1
|
Moore SC, Vaz de Castro PAS, Yaqub D, Jose PA, Armando I. Anti-Inflammatory Effects of Peripheral Dopamine. Int J Mol Sci 2023; 24:13816. [PMID: 37762126 PMCID: PMC10530375 DOI: 10.3390/ijms241813816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/18/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Dopamine is synthesized in the nervous system where it acts as a neurotransmitter. Dopamine is also synthesized in a number of peripheral organs as well as in several types of cells and has organ-specific functions and, as demonstrated more recently, is involved in the regulation of the immune response and inflammatory reaction. In particular, the renal dopaminergic system is very important in the regulation of sodium transport and blood pressure and is particularly sensitive to stimuli that cause oxidative stress and inflammation. This review is focused on how dopamine is synthesized in organs and tissues and the mechanisms by which dopamine and its receptors exert their effects on the inflammatory response.
Collapse
Affiliation(s)
| | | | | | | | - Ines Armando
- Division of Kidney Diseases and Hypertension, Department of Medicine, The George Washington School of Medicine and Health Sciences, Washington, DC 20037, USA; (S.C.M.); (P.A.S.V.d.C.); (D.Y.); (P.A.J.)
| |
Collapse
|
2
|
Pereira-Acácio A, Veloso-Santos JPM, Nossar LF, Costa-Sarmento G, Muzi-Filho H, Vieyra A. Angiotensin-(3–4) normalizes the elevated arterial blood pressure and abnormal Na+/energy handling associated with chronic undernutrition by counteracting the effects mediated by type 1 angiotensin II receptors. PLoS One 2022; 17:e0273385. [PMID: 35984814 PMCID: PMC9390919 DOI: 10.1371/journal.pone.0273385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/07/2022] [Indexed: 11/24/2022] Open
Abstract
We investigated the mechanisms by which chronic administration of a multideficient diet after weaning alters bodily Na+ handling, and culminates in high systolic blood pressure (SBP) at a juvenile age. From 28 to 92 days of age, weaned male Wistar rats were given a diet with low content and poor-quality protein, and low lipid, without vitamin supplementation, which mimics the diets consumed in impoverished regions worldwide. We measured food, energy and Na+ ingestion, together with urinary Na+ excretion, Na+ density (Na+ intake/energy intake), plasma Na+ concentration, SBP, and renal proximal tubule Na+-transporting ATPases. Undernourished rats aged 92 days had only one-third of the control body mass, lower plasma albumin, higher SBP, higher energy intake, and higher positive Na+ balance accompanied by decreased plasma Na+ concentration. Losartan or Ang-(3–4) normalized SBP, and the combination of the 2 substances induced an accentuated negative Na+ balance as a result of strong inhibition of Na+ ingestion. Na+ density in undernourished rats was higher than in control, irrespective of the treatment, and they had downregulated (Na++K+)ATPase and upregulated Na+-ATPase in proximal tubule cells, which returned to control levels after Losartan or Ang-(3–4). We conclude that Na+ density, not only Na+ ingestion, plays a central role in the pathophysiology of elevated SBP in chronically undernourished rats. The observations that Losartan and Ang-(3–4) normalized SBP together with negative Na+ balance give support to the proposal that Ang II⇒AT1R and Ang II⇒AT2R axes have opposite roles within the renin-angiotensin-aldosterone system of undernourished juvenile rats.
Collapse
Affiliation(s)
- Amaury Pereira-Acácio
- Graduate Program of Translational Biomedicine/BIOTRANS, University of Grande Rio, Duque de Caxias, Brazil
- Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - João P. M. Veloso-Santos
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiz F. Nossar
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gloria Costa-Sarmento
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Humberto Muzi-Filho
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adalberto Vieyra
- Graduate Program of Translational Biomedicine/BIOTRANS, University of Grande Rio, Duque de Caxias, Brazil
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology for Regenerative Medicine/REGENERA, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
3
|
Dopamine receptor agonists ameliorate bleomycin-induced pulmonary fibrosis by repressing fibroblast differentiation and proliferation. Biomed Pharmacother 2021; 139:111500. [PMID: 33901873 DOI: 10.1016/j.biopha.2021.111500] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/23/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most common fatal interstitial lung disease, with limited therapeutic options. The abnormal and uncontrolled differentiation and proliferation of fibroblasts have been confirmed to play a crucial role in driving the pathogenesis of IPF. Therefore, effective and well-tolerated antifibrotic agents that interfere with fibroblasts would be an ideal treatment, but no such treatments are available. Remarkably, we found that dopamine (DA) receptor D1 (D1R) and DA receptor D2 (D2R) were both upregulated in myofibroblasts in lungs of IPF patients and a bleomycin (BLM)-induced mouse model. Then, we explored the safety and efficacy of DA, fenoldopam (FNP, a selective D1R agonist) and sumanirole (SMR, a selective D2R agonist) in reversing BLM-induced pulmonary fibrosis. Further data showed that DA receptor agonists exerted potent antifibrotic effects in BLM-induced pulmonary fibrosis by attenuating the differentiation and proliferation of fibroblasts. Detailed pathway analysis revealed that DA receptor agonists decreased the phosphorylation of Smad2 induced by TGF-β1 in primary human lung fibroblasts (PHLFs) and IMR-90 cells. Overall, DA receptor agonists protected mice from BLM-induced pulmonary fibrosis and may be therapeutically beneficial for IPF patients in a clinical setting.
Collapse
|
4
|
Yang J, Villar VAM, Jose PA, Zeng C. Renal Dopamine Receptors and Oxidative Stress: Role in Hypertension. Antioxid Redox Signal 2021; 34:716-735. [PMID: 32349533 PMCID: PMC7910420 DOI: 10.1089/ars.2020.8106] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Significance: The kidney plays an important role in the long-term control of blood pressure. Oxidative stress is one of the fundamental mechanisms responsible for the development of hypertension. Dopamine, via five subtypes of receptors, plays an important role in the control of blood pressure by various mechanisms, including the inhibition of oxidative stress. Recent Advances: Dopamine receptors exert their regulatory function to decrease the oxidative stress in the kidney and ultimately maintain normal sodium balance and blood pressure homeostasis. An aberration of this regulation may be involved in the pathogenesis of hypertension. Critical Issues: Our present article reviews the important role of oxidative stress and intrarenal dopaminergic system in the regulation of blood pressure, summarizes the current knowledge on renal dopamine receptor-mediated antioxidation, including decreasing reactive oxygen species production, inhibiting pro-oxidant enzyme nicotinamide-adenine dinucleotide phosphate (NADPH) oxidase, and stimulating antioxidative enzymes, and also discusses its underlying mechanisms, including the increased activity of G protein-coupled receptor kinase 4 (GRK4) and abnormal trafficking of renal dopamine receptors in hypertensive status. Future Directions: Identifying the mechanisms of renal dopamine receptors in the regulation of oxidative stress and their contribution to the pathogenesis of hypertension remains an important research focus. Increased understanding of the role of reciprocal regulation between renal dopamine receptors and oxidative stress in the regulation of blood pressure may give us novel insights into the pathogenesis of hypertension and provide a new treatment strategy for hypertension.
Collapse
Affiliation(s)
- Jian Yang
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Van Anthony M Villar
- Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Pedro A Jose
- Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Chunyu Zeng
- Department of Cardiology, Fujian Heart Medical Center, Fujian Medical University Union Hospital, Fuzhou, People's Republic of China.,Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, People's Republic of China
| |
Collapse
|
5
|
The Role of the Renal Dopaminergic System and Oxidative Stress in the Pathogenesis of Hypertension. Biomedicines 2021; 9:biomedicines9020139. [PMID: 33535566 PMCID: PMC7912729 DOI: 10.3390/biomedicines9020139] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 01/11/2023] Open
Abstract
The kidney is critical in the long-term regulation of blood pressure. Oxidative stress is one of the many factors that is accountable for the development of hypertension. The five dopamine receptor subtypes (D1R–D5R) have important roles in the regulation of blood pressure through several mechanisms, such as inhibition of oxidative stress. Dopamine receptors, including those expressed in the kidney, reduce oxidative stress by inhibiting the expression or action of receptors that increase oxidative stress. In addition, dopamine receptors stimulate the expression or action of receptors that decrease oxidative stress. This article examines the importance and relationship between the renal dopaminergic system and oxidative stress in the regulation of renal sodium handling and blood pressure. It discusses the current information on renal dopamine receptor-mediated antioxidative network, which includes the production of reactive oxygen species and abnormalities of renal dopamine receptors. Recognizing the mechanisms by which renal dopamine receptors regulate oxidative stress and their degree of influence on the pathogenesis of hypertension would further advance the understanding of the pathophysiology of hypertension.
Collapse
|
6
|
Tiu AC, Yang J, Asico LD, Konkalmatt P, Zheng X, Cuevas S, Wang X, Lee H, Mazhar M, Felder RA, Jose PA, Villar VAM. Lipid rafts are required for effective renal D 1 dopamine receptor function. FASEB J 2020; 34:6999-7017. [PMID: 32259353 DOI: 10.1096/fj.201902710rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/05/2020] [Accepted: 03/17/2020] [Indexed: 12/13/2022]
Abstract
Effective receptor signaling is anchored on the preferential localization of the receptor in lipid rafts, which are plasma membrane platforms replete with cholesterol and sphingolipids. We hypothesized that the dopamine D1 receptor (D1 R) contains structural features that allow it to reside in lipid rafts for its activity. Mutation of C347 palmitoylation site and Y218 of a newly identified Cholesterol Recognition Amino Acid Consensus motif resulted in the exclusion of D1 R from lipid rafts, blunted cAMP response, impaired sodium transport, and increased oxidative stress in renal proximal tubule cells (RPTCs). Kidney-restricted silencing of Drd1 in C57BL/6J mice increased blood pressure (BP) that was normalized by renal tubule-restricted rescue with D1 R-wild-type but not the mutant D1 R 347A that lacks a palmitoylation site. Kidney-restricted disruption of lipid rafts by β-MCD jettisoned the D1 R from the brush border, decreased sodium excretion, and increased oxidative stress and BP in C57BL/6J mice. Deletion of the PX domain of the novel D1 R-binding partner sorting nexin 19 (SNX19) resulted in D1 R partitioning solely to non-raft domains, while silencing of SNX19 impaired D1 R function in RPTCs. Kidney-restricted silencing of Snx19 resulted in hypertension in C57BL/6J mice. Our results highlight the essential role of lipid rafts for effective D1 R signaling.
Collapse
Affiliation(s)
- Andrew C Tiu
- Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC, USA.,Department of Medicine, Einstein Medical Center, Philadelphia, PA, USA
| | - Jian Yang
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Laureano D Asico
- Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| | - Prasad Konkalmatt
- Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| | - Xiaoxu Zheng
- Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| | - Santiago Cuevas
- Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| | - Xiaoyan Wang
- Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| | - Hewang Lee
- Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Momina Mazhar
- Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| | - Robin A Felder
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Pedro A Jose
- Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC, USA.,Department of Pharmacology/Physiology, The George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| | - Van Anthony M Villar
- Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| |
Collapse
|
7
|
Diao Z, Asico LD, Villar VAM, Zheng X, Cuevas S, Armando I, Jose PA, Wang X. Increased renal oxidative stress in salt-sensitive human GRK4γ486V transgenic mice. Free Radic Biol Med 2017; 106:80-90. [PMID: 28189851 PMCID: PMC5376361 DOI: 10.1016/j.freeradbiomed.2017.02.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 02/07/2017] [Accepted: 02/08/2017] [Indexed: 12/16/2022]
Abstract
We tested the hypothesis that salt-sensitive hypertension is caused by renal oxidative stress by measuring the blood pressure and reactive oxygen species-related proteins in the kidneys of human G protein-coupled receptor kinase 4γ (hGRK4γ) 486V transgenic mice and non-transgenic (Non-T) littermates on normal and high salt diets. High salt diet increased the blood pressure, associated with impaired sodium excretion, in hGRK4γ486V mice. Renal expressions of NOX isoforms were similar in both strains on normal salt diet but NOX2 was decreased by high salt diet to a greater extent in Non-T than hGRK4γ486V mice. Renal HO-2, but not HO-1, protein was greater in hGRK4γ486V than Non-T mice on normal salt diet and normalized by high salt diet. On normal salt diet, renal CuZnSOD and ECSOD proteins were similar but renal MnSOD was lower in hGRK4γ486V than Non-T mice and remained low on high salt diet. High salt diet decreased renal CuZnSOD in hGRK4γ486V but not Non-T mice and decreased renal ECSOD to a greater extent in hGRK4γ486V than Non-T mice. Renal SOD activity, superoxide production, and NOS3 protein were similar in two strains on normal salt diet. However, high salt diet decreased SOD activity and NOS3 protein and increased superoxide production in hGRK4γ486V mice but not in Non-T mice. High salt diet also increased urinary 8-isoprostane and 8-hydroxydeoxyguanosine to a greater extent in hGRK4γ486V than Non-T mice. hGRK4γwild-type mice were normotensive and hGRK4γ142V mice were hypertensive but both were salt-resistant and in normal redox balance. Chronic tempol treatment partially prevented the salt-sensitivity of hGRK4γ486V mice. Thus, hGRK4γ486V causes salt-sensitive hypertension due, in part, to defective renal antioxidant mechanisms.
Collapse
Affiliation(s)
- Zhenyu Diao
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Obstetrics & Gynecology, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, Jiangsu, China
| | - Laureano D Asico
- Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University, Washington, DC, USA
| | - Van Anthony M Villar
- Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University, Washington, DC, USA
| | - Xiaoxu Zheng
- Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University, Washington, DC, USA
| | - Santiago Cuevas
- Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University, Washington, DC, USA
| | - Ines Armando
- Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University, Washington, DC, USA
| | - Pedro A Jose
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA; Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University, Washington, DC, USA; Department of Pharmacology and Physiology, The George Washington University, Washington, DC, USA
| | - Xiaoyan Wang
- Department of Obstetrics & Gynecology, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, Jiangsu, China; Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University, Washington, DC, USA.
| |
Collapse
|
8
|
Choi MR, Kouyoumdzian NM, Rukavina Mikusic NL, Kravetz MC, Rosón MI, Rodríguez Fermepin M, Fernández BE. Renal dopaminergic system: Pathophysiological implications and clinical perspectives. World J Nephrol 2015; 4:196-212. [PMID: 25949933 PMCID: PMC4419129 DOI: 10.5527/wjn.v4.i2.196] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 01/22/2015] [Accepted: 02/04/2015] [Indexed: 02/06/2023] Open
Abstract
Fluid homeostasis, blood pressure and redox balance in the kidney are regulated by an intricate interaction between local and systemic anti-natriuretic and natriuretic systems. Intrarenal dopamine plays a central role on this interactive network. By activating specific receptors, dopamine promotes sodium excretion and stimulates anti-oxidant and anti-inflammatory pathways. Different pathological scenarios where renal sodium excretion is dysregulated, as in nephrotic syndrome, hypertension and renal inflammation, can be associated with impaired action of renal dopamine including alteration in biosynthesis, dopamine receptor expression and signal transduction. Given its properties on the regulation of renal blood flow and sodium excretion, exogenous dopamine has been postulated as a potential therapeutic strategy to prevent renal failure in critically ill patients. The aim of this review is to update and discuss on the most recent findings about renal dopaminergic system and its role in several diseases involving the kidneys and the potential use of dopamine as a nephroprotective agent.
Collapse
|
9
|
Yang S, Yang Y, Yu P, Yang J, Jiang X, Villar VAM, Sibley DR, Jose PA, Zeng C. Dopamine D1 and D5 receptors differentially regulate oxidative stress through paraoxonase 2 in kidney cells. Free Radic Res 2015; 49:397-410. [PMID: 25740199 DOI: 10.3109/10715762.2015.1006215] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND The renal dopaminergic system plays an important role in the pathogenesis of hypertension. Dopamine D1-like receptors (D1R and D5R) decrease reactive oxygen species (ROS) production via inhibition of pro-oxidant enzymes such as NADPH oxidase. Paraoxonase 2 (PON2) is also involved in the inhibition of NADPH oxidase activity. Therefore, we tested the hypothesis that D1R and D5R inhibit ROS production by increasing the expression of PON2, including those in membrane microdomains. METHODS AND RESULTS PON2 colocalized with D1R and D5R in mouse renal proximal tubules (RPTs), human RPT (hRPT) cells, and HEK293 cells heterologously expressing human D1R (HEK-hD1R) or D5R (HEK-hD5R). Fenoldopam, an agonist for both D1R and D5R, increased PON2 co-immunoprecipitation with D1R and D5R in HEK-hD1R and HEK-hD5R cells, respectively. Silencing PON2 increased ROS production and NADPH oxidase activity, and impaired the inhibitory effect of fenoldopam. Fenoldopam increased PON2 protein in both lipid rafts (LRs) and non-LRs in HEK-hD1R cells, but only in non-LRs in HEK-hD5R and hRPT cells. Long-term (hrs) fenoldopam stimulation increased PON2 protein in a time-dependent manner in HEK-hD5R, but not in HEK-hD1R cells. Because the effects of fenoldopam on non-LR and total PON2 expressions were similar in HEK-hD5R and hRPT cells, additional studies were performed to determine the relationship between D5R and PON2. Renal PON2 protein was decreased in D5(-/-) mice. In hRPT cells, silencing D5R decreased PON2 expression and increased ROS production. CONCLUSIONS We conclude that D1-like receptors inhibit ROS production by altering PON2 distribution in membrane microdomains in the short-term, and by increasing PON2 expression in the long-term.
Collapse
Affiliation(s)
- S Yang
- Department of Cardiology, Daping Hospital, The Third Military Medical University , Chongqing , P. R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Rukavina Mikusic NL, Kravetz MC, Kouyoumdzian NM, Della Penna SL, Rosón MI, Fernández BE, Choi MR. Signaling pathways involved in renal oxidative injury: role of the vasoactive peptides and the renal dopaminergic system. JOURNAL OF SIGNAL TRANSDUCTION 2014; 2014:731350. [PMID: 25436148 PMCID: PMC4243602 DOI: 10.1155/2014/731350] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 10/16/2014] [Indexed: 12/24/2022]
Abstract
The physiological hydroelectrolytic balance and the redox steady state in the kidney are accomplished by an intricate interaction between signals from extrarenal and intrarenal sources and between antinatriuretic and natriuretic factors. Angiotensin II, atrial natriuretic peptide and intrarenal dopamine play a pivotal role in this interactive network. The balance between endogenous antioxidant agents like the renal dopaminergic system and atrial natriuretic peptide, by one side, and the prooxidant effect of the renin angiotensin system, by the other side, contributes to ensuring the normal function of the kidney. Different pathological scenarios, as nephrotic syndrome and hypertension, where renal sodium excretion is altered, are associated with an impaired interaction between two natriuretic systems as the renal dopaminergic system and atrial natriuretic peptide that may be involved in the pathogenesis of renal diseases. The aim of this review is to update and comment the most recent evidences about the intracellular pathways involved in the relationship between endogenous antioxidant agents like the renal dopaminergic system and atrial natriuretic peptide and the prooxidant effect of the renin angiotensin system in the pathogenesis of renal inflammation.
Collapse
Affiliation(s)
- N. L. Rukavina Mikusic
- Department of Pathophysiology, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, CONICET, INFIBIOC, 1113 Buenos Aires, Argentina
| | - M. C. Kravetz
- Department of Pathophysiology, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, CONICET, INFIBIOC, 1113 Buenos Aires, Argentina
| | - N. M. Kouyoumdzian
- Department of Pathophysiology, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, CONICET, INFIBIOC, 1113 Buenos Aires, Argentina
| | - S. L. Della Penna
- Department of Pathophysiology, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, CONICET, INFIBIOC, 1113 Buenos Aires, Argentina
| | - M. I. Rosón
- Department of Pathophysiology, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, CONICET, INFIBIOC, 1113 Buenos Aires, Argentina
| | - B. E. Fernández
- Department of Pathophysiology, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, CONICET, INFIBIOC, 1113 Buenos Aires, Argentina
| | - M. R. Choi
- Department of Pathophysiology, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, CONICET, INFIBIOC, 1113 Buenos Aires, Argentina
| |
Collapse
|
11
|
Hamza SM, Dyck JRB. Systemic and renal oxidative stress in the pathogenesis of hypertension: modulation of long-term control of arterial blood pressure by resveratrol. Front Physiol 2014; 5:292. [PMID: 25140155 PMCID: PMC4122172 DOI: 10.3389/fphys.2014.00292] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 07/19/2014] [Indexed: 12/12/2022] Open
Abstract
Hypertension affects over 25% of the global population and is associated with grave and often fatal complications that affect many organ systems. Although great advancements have been made in the clinical assessment and treatment of hypertension, the cause of hypertension in over 90% of these patients is unknown, which hampers the development of targeted and more effective treatment. The etiology of hypertension involves multiple pathological processes and organ systems, however one unifying feature of all of these contributing factors is oxidative stress. Once the body's natural anti-oxidant defense mechanisms are overwhelmed, reactive oxygen species (ROS) begin to accumulate in the tissues. ROS play important roles in normal regulation of many physiological processes, however in excess they are detrimental and cause widespread cell and tissue damage as well as derangements in many physiological processes. Thus, control of oxidative stress has become an attractive target for pharmacotherapy to prevent and manage hypertension. Resveratrol (trans-3,5,4'-Trihydroxystilbene) is a naturally occurring polyphenol which has anti-oxidant effects in vivo. Many studies have shown anti-hypertensive effects of resveratrol in different pre-clinical models of hypertension, via a multitude of mechanisms that include its function as an anti-oxidant. However, results have been mixed and in some cases resveratrol has no effect on blood pressure. This may be due to the heavy emphasis on peripheral vasodilator effects of resveratrol and virtually no investigation of its potential renal effects. This is particularly troubling in the arena of hypertension, where it is well known and accepted that the kidney plays an essential role in the long term regulation of arterial pressure and a vital role in the initiation, development and maintenance of chronic hypertension. It is thus the focus of this review to discuss the potential of resveratrol as an anti-hypertensive treatment via amelioration of oxidative stress within the framework of the fundamental physiological principles of long term regulation of arterial blood pressure.
Collapse
Affiliation(s)
- Shereen M. Hamza
- Department of Pediatrics, Cardiovascular Research Centre, University of AlbertaEdmonton, AB, Canada
| | - Jason R. B. Dyck
- Department of Pediatrics, Cardiovascular Research Centre, University of AlbertaEdmonton, AB, Canada
- Department of Pharmacology, Cardiovascular Research Centre, University of AlbertaEdmonton, AB, Canada
| |
Collapse
|
12
|
Lorenzo JM, Domínguez R. Effect of genotype on fatty acid composition of intramuscular and subcutaneous fat of Celta pig breed. GRASAS Y ACEITES 2014. [DOI: 10.3989/gya.0234141] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
13
|
Gildea JJ, Shah IT, Van Sciver RE, Israel JA, Enzensperger C, McGrath HE, Jose PA, Felder RA. The cooperative roles of the dopamine receptors, D1R and D5R, on the regulation of renal sodium transport. Kidney Int 2014; 86:118-26. [PMID: 24552847 PMCID: PMC4077925 DOI: 10.1038/ki.2014.5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 11/27/2013] [Accepted: 12/12/2013] [Indexed: 02/07/2023]
Abstract
Determining the individual roles of the two dopamine D1-like receptors (D1R and D5R) on sodium transport in the human renal proximal tubule has been complicated by their structural and functional similarity. Here we used a novel D5R-selective antagonist (LE-PM436) and D1R or D5R-specific gene silencing to determine second messenger coupling pathways and heterologous receptor interaction between the two receptors. D1R and D5R co-localized in renal proximal tubule cells and physically interact, as determined by co-immunoprecipitation and FRET microscopy. Stimulation of renal proximal tubule cells with fenoldopam (D1R/D5R agonist) led to both adenylyl cyclase and phospholipase C (PLC) activation using real-time FRET biosensors ICUE3 and CYPHR, respectively. Fenoldopam increased cAMP accumulation and PLC activity and inhibited both NHE3 and NaKATPase activities. LE-PM436 and D5R siRNA blocked the fenoldopam-stimulated PLC pathway but not cAMP accumulation, while D1R siRNA blocked both fenoldopam-stimulated cAMP accumulation and PLC signaling. Either D1R or D5R siRNA, or LE-PM436 blocked the fenoldopam dependent inhibition of sodium transport. Further studies using the cAMP-selective D1R/D5R agonist SKF83822 and PLC-selective D1R/D5R agonist SKF83959 confirmed the cooperative influence of the two pathways on sodium transport. Thus, D1R and D5R interact in the inhibition of NHE3 and NaKATPase activity, the D1R primarily by cAMP, while the D1R/D5R heteromer modulates the D1R effect through a PLC pathway.
Collapse
Affiliation(s)
- John J Gildea
- The University of Virginia Health System, Department of Pathology, Charlottesville, Virginia, USA
| | - Ishan T Shah
- The University of Virginia Health System, Department of Pathology, Charlottesville, Virginia, USA
| | - Robert E Van Sciver
- The University of Virginia Health System, Department of Pathology, Charlottesville, Virginia, USA
| | - Jonathan A Israel
- The University of Virginia Health System, Department of Pathology, Charlottesville, Virginia, USA
| | - Christoph Enzensperger
- Institut für Pharmazie, Lehrstuhl für Pharmazeutische/Medizinische Chemie, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Helen E McGrath
- The University of Virginia Health System, Department of Pathology, Charlottesville, Virginia, USA
| | - Pedro A Jose
- University of Maryland School of Medicine, Departments of Medicine and Physiology, Baltimore, Maryland, USA
| | - Robin A Felder
- The University of Virginia Health System, Department of Pathology, Charlottesville, Virginia, USA
| |
Collapse
|
14
|
γ-Catenin at adherens junctions: mechanism and biologic implications in hepatocellular cancer after β-catenin knockdown. Neoplasia 2013; 15:421-34. [PMID: 23555187 DOI: 10.1593/neo.122098] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 01/29/2013] [Accepted: 01/30/2013] [Indexed: 12/22/2022] Open
Abstract
β-Catenin is important in liver homeostasis as a part of Wnt signaling and adherens junctions (AJs), while its aberrant activation is observed in hepatocellular carcinoma (HCC). We have reported hepatocyte-specific β-catenin knockout (KO) mice to lack adhesive defects as γ-catenin compensated at AJ. Because γ-catenin is a desmosomal protein, we asked if its increase in KO might deregulate desmosomes. No changes in desmosomal proteins or ultrastructure other than increased plakophilin-3 were observed. To further elucidate the role and regulation of γ-catenin, we contemplate an in vitro model and show γ-catenin increase in HCC cells upon β-catenin knockdown (KD). Here, γ-catenin is unable to rescue β-catenin/T cell factor (TCF) reporter activity; however, it sufficiently compensates at AJs as assessed by scratch wound assay, centrifugal assay for cell adhesion (CAFCA), and hanging drop assays. γ-Catenin increase is observed only after β-catenin protein decrease and not after blockade of its transactivation. γ-Catenin increase is associated with enhanced serine/threonine phosphorylation and abrogated by protein kinase A (PKA) inhibition. In fact, several PKA-binding sites were detected in γ-catenin by in silico analysis. Intriguingly γ-catenin KD led to increased β-catenin levels and transactivation. Thus, γ-catenin compensates for β-catenin loss at AJ without affecting desmosomes but is unable to fulfill functions in Wnt signaling. γ-Catenin stabilization after β-catenin loss is brought about by PKA. Catenin-sensing mechanism may depend on absolute β-catenin levels and not its activity. Anti-β-catenin therapies for HCC affecting total β-catenin may target aberrant Wnt signaling without negatively impacting intercellular adhesion, provided mechanisms leading to γ-catenin stabilization are spared.
Collapse
|
15
|
Yang B, Ni J, Zeng Z, Shi B, You W, Ke C. Cloning and characterization of the dopamine like receptor in the oyster Crassostrea angulata: expression during the ovarian cycle. Comp Biochem Physiol B Biochem Mol Biol 2012; 164:168-75. [PMID: 23274282 DOI: 10.1016/j.cbpb.2012.12.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 12/20/2012] [Accepted: 12/20/2012] [Indexed: 01/11/2023]
Abstract
We cloned and characterized a complete cDNA encoding a dopamine receptor (DAR) named Ca-DA1R from Fujian oyster, Crassostrea angulata. The 2843 bp long cDNA sequence includes a 916-bp 5'-UTR, the 1197 bp ORF which encodes a putative protein of 399 amino acids, and a 729 bp 3'-UTR. The Ca-DA1R sequence possesses typical characteristics of a D1 receptor: two main features being a short third intracellular loop and a long inner COOH-terminal tail domain. Using a real-time PCR approach, expression profiles of Ca-DA1R were analyzed in adult tissues and during the four stages of ovarian development. Ca-DA1R was expressed ubiquitously, although transcript levels varied between tissues, with higher mRNA levels detected in the ovary, labial palps and mantle. During the four stages of ovarian development, Ca-DA1R mRNA expression level was higher in the proliferation stage than in the other three stages during the ovary cycle. In situ hybridization results reveal that the Ca-DA1R mRNA is mainly expressed in the epithelium of the gonoducts. These observations suggest that Ca-DA1R binding of DA probably plays an important role in early ovarian development and via regulating oocyte locomotion cooperates with the 5-HT receptor system during the ovarian cycle in C. angulata.
Collapse
Affiliation(s)
- Bingye Yang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, PR China
| | | | | | | | | | | |
Collapse
|
16
|
Villar VAM, Armando I, Sanada H, Frazer LC, Russo CM, Notario PM, Lee H, Comisky L, Russell HA, Yang Y, Jurgens JA, Jose PA, Jones JE. Novel role of sorting nexin 5 in renal D(1) dopamine receptor trafficking and function: implications for hypertension. FASEB J 2012. [PMID: 23195037 DOI: 10.1096/fj.12-208439] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The D1 dopamine receptor (D1R) is widely expressed in the kidney and plays a crucial role in blood pressure regulation. Although much is known about D1R desensitization, especially through G-protein-coupled receptor kinase 4 (GRK4), comparatively little is known about other aspects of D1R trafficking and the proteins involved in the process. We now report the discovery of a dynamic interaction between sorting nexin 5 (SNX5), a component of the mammalian retromer, and D1R in human renal epithelial cells. We show that internalization of agonist-activated D1R is regulated by both SNX5 and GRK4, and that SNX5 is critical to the recycling of the receptor to the plasma membrane. SNX5 depletion increases agonist-activated D1R phosphorylation (>50% at basal condition), prevents D1R internalization and cAMP response, and delays receptor recycling compared to mock siRNA-transfected controls. Moreover, renal restricted subcapsular infusion of Snx5-specific siRNA (vs. mock siRNA) decreases sodium excretion (Δ=-0.2±0.005 mEq/mg creatinine) and further elevates the systolic blood pressure (Δ=48±5 mm Hg) in spontaneously hypertensive rats, indicating that SNX5 depletion impairs renal D1R function. These studies demonstrate an essential role for SNX5 in regulating D1R function, which may have important diagnostic, prognostic, and therapeutic implications in the management of essential hypertension.
Collapse
Affiliation(s)
- Van Anthony M Villar
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, 20 Penn St., Ste. S003C, Baltimore, MD 21201, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Yang Y, Zhang Y, Cuevas S, Villar VA, Escano C, Asico L, Yu P, Grandy DK, Felder RA, Armando I, Jose PA. Paraoxonase 2 decreases renal reactive oxygen species production, lowers blood pressure, and mediates dopamine D2 receptor-induced inhibition of NADPH oxidase. Free Radic Biol Med 2012; 53:437-46. [PMID: 22634053 PMCID: PMC3408834 DOI: 10.1016/j.freeradbiomed.2012.05.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 04/20/2012] [Accepted: 05/09/2012] [Indexed: 12/22/2022]
Abstract
The dopamine D(2) receptor (D(2)R) regulates renal reactive oxygen species (ROS) production, and impaired D(2)R function results in ROS-dependent hypertension. Paraoxonase 2 (PON2), which belongs to the paraoxonase gene family, is expressed in various tissues, acting to protect against cellular oxidative stress. We hypothesized that PON2 may be involved in preventing excessive renal ROS production and thus may contribute to maintenance of normal blood pressure. Moreover, D(2)R may decrease ROS production, in part, through regulation of PON2. D(2)R colocalized with PON2 in the brush border of mouse renal proximal tubules. Renal PON2 protein was decreased (-33±6%) in D(2)(-/-) relative to D(2)(+/+) mice. Renal subcapsular infusion of PON2 siRNA decreased PON2 protein expression (-55%), increased renal oxidative stress (2.2-fold), associated with increased renal NADPH oxidase expression (Nox1, 1.9-fold; Nox2, 2.9-fold; and Nox4, 1.6-fold) and activity (1.9-fold), and elevated arterial blood pressure (systolic, 134±5 vs 93±6mmHg; diastolic, 97±4 vs 65±7mmHg; mean 113±4 vs 75±7mmHg). To determine the relevance of the PON2 and D(2)R interaction in humans, we studied human renal proximal tubule cells. Both D(2)R and PON2 were found in nonlipid and lipid rafts and physically interacted with each other. Treatment of these cells with the D(2)R/D(3)R agonist quinpirole (1μM, 24h) decreased ROS production (-35±6%), associated with decreased NADPH oxidase activity (-32±3%) and expression of Nox2 (-41±7%) and Nox4 (-47±8%) protein, and increased expression of PON2 mRNA (2.1-fold) and protein (1.6-fold) at 24h. Silencing PON2 (siRNA, 10nM, 48h) not only partially prevented the quinpirole-induced decrease in ROS production by 36%, but also increased basal ROS production (1.3-fold), which was associated with an increase in NADPH oxidase activity (1.4-fold) and expression of Nox2 (2.1-fold) and Nox4 (1.8-fold) protein. Inhibition of NADPH oxidase with diphenylene iodonium (10μM/30 min) inhibited the increase in ROS production caused by PON2 silencing. Our results suggest that renal PON2 is involved in the inhibition of renal NADPH oxidase activity and ROS production and contributes to the maintenance of normal blood pressure. PON2 is positively regulated by D(2)R and may, in part, mediate the inhibitory effect of renal D(2)R on NADPH oxidase activity and ROS production.
Collapse
Affiliation(s)
- Yu Yang
- Center for Molecular Physiology Research, Children's National Medical Center, George Washington University, Washington, DC 20010
| | - Yanrong Zhang
- Center for Molecular Physiology Research, Children's National Medical Center, George Washington University, Washington, DC 20010
| | - Santiago Cuevas
- Center for Molecular Physiology Research, Children's National Medical Center, George Washington University, Washington, DC 20010
| | - Van Anthony Villar
- Center for Molecular Physiology Research, Children's National Medical Center, George Washington University, Washington, DC 20010
| | - Crisanto Escano
- Center for Molecular Physiology Research, Children's National Medical Center, George Washington University, Washington, DC 20010
| | - Laureano Asico
- Center for Molecular Physiology Research, Children's National Medical Center, George Washington University, Washington, DC 20010
| | - Peiying Yu
- Center for Molecular Physiology Research, Children's National Medical Center, George Washington University, Washington, DC 20010
| | - David K. Grandy
- Departments of Physiology and Pharmacology, Oregon Health and Sciences University, Portland, OR 97239
| | - Robin A. Felder
- Department of Pathology, University of Virginia Health Sciences Center, Charlottesville, VA 22908
| | - Ines Armando
- Center for Molecular Physiology Research, Children's National Medical Center, George Washington University, Washington, DC 20010
- Corresponding author. Fax: 202-476-6582, (I.Armando)
| | - Pedro A. Jose
- Center for Molecular Physiology Research, Children's National Medical Center, George Washington University, Washington, DC 20010
| |
Collapse
|