal. As amostras foram avaliadas quanto a motilidade e vigor espermáticos, integridade e funcionalidade da membrana plasmática (teste de expansão hiposmótico - HIPO) e viabilidade espermática e reação acrossomal (coloração tripla - TRI). Após avaliação, estas foram diluídas em meio Tris-gema com 5% de glicerol, envasadas (40x106 espermatozoides/palheta), resfriadas, congeladas e armazenadas em nitrogênio líquido até a análise. Após descongelação, foram submetidas às mesmas avaliações descritas para o sêmen fresco. Não houve interferência da suplementação com Se nas variáveis vigor espermático, HIPO e TRI do sêmen fresco e descongelado. Porém, constatou-se queda na motilidade espermática do GSe comparativamente ao GC no sêmen fresco (P=0,0035) e descongelado (P=0,0067) após 60 dias de suplementação. Portanto, a suplementação de Se na dieta não foi efetiva na promoção de melhorias dos parâmetros espermáticos de touros Brangus.
Collapse
|
5
|
Yoshihara D, Fujiwara N, Kitanaka N, Kitanaka J, Sakiyama H, Eguchi H, Takemura M, Suzuki K. The absence of the SOD1 gene causes abnormal monoaminergic neurotransmission and motivational impairment-like behavior in mice. Free Radic Res 2016; 50:1245-1256. [PMID: 27629432 DOI: 10.1080/10715762.2016.1234048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Copper/zinc superoxide dismutase (SOD1), a primary anti-oxidative enzyme, protects cells against oxidative stress. We report herein on a comparison of behavioral and neurobiological changes between SOD1 knockout (KO) and wild-type mice, in an attempt to assess the role of SOD1 in brain functions. SOD1 KO mice exhibited impaired motivational behavior in both shuttle-box learning and three-chamber social interaction tests. High levels of dopamine transporter protein and an acceleration of serotonin turnover were also detected in the cerebrums of the SOD1 KO mice. These findings suggest that SOD1 deficiency disturbs monoaminergic neurotransmission leading to a decrease in motivational behavior.
Collapse
Affiliation(s)
- Daisaku Yoshihara
- a Department of Biochemistry , Hyogo College of Medicine , Nishinomiya , Japan
| | - Noriko Fujiwara
- a Department of Biochemistry , Hyogo College of Medicine , Nishinomiya , Japan
| | - Nobue Kitanaka
- b Department of Pharmacology , Hyogo College of Medicine , Nishinomiya , Japan
| | - Junichi Kitanaka
- b Department of Pharmacology , Hyogo College of Medicine , Nishinomiya , Japan
| | - Haruhiko Sakiyama
- a Department of Biochemistry , Hyogo College of Medicine , Nishinomiya , Japan
| | - Hironobu Eguchi
- a Department of Biochemistry , Hyogo College of Medicine , Nishinomiya , Japan
| | - Motohiko Takemura
- b Department of Pharmacology , Hyogo College of Medicine , Nishinomiya , Japan
| | - Keiichiro Suzuki
- a Department of Biochemistry , Hyogo College of Medicine , Nishinomiya , Japan
| |
Collapse
|
6
|
Zhao Y, Cheng N, Dai M, Pu H, Zheng T, Li H, He J, Bai Y. Dynamic variation of histone H3 trimethyl Lys4 (H3K4me3) and heterochromatin protein 1 (HP1) with employment length in nickel smelting workers. Biomarkers 2016; 22:420-428. [PMID: 27323841 DOI: 10.1080/1354750x.2016.1203996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Yanhong Zhao
- Center for Cancer Prevent and Treatment, Institute of Epidemiology and Statistics, College of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Ning Cheng
- Center of Medical Laboratory, College of Basic Medicine, Lanzhou University, Lanzhou, Gansu, China
| | - Min Dai
- Cancer Institute and Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Hongquan Pu
- Workers’ Hospital of Jinchuan Company, Jinchuan Group Co, Ltd, Jinchang, Gansu, China
| | | | - Haiyan Li
- Workers’ Hospital of Jinchuan Company, Jinchuan Group Co, Ltd, Jinchang, Gansu, China
| | - Jie He
- Cancer Institute and Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yana Bai
- Center for Cancer Prevent and Treatment, Institute of Epidemiology and Statistics, College of Public Health, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
7
|
Sakiyama H, Fujiwara N, Yoneoka Y, Yoshihara D, Eguchi H, Suzuki K. Cu,Zn-SOD deficiency induces the accumulation of hepatic collagen. Free Radic Res 2016; 50:666-77. [PMID: 26981929 DOI: 10.3109/10715762.2016.1164856] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most prevalent chronic diseases, and results in the development of fibrosis. Oxidative stress is thought to be one of the underlying causes of NAFLD. Copper/zinc superoxide dismutase (SOD1) is a primary antioxidative enzyme that scavenges superoxide anion radicals. Although SOD1 knockout (KO) mice have been reported to develop fatty livers, it is not known whether this lack of SOD1 leads to the development of fibrosis. Since the accumulation of collagen typically precedes liver fibrosis, we assessed the balance between the synthesis and degradation of collagen in liver tissue from SOD1 KO mice. We found a higher accumulation of collagen in the livers of SOD1 KO mice compared to wild type mice. The level of expression of HSP47, a chaperone of collagen, and a tissue inhibitor (TIMP1) of matrix metalloproteinases (a collagen degradating enzyme) was also increased in SOD1 KO mice livers. These results indicate that collagen synthesis is increased but that its degradation is inhibited in SOD1 KO mice livers. Moreover, SOD1 KO mice liver sections were extensively modified by advanced glycation end products (AGEs), which suggest that collagen in SOD1 KO mice liver might be also modified with AGEs and then would be more resistant to the action of collagen degrading enzymes. These findings clearly show that oxidative stress plays an important role in the progression of liver fibrosis.
Collapse
Affiliation(s)
- Haruhiko Sakiyama
- a Department of Biochemistry, Hyogo College of Medicine , Nishinomiya , Hyogo , Japan
| | - Noriko Fujiwara
- a Department of Biochemistry, Hyogo College of Medicine , Nishinomiya , Hyogo , Japan
| | - Yuka Yoneoka
- a Department of Biochemistry, Hyogo College of Medicine , Nishinomiya , Hyogo , Japan
| | - Daisaku Yoshihara
- a Department of Biochemistry, Hyogo College of Medicine , Nishinomiya , Hyogo , Japan
| | - Hironobu Eguchi
- a Department of Biochemistry, Hyogo College of Medicine , Nishinomiya , Hyogo , Japan
| | - Keiichiro Suzuki
- a Department of Biochemistry, Hyogo College of Medicine , Nishinomiya , Hyogo , Japan
| |
Collapse
|
8
|
Superoxide dismutase deficiency impairs olfactory sexual signaling and alters bioenergetic function in mice. Proc Natl Acad Sci U S A 2014; 111:8119-24. [PMID: 24843175 DOI: 10.1073/pnas.1322282111] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Oxidative stress (an overproduction of reactive oxygen species in relation to defense mechanisms) may restrict investment in life history traits, such as growth, reproduction, lifespan, and the production of sexual signals to attract mates. The constraint on sexual signaling by oxidative stress is of particular interest because it has been proposed as a mechanism ensuring that only good-quality males produce the most attractive sexual signals. Despite these predictions, evidence supporting this theory is, at best, equivocal. We used a superoxide dismutase knockout mouse to demonstrate that oxidative stress directly impairs investment in morphological (preputial glands) and molecular (major urinary proteins) components of olfactory signaling essential for mate attraction. By maintaining males in a much more competitive environment than usual for mouse laboratory experiments, we also revealed a range of phenotypes of superoxide dismutase deficiency not observed in previous studies of this mouse model. This range included impaired bioenergetic function, which was undetectable in the control environment of this study. We urge further examination of model organisms in seminatural conditions and more competitive laboratory environments, as important phenotypes can be exposed under these more demanding conditions.
Collapse
|
9
|
Yoshihara D, Fujiwara N, Kato S, Sakiyama H, Eguchi H, Suzuki K. Alterations in renal iron metabolism caused by a copper/zinc-superoxide dismutase deficiency. Free Radic Res 2012; 46:750-7. [DOI: 10.3109/10715762.2012.673223] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
10
|
Ström M, Al Nimer F, Lindblom R, Nyengaard JR, Piehl F. Naturally Occurring Genetic Variability in Expression of Gsta4 is Associated with Differential Survival of Axotomized Rat Motoneurons. Neuromolecular Med 2011; 14:15-29. [DOI: 10.1007/s12017-011-8164-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 11/19/2011] [Indexed: 10/14/2022]
|
11
|
Balogh LM, Atkins WM. Interactions of glutathione transferases with 4-hydroxynonenal. Drug Metab Rev 2011; 43:165-78. [PMID: 21401344 DOI: 10.3109/03602532.2011.558092] [Citation(s) in RCA: 269] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Electrophilic products of lipid peroxidation are important contributors to the progression of several pathological states. The prototypical α,β-unsaturated aldehyde, 4-hydroxynonenal (HNE), triggers cellular events associated with oxidative stress, which can be curtailed by the glutathione-dependent elimination of HNE. The glutathione transferases (GSTs) are a major determinate of the intracellular concentration of HNE and can influence susceptibility to toxic effects, particularly when HNE and GST levels are altered in disease states. In this article, we provide a brief summary of the cellular effects of HNE, followed by a review of its GST-catalyzed detoxification, with an emphasis on the structural attributes that play an important role in the interactions with alpha-class GSTs. Some of the key determining characteristics that impart high alkenal activity reside in the unique C-terminal interactions of the GSTA4-4 enzyme. Studies encompassing both kinetic and structural analyses of related isoforms will be highlighted, with additional attention to stereochemical aspects that demonstrate the capacity of GSTA4-4 to detoxify both enantiomers of the biologically relevant racemic mixture while generating a select set of diastereomeric products with subsequent implications. A summary of the literature that examines the interplay between GSTs and HNE in model systems relevant to oxidative stress will also be discussed to demonstrate the magnitude of importance of GSTs in the overall detoxification scheme.
Collapse
Affiliation(s)
- Larissa M Balogh
- Department of Pharmacokinetics, Dynamics, and Metabolism, Pfizer Global Research and Development, Pfizer Inc., Groton, CT 06340, USA.
| | | |
Collapse
|
12
|
Kim MJ, Kim SS, Kim SD. Anti-Diabetic Effect of Red Ginseng-Chungkukjang with Green Laver or Sea Tangle. Prev Nutr Food Sci 2010. [DOI: 10.3746/jfn.2010.15.3.176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
13
|
Carlström M, Lai EY, Ma Z, Steege A, Patzak A, Eriksson UJ, Lundberg JO, Wilcox CS, Persson AEG. Superoxide dismutase 1 limits renal microvascular remodeling and attenuates arteriole and blood pressure responses to angiotensin II via modulation of nitric oxide bioavailability. Hypertension 2010; 56:907-13. [PMID: 20876452 DOI: 10.1161/hypertensionaha.110.159301] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Oxidative stress is associated with vascular remodeling and increased preglomerular resistance that are both implicated in the pathogenesis of renal and cardiovascular disease. Angiotensin II induces superoxide production, which is metabolized by superoxide dismutase (SOD) or scavenged by NO. We investigated the hypothesis that SOD1 regulates renal microvascular remodeling, blood pressure, and arteriolar responsiveness and sensitivity to angiotensin II using SOD1-transgenic (SOD1-tg) and SOD1-knockout (SOD1-ko) mice. Blood pressure, measured telemetrically, rose more abruptly during prolonged angiotensin II infusion in SOD1-ko mice. The afferent arteriole media:lumen ratios were reduced in SOD1-tg and increased in SOD1-ko mice. Afferent arterioles from nontreated wild types had graded contraction to angiotensin II (sensitivity: 10(-9) mol/L; responsiveness: 40%). Angiotensin II contractions were less sensitive (10(-8) mol/L) and responsive (14%) in SOD1-tg but more sensitive (10(-13) mol/L) and responsive (89%) in SOD1-ko mice. Arterioles from SOD1-ko had 4-fold increased superoxide formation with angiotensin II at 10(-9) mol/L. N(G)-nitro-l-arginine methyl ester reduced arteriole diameter of SOD1-tg and enhanced angiotensin II sensitivity and responsiveness of wild-type and SOD1-tg mice to the level of SOD1-ko mice. SOD mimetic treatment with Tempol increased arteriole diameter and normalized the enhanced sensitivity and responsiveness to angiotensin II of SOD1-ko mice but did not affect wild-type or SOD1-tg mice. Neither SOD1 deficiency nor overexpression was associated with changes in nitrate/nitrite excretion or renal mRNA expression of NO synthase, NADPH oxidase, or SOD2/SOD3 isoforms and angiotensin II receptors. In conclusion, SOD1 limits afferent arteriole remodeling and reduces sensitivity and responsiveness to angiotensin II by reducing superoxide and maintaining NO bioavailability. This may prevent an early and exaggerated blood pressure response to angiotensin II.
Collapse
Affiliation(s)
- Mattias Carlström
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Yoshihara D, Fujiwara N, Suzuki K. Antioxidants: benefits and risks for long-term health. Maturitas 2010; 67:103-7. [PMID: 20627629 DOI: 10.1016/j.maturitas.2010.05.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 05/02/2010] [Accepted: 05/02/2010] [Indexed: 01/10/2023]
Abstract
The oxidative modification hypothesis postulates that oxidative stress is one of the major factors in aging and the development of age-related disorders, including cardiovascular diseases. In this scenario, the oxidative modification of lipids, proteins and nucleic acids in vascular walls contributes to the etiology of cardiovascular disease, implying that consumption or therapeutic use of antioxidants could prevent the onset of such pathological disorders. Because of this, a number of studies have been conducted to address the question of whether cardiovascular diseases can be modulated by antioxidant treatment or consumption. Although some of the earliest data, collected in animal studies and epidemiologic studies have shown a measure of success, numerous clinical trials indicate that this approach is of minimal or no benefit. These conclusions represent a challenge to design more sensitive antioxidant trials in order to confirm or alter these conclusions. The focus of this review is on the benefits and disadvantages associated with the use of antioxidants, such as vitamins C and E, polyphenols, or antioxidant therapies, including hormone replacement therapy and iron reduction therapy, on overall vascular health.
Collapse
Affiliation(s)
- Daisaku Yoshihara
- Department of Biochemistry, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | | | | |
Collapse
|