1
|
Antioxidants: an approach for restricting oxidative stress induced neurodegeneration in Alzheimer's disease. Inflammopharmacology 2023; 31:717-730. [PMID: 36933175 DOI: 10.1007/s10787-023-01173-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/20/2023] [Indexed: 03/19/2023]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia, affecting millions of people worldwide. Oxidative stress contributes towards induction of neurodegeneration. It is one of the reasons behind initiation and progression of Alzheimer's disease. Understanding of oxidative balance and restoration of oxidative stress has demonstrated its effectiveness in the management of AD. Various natural and synthetic molecules have been found to be effective in different models of AD. Some clinical studies also support the use of antioxidants for prevention of neurodegeneration in AD. In this review we are summarizing the development of antioxidants to restrict oxidative stress induced neurodegeneration in AD.
Collapse
|
2
|
Al-Menhali AS, Anderson C, Gourine AV, Abramov AY, D'Souza A, Jaganjac M. Proteomic Analysis of Cardiac Adaptation to Exercise by High Resolution Mass Spectrometry. Front Mol Biosci 2021; 8:723858. [PMID: 34540898 PMCID: PMC8440823 DOI: 10.3389/fmolb.2021.723858] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/05/2021] [Indexed: 12/14/2022] Open
Abstract
Regular exercise has many health benefits, among which is a significant reduction of cardiovascular risk. Although many beneficial effects of exercise are well described, the exact mechanisms by which exercise confers cardiovascular benefits are yet to be fully understood. In the current study, we have used high resolution mass spectrometry to determine the proteomic responses of the heart to exercise training in mice. The impact of exercise-induced oxidative stress on modifications of cardiomyocyte proteins with lipid peroxidation biomarker 4-hydroxynonenal (4-HNE) was examined as well. Fourteen male mice were randomized into the control (sedentary) group and the exercise group that was subjected to a swim exercise training program for 5 days a week for 5 months. Proteins were isolated from the left ventricular tissue, fractionated and digested for shotgun proteomics. Peptides were separated by nanoliquid chromatography and analyzed on an Orbitrap Fusion mass spectrometer using high-energy collision–induced dissociation and electron transfer dissociation fragmentation. We identified distinct ventricular protein signatures established in response to exercise training. Comparative proteomics identified 23 proteins that were upregulated and 37 proteins that were downregulated with exercise, in addition to 65 proteins that were identified only in ventricular tissue samples of exercised mice. Most of the proteins specific to exercised mice are involved in respiratory electron transport and/or implicated in glutathione conjugation. Additionally, 10 proteins were found to be modified with 4-HNE. This study provides new data on the effects of exercise on the cardiac proteome and contributes to our understanding of the molecular mechanisms underlying the beneficial effects of exercise on the heart.
Collapse
Affiliation(s)
- Afnan Saleh Al-Menhali
- Division of Medicine, University College London, London, United Kingdom.,Qatar Analytics and BioResearch Lab, Anti Doping Lab Qatar, Doha, Qatar
| | - Cali Anderson
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Alexander V Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Andrey Y Abramov
- Department of Clinical and Movement Neuroscience, UCL Institute of Neurology, London, United Kingdom
| | - Alicia D'Souza
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Morana Jaganjac
- Division of Medicine, University College London, London, United Kingdom.,Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| |
Collapse
|
3
|
Schaur RJ, Siems W, Bresgen N, Eckl PM. 4-Hydroxy-nonenal-A Bioactive Lipid Peroxidation Product. Biomolecules 2015; 5:2247-337. [PMID: 26437435 PMCID: PMC4693237 DOI: 10.3390/biom5042247] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/24/2015] [Accepted: 07/29/2015] [Indexed: 12/23/2022] Open
Abstract
This review on recent research advances of the lipid peroxidation product 4-hydroxy-nonenal (HNE) has four major topics: I. the formation of HNE in various organs and tissues, II. the diverse biochemical reactions with Michael adduct formation as the most prominent one, III. the endogenous targets of HNE, primarily peptides and proteins (here the mechanisms of covalent adduct formation are described and the (patho-) physiological consequences discussed), and IV. the metabolism of HNE leading to a great number of degradation products, some of which are excreted in urine and may serve as non-invasive biomarkers of oxidative stress.
Collapse
Affiliation(s)
- Rudolf J Schaur
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 33a, 8010 Graz, Austria.
| | - Werner Siems
- Institute for Medical Education, KortexMed GmbH, Hindenburgring 12a, 38667 Bad Harzburg, Germany.
| | - Nikolaus Bresgen
- Division of Genetics, Department of Cell Biology, University of Salzburg, Hellbrunnerstasse 34, 5020 Salzburg, Austria.
| | - Peter M Eckl
- Division of Genetics, Department of Cell Biology, University of Salzburg, Hellbrunnerstasse 34, 5020 Salzburg, Austria.
| |
Collapse
|
4
|
Boronat S, García-Santamarina S, Hidalgo E. Gel-free proteomic methodologies to study reversible cysteine oxidation and irreversible protein carbonyl formation. Free Radic Res 2015; 49:494-510. [PMID: 25782062 DOI: 10.3109/10715762.2015.1009053] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Oxidative modifications in proteins have been traditionally considered as hallmarks of damage by oxidative stress and aging. However, oxidants can generate a huge variety of reversible and irreversible modifications in amino acid side chains as well as in the protein backbones, and these post-translational modifications can contribute to the activation of signal transduction pathways, and also mediate the toxicity of oxidants. Among the reversible modifications, the most relevant ones are those arising from cysteine oxidation. Thus, formation of sulfenic acid or disulfide bonds is known to occur in many enzymes as part of their catalytic cycles, and it also participates in the activation of signaling cascades. Furthermore, these reversible modifications have been usually attributed with a protective role, since they may prevent the formation of irreversible damage by scavenging reactive oxygen species. Among irreversible modifications, protein carbonyl formation has been linked to damage and death, since it cannot be repaired and can lead to protein loss-of-function and to the formation of protein aggregates. This review is aimed at researchers interested on the biological consequences of oxidative stress, both at the level of signaling and toxicity. Here we are providing a concise overview on current mass-spectrometry-based methodologies to detect reversible cysteine oxidation and irreversible protein carbonyl formation in proteomes. We do not pretend to impose any of the different methodologies, but rather to provide an objective catwalk on published gel-free approaches to detect those two types of modifications, from a biologist's point of view.
Collapse
Affiliation(s)
- S Boronat
- Departament de Ciències Experimentals i de la Salut, Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra , C/Dr. Aiguader 88, E-08003 Barcelona , Spain
| | | | | |
Collapse
|
5
|
2,3,7,8-Tetrachlorodibenzo-p-dioxin induces apoptosis by disruption of intracellular calcium homeostasis in human neuronal cell line SHSY5Y. Apoptosis 2014; 17:1170-81. [PMID: 22986482 DOI: 10.1007/s10495-012-0760-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The persistent xenobiotic agent 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induces neurotoxic effects that alters neurodevelopment and behavior both during development and adulthood. There are many ongoing efforts to determine the molecular mechanisms of TCDD-mediated neurotoxicity, the signaling pathways involved and its molecular targets in neurons. In this work, we have used SHSY5Y human neuroblastoma cells to characterize the TCDD-induced toxicity. TCDD produces a loss of viability linked to an increased caspase-3 activity, PARP-1 fragmentation, DNA laddering, nuclear fragmentation and hypodiploid (apoptotic) DNA content, in a similar way than staurosporine, a prototypical molecule of apoptosis induction. In addition, TCDD produces a decrease of mitochondrial membrane potential and an increase of intracellular calcium concentration (P < 0.05). Finally, based on the high lipophilic properties of the dioxin, we test the TCDD effect on the membrane integrity using sarcoplasmic reticulum vesicles as a model. TCDD produces calcium efflux through the membrane and an anisotropy decrease (P < 0.05) that reflects an increase in membrane fluidity. Altogether these results support the hypothesis that TCDD toxicity in SHSY5Y neuroblastoma cells provokes the disruption of calcium homeostasis, probably affecting membrane structural integrity, leading to an apoptotic process.
Collapse
|
6
|
Berrier C, Pozza A, de Lacroix de Lavalette A, Chardonnet S, Mesneau A, Jaxel C, le Maire M, Ghazi A. The purified mechanosensitive channel TREK-1 is directly sensitive to membrane tension. J Biol Chem 2013; 288:27307-27314. [PMID: 23897808 DOI: 10.1074/jbc.m113.478321] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mechanosensitive channels are detected in all cells and are speculated to play a key role in many functions including osmoregulation, growth, hearing, balance, and touch. In prokaryotic cells, a direct gating of mechanosensitive channels by membrane tension was clearly demonstrated because the purified channels could be functionally reconstituted in a lipid bilayer. No such evidence has been presented yet in the case of mechanosensitive channels from animal cells. TREK-1, a two-pore domain K(+) channel, was the first animal mechanosensitive channel identified at the molecular level. It is the target of a large variety of agents such as volatile anesthetics, neuroprotective agents, and antidepressants. We have produced the mouse TREK-1 in yeast, purified it, and reconstituted the protein in giant liposomes amenable to patch clamp recording. The protein exhibited the expected electrophysiological properties in terms of kinetics, selectivity, and pharmacology. Negative pressure (suction) applied through the pipette had no effect on the channel, but positive pressure could completely and reversibly close the channel. Our interpretation of these data is that the intrinsic tension in the lipid bilayer is sufficient to maximally activate the channel, which can be closed upon modification of the tension. These results indicate that TREK-1 is directly sensitive to membrane tension.
Collapse
Affiliation(s)
- Catherine Berrier
- Institut de Biochimie et Biophysique Moléculaire et Cellulaire (IBBMC), Unité Mixte de Recherche (UMR) 8619, CNRS, Université Paris-Sud, 91405 Orsay
| | - Alexandre Pozza
- Institute of Biology and Technology Saclay (iBitec-S), UMR 8221 Commissariat à l'Energie Atomique (CEA), CNRS, Université Paris-Sud and CEA Saclay, 91191 Gif sur Yvette, France
| | - Agnes de Lacroix de Lavalette
- Institute of Biology and Technology Saclay (iBitec-S), UMR 8221 Commissariat à l'Energie Atomique (CEA), CNRS, Université Paris-Sud and CEA Saclay, 91191 Gif sur Yvette, France
| | - Solenne Chardonnet
- Institut de Biochimie et Biophysique Moléculaire et Cellulaire (IBBMC), Unité Mixte de Recherche (UMR) 8619, CNRS, Université Paris-Sud, 91405 Orsay
| | - Agnes Mesneau
- Institut de Biochimie et Biophysique Moléculaire et Cellulaire (IBBMC), Unité Mixte de Recherche (UMR) 8619, CNRS, Université Paris-Sud, 91405 Orsay
| | - Christine Jaxel
- Institute of Biology and Technology Saclay (iBitec-S), UMR 8221 Commissariat à l'Energie Atomique (CEA), CNRS, Université Paris-Sud and CEA Saclay, 91191 Gif sur Yvette, France
| | - Marc le Maire
- Institute of Biology and Technology Saclay (iBitec-S), UMR 8221 Commissariat à l'Energie Atomique (CEA), CNRS, Université Paris-Sud and CEA Saclay, 91191 Gif sur Yvette, France
| | - Alexandre Ghazi
- Institut de Biochimie et Biophysique Moléculaire et Cellulaire (IBBMC), Unité Mixte de Recherche (UMR) 8619, CNRS, Université Paris-Sud, 91405 Orsay.
| |
Collapse
|
7
|
Pathophysiological relevance of aldehydic protein modifications. J Proteomics 2013; 92:239-47. [PMID: 23438936 DOI: 10.1016/j.jprot.2013.02.004] [Citation(s) in RCA: 297] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 01/30/2013] [Accepted: 02/02/2013] [Indexed: 11/23/2022]
Abstract
There is growing body of evidence that oxidative stress, i.e. excess in production of reactive oxygen species, can lead to covalent modification of proteins with bioactive aldehydes that are mostly produced under lipid peroxidation of polyunsaturated fatty acids. Thus generated reactive aldehydes are considered as second messengers of free radicals because they react with major bioactive macromolecules, in particular with various humoral and cellular proteins changing their structure and functions. Therefore, the aldehydic-protein adducts, in particular those involving 4-hydroxy-2-nonenal, malondialdehyde and acrolein can be valuable biomarkers of numerous pathophysiological processes. The development of immunochemical methods is increasing the possibilities to study such non-enzymatic protein modifications, on the one hand, while on the other hand the increase of knowledge on bioactivities of the aldehydes and their protein adducts might lead to better prevention, diagnosis and treatments of pathophysiological processes associated with lipid peroxidation and oxidative stress in general. This article is part of a Special Issue entitled: Posttranslational Protein modifications in biology and Medicine.
Collapse
|
8
|
Bachi A, Dalle-Donne I, Scaloni A. Redox Proteomics: Chemical Principles, Methodological Approaches and Biological/Biomedical Promises. Chem Rev 2012. [DOI: 10.1021/cr300073p] [Citation(s) in RCA: 189] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Angela Bachi
- Biological Mass Spectrometry Unit, San Raffaele Scientific Institute, 20132 Milan, Italy
| | | | - Andrea Scaloni
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy
| |
Collapse
|
9
|
Cai F, Dupertuis YM, Pichard C. Role of polyunsaturated fatty acids and lipid peroxidation on colorectal cancer risk and treatments. Curr Opin Clin Nutr Metab Care 2012; 15:99-106. [PMID: 22234166 DOI: 10.1097/mco.0b013e32834feab4] [Citation(s) in RCA: 222] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW The review aims at elucidating the role of lipid peroxidation of polyunsaturated fatty acids (PUFAs) in colorectal cancer (CRC) risk and treatment. RECENT FINDINGS CRC is one of the most overriding threats to public health. Despite a broad range of treatments, up to 50% of patients will inevitably develop incurable metastatic disease. Peroxidation of PUFAs contributes to augmentation of oxidative stress and causes in consequence inflammation, which is one of the possible carcinogenic factors of CRC. End products of PUFAs might be used as biomarkers for CRC detection and surveillance for treatment. They also have cytotoxic effect in CRC cells. Experimental results suggest that ω-3 PUFAs could increase the efficacy of radiotherapy and chemotherapy of CRC. SUMMARY Lipid peroxidation, one factor of oxidative stress, might play a paramount role not only in carcinogenesis but also in potential therapeutic strategy on CRC. End products of lipid peroxidation, such as malondialdehyde, 4-hydroxy-2-nonenal, and isoprostanes, could be used as biomarkers for cancer detection, surveillance of treatment outcome and prognostic index for CRC patients. Furthermore, malondialdehyde and 4-hydroxy-2-nonenal have cytotoxic effect not only in normal cells but also in CRC cancer cells, which implies the potential role of PUFAs in CRC treatment.
Collapse
Affiliation(s)
- Fang Cai
- Nutrition Unit, Geneva University Hospital, Geneva, Switzerland
| | | | | |
Collapse
|