1
|
Zhang Q, Li G, Zhao G, Yan C, Lv H, Fu Y, Li Y, Zhao Z. Preparation and evaluation of inhalable S-allylmercapto-N-acetylcysteine and nintedanib co-loaded liposomes for pulmonary fibrosis. Eur J Pharm Sci 2024; 197:106779. [PMID: 38670294 DOI: 10.1016/j.ejps.2024.106779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Orally marketed products nintedanib (NDNB) and pirfenidone (PFD) for pulmonary fibrosis (PF) are administered in high doses and have been shown to have serious toxic and side effects. NDNB can cause the elevation of galectin-3, which activates the NF-κB signaling pathway and causes the inflammatory response. S-allylmercapto-N-acetylcysteine (ASSNAC) can alleviate the inflammation response by inhibiting the TLR-4/NF-κB signaling pathway. Therefore, we designed and prepared inhalable ASSNAC and NDNB co-loaded liposomes for the treatment of pulmonary fibrosis. The yellow, spheroidal co-loaded liposomes with a particle size of 98.32±1.98 nm and zeta potential of -22.5 ± 1.58 mV were produced. The aerodynamic fine particle fraction (FPF) and mass median aerodynamic diameter (MMAD) of NDNB were >50 % (81.14 %±0.22 %) and <5 μm (1.79 μm±0.06 μm) in the nebulized liposome solution, respectively. The results showed that inhalation improved the lung deposition and retention times of both drugs. DSPE-PEG 2000 in the liposome formulation enhanced the mucus permeability and reduced phagocytic efflux mediated by macrophages. ASSNAC reduced the mRNA over-expressions of TLR-4, MyD88 and NF-κB caused by NDNB, which could reduce the NDNB's side effects. The Masson's trichrome staining of lung tissues and the levels of CAT, TGF-β1, HYP, collagen III and mRNA expressions of Collagen I, Collagen III and α-SMA in lung tissues revealed that NDNB/Lip inhalation was more beneficial to alleviate fibrosis than oral NDNB. Although the dose of NDNB/Lip was 30 times lower than that in the oral group, the inhaled NDNB/Lip group had better or comparable anti-fibrotic effects to those in the oral group. According to the expressions of Collagen I, Collagen III and α-SMA in vivo and in vitro, the combination of ASSNAC and NDNB was more effective than the single drugs for pulmonary fibrosis. Therefore, this study provided a new scheme for the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Qinxiu Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, China; Laboratory of Drug Discovery and Design, School of Pharmacy, Liaocheng University, Liaocheng, Shandong 252000, China; Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, China
| | - Genju Li
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, China; Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, China
| | - Guozhi Zhao
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, China; Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, China
| | - Chongzheng Yan
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, China; Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, China
| | - Huaiyou Lv
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, China; Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, China
| | - Yaqing Fu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, China; Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, China
| | - Yuhan Li
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, China; Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, China
| | - Zhongxi Zhao
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, China; Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, China; Pediatric Pharmaceutical Engineering Laboratory of Shandong Province, Shandong Dyne Marine Biopharmaceutical Company Limited, Rongcheng, Shandong 264300, China; Chemical Immunopharmaceutical Engineering Laboratory of Shandong Province, Shandong Xili Pharmaceutical Company Limited, Heze, Shandong 274300, China.
| |
Collapse
|
2
|
Bleichman I, Hiram-Bab S, Gabet Y, Savion N. S-Allylmercapto-N-Acetylcysteine (ASSNAC) Attenuates Osteoporosis in Ovariectomized (OVX) Mice. Antioxidants (Basel) 2024; 13:474. [PMID: 38671921 PMCID: PMC11047400 DOI: 10.3390/antiox13040474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/11/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Osteoporosis is a bone-debilitating disease, demonstrating a higher prevalence in post-menopausal women due to estrogen deprivation. One of the main mechanisms underlying menopause-related bone loss is oxidative stress. S-allylmercapto-N-acetylcysteine (ASSNAC) is a nuclear factor erythroid 2-related factor 2 (Nrf2) activator and cysteine supplier, previously shown to have anti-oxidation protective effects in cultured cells and animal models. Here, we studied the therapeutic potential of ASSNAC with and without Alendronate in ovariectomized (OVX) female mice. The experimental outcome included (i) femur and L3 lumbar vertebra morphometry via Micro-Computed Tomography (μCT); (ii) bone remodeling (formation vs. resorption); and (iii) oxidative stress markers in bone marrow (BM) cells. Four weeks after OVX, there was a significant bone loss that remained evident after 8 weeks, as demonstrated via µCT in the femur (cortical and trabecular bone compartments) and vertebra (trabecular bone). ASSNAC at a dose of 50 mg/Kg/day prevented bone loss after the four-week treatment but had no significant effect after 8 weeks, while ASSNAC at a dose of 20 mg/Kg/day significantly protected against bone loss after 8 weeks of treatment. Alendronate prevented ovariectomy-induced bone loss, and combining it with ASSNAC further augmented this effect. OVX mice demonstrated high serum levels of both C-terminal cross-linked telopeptides of type I collagen (CTX) (bone resorption) and procollagen I N-terminal propeptide (P1NP) (bone formation) after 2 weeks, and these returned to control levels after 8 weeks. Alendronate, ASSNAC and their combination decreased CTX and increased P1NP. Alendronate induced oxidative stress as reflected by decreased glutathione and increased malondialdehyde (MDA) levels, and combining it with ASSNAC partially attenuated these changes. These results portray the therapeutic potential of ASSNAC for the management of post-menopausal osteoporosis. Furthermore, ASSNAC ameliorates the Alendronate-associated oxidative stress, suggesting its potential to prevent Alendronate side effects as well as improve its bone-protective effect.
Collapse
Affiliation(s)
- Itay Bleichman
- Department of Human Molecular Genetics and Biochemistry and Goldschleger Eye Research Institute, School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel-Aviv 6997801, Israel;
| | - Sahar Hiram-Bab
- Department of Anatomy and Anthropology, School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel-Aviv 6997801, Israel; (S.H.-B.); (Y.G.)
| | - Yankel Gabet
- Department of Anatomy and Anthropology, School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel-Aviv 6997801, Israel; (S.H.-B.); (Y.G.)
| | - Naphtali Savion
- Department of Human Molecular Genetics and Biochemistry and Goldschleger Eye Research Institute, School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel-Aviv 6997801, Israel;
| |
Collapse
|
3
|
Wang J, Yang H, Zheng D, Sun Y, An L, Li G, Zhao Z. Integrating network pharmacology and pharmacological evaluation to reveal the therapeutic effects and potential mechanism of S-allylmercapto-N-acetylcysteine on acute respiratory distress syndrome. Int Immunopharmacol 2023; 121:110516. [PMID: 37369159 DOI: 10.1016/j.intimp.2023.110516] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023]
Abstract
In this research, we sought to examine the effectiveness of S-allylmercapto-N-acetylcysteine (ASSNAC) on LPS-provoked acute respiratory distress syndrome (ARDS) and its potential mechanism based on network pharmacology. To incorporate the effective targets of ASSNAC against ARDS, we firstly searched DisGeNET, TTD, GeneCards and OMIM databases. Then we used String database and Cytoscape program to create the protein-protein interaction network. Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis both identified the potential pathways connected to genes. Cytoscape software was used to build the network of drug-targets-pathways and the SwissDock platform was applied to dock the molecule of ASSNAC with the key disease targets. Correspondingly, an ARDS model was established by instillation of LPS in mice to confirm the underlying action mechanism of ASSNAC on ARDS as indicated by the network pharmacology analysis. Results exhibited that 27 overlapping targets, including TLR4, ICAM1, HIF1A, MAPK1, NFKB1, and others, were filtered out. The in vivo experiments showed that ASSNAC alleviated LPS-induced lung injury by downregulating levels of pro-inflammatory mediators and lung dry-wet ratio. Also, ASSNAC attenuated oxidative stress evoked by LPS via diminishing MDA production and SOD consumption as well as upregulating HO-1 level through Nrf2 activation. Results from western blot, quantitative real-time PCR and immunohistochemistry suggested that ASSNAC developed its therapeutic effects by regulating TLR4/MyD88/NF-κB signaling pathway. In conclusion, our research presented the efficacy of ASSNAC against ARDS. Furthermore, the mechanism of ASSNAC on ARDS was clarified by combining network pharmacology prediction with experimental confirmation.
Collapse
Affiliation(s)
- Jinglong Wang
- College of Food Sciences and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang 277160, PR China; Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Huatian Yang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Dandan Zheng
- College of Food Sciences and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang 277160, PR China; Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Yueyue Sun
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Lulu An
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Genju Li
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Zhongxi Zhao
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China; Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China; Pediatric Pharmaceutical Engineering Laboratory of Shandong Province, Shandong Dyne Marine Biopharmaceutical Company Limited, Rongcheng, Shandong 264300, PR China; Chemical Immunopharmaceutical Engineering Laboratory of Shandong Province, Shandong Xili Pharmaceutical Company Limited, Heze, Shandong 274300, PR China.
| |
Collapse
|
4
|
Comparative Study of Different H 2S Donors as Vasodilators and Attenuators of Superoxide-Induced Endothelial Damage. Antioxidants (Basel) 2023; 12:antiox12020344. [PMID: 36829903 PMCID: PMC9951978 DOI: 10.3390/antiox12020344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
In the last years, research proofs have confirmed that hydrogen sulfide (H2S) plays an important role in various physio-pathological processes, such as oxidation, inflammation, neurophysiology, and cardiovascular protection; in particular, the protective effects of H2S in cardiovascular diseases were demonstrated. The interest in H2S-donating molecules as tools for biological and pharmacological studies has grown, together with the understanding of H2S importance. Here we performed a comparative study of a series of H2S donor molecules with different chemical scaffolds and H2S release mechanisms. The compounds were tested in human serum for their stability and ability to generate H2S. Their vasorelaxant properties were studied on rat aorta strips, and the capacity of the selected compounds to protect NO-dependent endothelium reactivity in an acute oxidative stress model was tested. H2S donors showed different H2S-releasing kinetic and produced amounts and vasodilating profiles; in particular, compound 6 was able to attenuate the dysfunction of relaxation induced by pyrogallol exposure, showing endothelial protective effects. These results may represent a useful basis for the rational development of promising H2S-releasing agents also conjugated with other pharmacophores.
Collapse
|
5
|
Zhang Q, Ye W, Liu Y, Niu D, Zhao X, Li G, Qu Y, Zhao Z. S-allylmercapto-N-acetylcysteine ameliorates pulmonary fibrosis in mice via Nrf2 pathway activation and NF-κB, TGF-β1/Smad2/3 pathway suppression. Biomed Pharmacother 2023; 157:114018. [PMID: 36410121 PMCID: PMC9672846 DOI: 10.1016/j.biopha.2022.114018] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/03/2022] [Accepted: 11/13/2022] [Indexed: 11/19/2022] Open
Abstract
Pulmonary fibrosis (PF) is a chronic lung disease characterised by alveolar inflammatory injury, alveolar septal thickening, and eventually fibrosis. Patients with severe Coronavirus Disease 2019 (COVID-19) may have left a certain degree of pulmonary fibrosis. PF is commonly caused by oxidative imbalance and inflammatory damage. S-allylmercapto-N-acetylcysteine (ASSNAC) exhibits anti-oxidative and anti-inflammatory effects in other diseases. However, the pharmacodynamics of ASSNAC remain unclear for PF. This investigation aimed to evaluate the efficacy and mechanism of ASSNAC against PF. The PF model was established by TGF-β1 stimulating HFL-1 cells in vitro. ASSNAC exhibited the potential to inhibit fibroblast transformation into myofibroblasts. Also, in the PF mice model with bleomycin (BLM), the sodium salt of ASSNAC (ASSNAC-Na) inhalation was treated. ASSNAC remarkably improved mice's lung tissue structure and collagen deposition. The important indicator proteins of PF, collagen Ⅰ, collagen Ⅲ, and α-SMA significantly decreased in the ASSNAC treated groups. Besides, ASSNAC attenuated oxidative stress by reversing glutathione (GSH), superoxide dismutase (SOD) levels and interfering with Nrf2/NOX4 signaling pathways. ASSNAC showed an anti-inflammatory effect by reducing the number of inflammatory cells and inflammatory cytokines, such as TNF-α and IL-6, and blocking the NF-κB signaling pathway. ASSNAC inhibited fibroblast differentiation by blocking the TGF-β1/Smad2/3 signaling pathway. This study implicates that ASSNAC alleviates pulmonary fibrosis through fighting against oxidative stress, reducing inflammation and inhibiting fibroblast differentiation.
Collapse
Affiliation(s)
- Qinxiu Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China; Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Wenhui Ye
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China; Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Ying Liu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China; Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Decao Niu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China; Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Xin Zhao
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China; Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Genjv Li
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China; Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Ying Qu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China; Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Zhongxi Zhao
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China; Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China; Pediatric Pharmaceutical Engineering Laboratory of Shandong Province, Shandong Dyne Marine Biopharmaceutical Company Limited, Rongcheng, Shandong 264300, PR China; Chemical Immunopharmaceutical Engineering Laboratory of Shandong Province, Shandong Xili Pharmaceutical Company Limited, Heze, Shandong 274300, PR China.
| |
Collapse
|
6
|
Abu-Kheit R, Kotev-Emeth S, Hiram-Bab S, Gabet Y, Savion N. S-allylmercapto- N-acetylcysteine protects bone cells from oxidation and improves femur microarchitecture in healthy and diabetic mice. Exp Biol Med (Maywood) 2022; 247:1489-1500. [PMID: 35658550 PMCID: PMC9493761 DOI: 10.1177/15353702221095047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Oxidative stress is involved in the deterioration of bone quality and mechanical strength in both diabetic and aging adults. Therefore, we studied the ability of the antioxidant compound, S-allylmercapto-N-acetylcysteine (ASSNAC) to protect bone marrow stromal cells (BMSCs) from advanced glycation end-products (AGEs) cytotoxicity and improve bone microarchitecture of adult healthy and obese/diabetic (db/db) female mice. ASSNAC effect on AGEs-treated cultured rat BMSCs was evaluated by Neutral Red and XTT cell survival and reactive oxygen species (ROS) level assays. Its effect on healthy (C57BL/6) and obese/diabetic (C57BLKS/J Leprdb+/+; db/db) female mice femur parameters, such as (1) number of adherent BMSCs, (2) percentage of CD73+/CD45- cells in bone marrow (BM), (3) glutathione level in BM cells, and (4) femur microarchitecture parameters by microcomputed tomography, was studied. ASSNAC treatment protected BMSCs by significantly decreasing AGEs-induced ROS production and increasing their cellular resistance to the cytotoxic effect of AGEs. ASSNAC treatment of healthy female mice (50 mg/kg/day; i.p.; age 12-20 weeks) significantly increased the number of BMSCs (+60%), CD73+/CD45- cells (+134%), and glutathione level (+110%) in the femur bone marrow. Furthermore, it increased the femur length (+3%), cortical diameter (+3%), and cortical areal moment of inertia (Ct.MOI; +10%) a surrogate for biomechanical strength. In db/db mice that demonstrated a compromised trabecular bone and growth plate microarchitecture, ASSNAC treatment restored the trabecular number (Tb.N, +29%), bone volume fraction (Tb.BV/TV, +130%), and growth plate primary spongiosa volumetric bone mineral density (PS-vBMD, +7%) and thickness (PS-Th, +18%). In conclusion, this study demonstrates that ASSNAC protects bone marrow cells from oxidative stress and may improve bone microarchitecture in adult healthy and diabetic female mice.
Collapse
Affiliation(s)
- Reem Abu-Kheit
- Department of Human Molecular Genetics and
Biochemistry and Goldschleger Eye Research Institute, Sackler Faculty of Medicine, Tel Aviv
University, Tel Aviv 6997801, Israel
| | - Shlomo Kotev-Emeth
- Department of Human Molecular Genetics and
Biochemistry and Goldschleger Eye Research Institute, Sackler Faculty of Medicine, Tel Aviv
University, Tel Aviv 6997801, Israel
| | - Sahar Hiram-Bab
- Department of Anatomy and Anthropology,
Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Yankel Gabet
- Department of Anatomy and Anthropology,
Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Naphtali Savion
- Department of Human Molecular Genetics and
Biochemistry and Goldschleger Eye Research Institute, Sackler Faculty of Medicine, Tel Aviv
University, Tel Aviv 6997801, Israel;,Naphtali Savion.
| |
Collapse
|
7
|
Talib WH, Daoud S, Mahmod AI, Hamed RA, Awajan D, Abuarab SF, Odeh LH, Khater S, Al Kury LT. Plants as a Source of Anticancer Agents: From Bench to Bedside. Molecules 2022; 27:molecules27154818. [PMID: 35956766 PMCID: PMC9369847 DOI: 10.3390/molecules27154818] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 12/03/2022] Open
Abstract
Cancer is the second leading cause of death after cardiovascular diseases. Conventional anticancer therapies are associated with lack of selectivity and serious side effects. Cancer hallmarks are biological capabilities acquired by cancer cells during neoplastic transformation. Targeting multiple cancer hallmarks is a promising strategy to treat cancer. The diversity in chemical structure and the relatively low toxicity make plant-derived natural products a promising source for the development of new and more effective anticancer therapies that have the capacity to target multiple hallmarks in cancer. In this review, we discussed the anticancer activities of ten natural products extracted from plants. The majority of these products inhibit cancer by targeting multiple cancer hallmarks, and many of these chemicals have reached clinical applications. Studies discussed in this review provide a solid ground for researchers and physicians to design more effective combination anticancer therapies using plant-derived natural products.
Collapse
Affiliation(s)
- Wamidh H. Talib
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
- Correspondence:
| | - Safa Daoud
- Department Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmacy, Applied Science Private University, Amman 11931, Jordan;
| | - Asma Ismail Mahmod
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Reem Ali Hamed
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Dima Awajan
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Sara Feras Abuarab
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Lena Hisham Odeh
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Samar Khater
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Lina T. Al Kury
- Department of Health Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi 144534, United Arab Emirates;
| |
Collapse
|
8
|
Zhou Y, Li X, Luo W, Zhu J, Zhao J, Wang M, Sang L, Chang B, Wang B. Allicin in Digestive System Cancer: From Biological Effects to Clinical Treatment. Front Pharmacol 2022; 13:903259. [PMID: 35770084 PMCID: PMC9234177 DOI: 10.3389/fphar.2022.903259] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/23/2022] [Indexed: 12/24/2022] Open
Abstract
Allicin is the main active ingredient in freshly-crushed garlic and some other allium plants, and its anticancer effect on cancers of digestive system has been confirmed in many studies. The aim of this review is to summarize epidemiological studies and in vitro and in vivo investigations on the anticancer effects of allicin and its secondary metabolites, as well as their biological functions. In epidemiological studies of esophageal cancer, liver cancer, pancreatic cancer, and biliary tract cancer, the anticancer effect of garlic has been confirmed consistently. However, the results obtained from epidemiological studies in gastric cancer and colon cancer are inconsistent. In vitro studies demonstrated that allicin and its secondary metabolites play an antitumor role by inhibiting tumor cell proliferation, inducing apoptosis, controlling tumor invasion and metastasis, decreasing angiogenesis, suppressing Helicobacter pylori, enhancing the efficacy of chemotherapeutic drugs, and reducing the damage caused by chemotherapeutic drugs. In vivo studies further demonstrate that allicin and its secondary metabolites inhibit cancers of the digestive system. This review describes the mechanisms against cancers of digestive system and therapeutic potential of allicin and its secondary metabolites.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, China
- The Second Clinical College, China Medical University, Shenyang, China
| | - Xingxuan Li
- The Second Clinical College, China Medical University, Shenyang, China
| | - Wenyu Luo
- The Second Clinical College, China Medical University, Shenyang, China
| | - Junfeng Zhu
- Department of Clinical Laboratory, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Jingwen Zhao
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Mengyao Wang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lixuan Sang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Bing Chang
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, China
- *Correspondence: Bing Chang,
| | - Bingyuan Wang
- Department of Geriatric Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
9
|
Wang FX, Zhu N, Zhou F, Lin DX. Natural Aporphine Alkaloids with Potential to Impact Metabolic Syndrome. Molecules 2021; 26:molecules26206117. [PMID: 34684698 PMCID: PMC8540223 DOI: 10.3390/molecules26206117] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/25/2021] [Accepted: 10/06/2021] [Indexed: 12/28/2022] Open
Abstract
The incidence and prevalence of metabolic syndrome has steadily increased worldwide. As a major risk factor for various diseases, metabolic syndrome has come into focus in recent years. Some natural aporphine alkaloids are very promising agents in the prevention and treatment of metabolic syndrome and its components because of their wide variety of biological activities. These natural aporphine alkaloids have protective effects on the different risk factors characterizing metabolic syndrome. In this review, we highlight the activities of bioactive aporphine alkaloids: thaliporphine, boldine, nuciferine, pronuciferine, roemerine, dicentrine, magnoflorine, anonaine, apomorphine, glaucine, predicentrine, isolaureline, xylopine, methylbulbocapnine, and crebanine. We particularly focused on their impact on metabolic syndrome and its components, including insulin resistance and type 2 diabetes mellitus, endothelial dysfunction, hypertension and cardiovascular disease, hyperlipidemia and obesity, non-alcoholic fatty liver disease, hyperuricemia and kidney damage, erectile dysfunction, central nervous system-related disorder, and intestinal microbiota dysbiosis. We also discussed the potential mechanisms of actions by aporphine alkaloids in metabolic syndrome.
Collapse
Affiliation(s)
- Fei-Xuan Wang
- Nanjing Institute of Product Quality Inspection, Nanjing 210019, China; (N.Z.); (F.Z.); (D.-X.L.)
- Correspondence: ; Tel.: +86-13505140525
| | - Nan Zhu
- Nanjing Institute of Product Quality Inspection, Nanjing 210019, China; (N.Z.); (F.Z.); (D.-X.L.)
| | - Fan Zhou
- Nanjing Institute of Product Quality Inspection, Nanjing 210019, China; (N.Z.); (F.Z.); (D.-X.L.)
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Dong-Xiang Lin
- Nanjing Institute of Product Quality Inspection, Nanjing 210019, China; (N.Z.); (F.Z.); (D.-X.L.)
| |
Collapse
|
10
|
Zheng D, Wang J, Li G, Sun Y, Deng Q, Li M, Song K, Zhao Z. Preliminary therapeutic and mechanistic evaluation of S-allylmercapto-N-acetylcysteine in the treatment of pulmonary emphysema. Int Immunopharmacol 2021; 98:107913. [PMID: 34218218 DOI: 10.1016/j.intimp.2021.107913] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/10/2021] [Accepted: 06/20/2021] [Indexed: 12/24/2022]
Abstract
The objective of this work was to study the effects and mechanisms of S-allylmercapto-N-acetylcysteine (ASSNAC) in the treatment of pulmonary emphysema based on network pharmacology analysis and other techniques. Firstly, the potential targets associated with ASSNAC and COPD were integrated using public databases. Then, a protein-protein interaction network was constructed using String database and Cytoscape software. The Gene Ontology analysis and Kyoto Encyclopedia of Genes and Genomes pathway analysis were performed on DAVID platform. The molecular docking of ASSNAC with some key disease targets was implemented on the SwissDock platform. To verify the results of the network pharmacology, a pulmonary emphysema mice model was established and treated with ASSNAC. Besides, the expressions of the predicted targets were detected by immunohistochemistry, Western blot analysis or enzyme-linked immunosorbent assay. Results showed that 33 overlapping targets are achieved, including CXCL8, ICAM1, MAP2K1, PTGS2, ACE and so on. The critical pathways of ASSNAC against COPD involved arachidonic acid metabolism, chemokine pathway, MAPK pathway, renin-angiotensin system, and others. Pharmacodynamic experiments demonstrated that ASSNAC decreased the pulmonary emphysema and inflammation in the pulmonary emphysema mice. Therefore, these results confirm the perspective of network pharmacology in the target verification, and indicate the treatment potential of ASSNAC against COPD.
Collapse
Affiliation(s)
- Dandan Zheng
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Jinglong Wang
- College of Food Sciences and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang 277160, PR China
| | - Genju Li
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Yueyue Sun
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Qi Deng
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Muhan Li
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Kaili Song
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Zhongxi Zhao
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China; Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China; Pediatric Pharmaceutical Engineering Laboratory of Shandong Province, Shandong Dyne Marine Biopharmaceutical Company Limited, Rongcheng, Shandong 264300, PR China; Chemical Immunopharmaceutical Engineering Laboratory of Shandong Province, Shandong Xili Pharmaceutical Company Limited, Heze, Shandong 274300, PR China.
| |
Collapse
|
11
|
Zheng D, Wang J, Li G, An L, Qu Y, Zhang Q, Ye W, Zhao X, Zhao Z. S-Allylmercapto-N-acetylcysteine ameliorates elastase-induced chronic obstructive pulmonary disease in mice via regulating autophagy. Biochem Biophys Res Commun 2021; 562:83-88. [PMID: 34044325 DOI: 10.1016/j.bbrc.2021.05.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 05/15/2021] [Indexed: 12/31/2022]
Abstract
Autophagy-impairment is involved in the pathological process of chronic obstructive pulmonary disease (COPD), and relates to inflammation and emphysema in lung injury. This study aimed to elucidate the protective effect of S-Allylmercapto-N-acetylcysteine (ASSNAC) against COPD via regulating the autophagy. Firstly, porcine pancreatic elastase (PPE)-induced COPD model in A549 cells was established, and ASSNAC was verified to alleviate the autophagy-impairment from the results of western blotting analysis of LC3BⅡ/Ⅰ and monodansylcadaverine (MDC) staining of autophagosome. Secondly, Balb/c mice were stimulated by PPE to induce the COPD model in vivo. The histological analysis of lung tissues presented that ASSNAC could alleviate the lung injury induced by PPE. Thirdly, the secretions of NO, TNF-α and IL-1β in serum and BALF were reduced by ASSNAC compared with the PPE group. Finally, the mechanism of therapeutic effects of ASSNAC against COPD through regulating the autophagy-impairment was clarified. That is, ASSNAC inhibits the phosphorylation of PI3K/Akt/mTOR signaling pathways. In a word, this research provides a reference for ASSNAC to be an effective drug for pulmonary diseases.
Collapse
Affiliation(s)
- Dandan Zheng
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, PR China
| | - Jinglong Wang
- College of Food Sciences and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang, 277160, PR China
| | - Genju Li
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, PR China
| | - Lulu An
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, PR China
| | - Ying Qu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, PR China
| | - Qinxiu Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, PR China
| | - Wenhui Ye
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, PR China
| | - Xin Zhao
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, PR China
| | - Zhongxi Zhao
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, PR China; Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, PR China; Pediatric Pharmaceutical Engineering Laboratory of Shandong Province, Shandong Dyne Marine Biopharmaceutical Company Limited, Rongcheng, Shandong, 264300, PR China; Chemical Immunopharmaceutical Engineering Laboratory of Shandong Province, Shandong Xili Pharmaceutical Company Limited, Heze, Shandong, 274300, PR China.
| |
Collapse
|
12
|
Increased Sulfiredoxin Expression in Gastric Cancer Cells May Be a Molecular Target of the Anticancer Component Diallyl Trisulfide. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4636804. [PMID: 30863778 PMCID: PMC6378787 DOI: 10.1155/2019/4636804] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/01/2018] [Accepted: 11/08/2018] [Indexed: 01/19/2023]
Abstract
Sulfiredoxin (Srx) is a newly discovered antioxidant enzyme playing a role in the catalytic reduction of oxidative modifications. Srx is overexpressed in a variety of cancers. It may promote carcinogenesis as well as tumor progression. In this study, we report for the first time that Srx expression might be positively associated with the development of gastric cancer and tumor malignancy. Immunohistochemistry showed that, compared to normal tissues (42%, 20/47), Srx expression in gastric tumors (85%, 40/47) was much more common (chi-square test, p<0.01). In addition, the staining of Srx was stronger in poorly differentiated gastric cancer than in well-differentiated gastric cancer. Western blotting showed that, in the gastric tumor cell line BGC823, the Srx protein was upregulated in response to H2O2 treatment, although it was inadequate to counteract the increased oxidative stress, as indicated by the gradually increasing level of malondialdehyde (MDA). In addition, Srx expression, MDA levels, and ROS levels in BGC823 cells were markedly inhibited upon treatment with diallyl trisulfide (DATS), a major constituent of garlic oil with proven anticancer effects. These results suggest that Srx may be an oxidative stress marker. Antioxidation may account for the anticancer potential of garlic.
Collapse
|
13
|
Savion N, Dahamshi S, Morein M, Kotev-Emeth S. S-Allylmercapro- N-Acetylcysteine Attenuates the Oxidation-Induced Lens Opacification and Retinal Pigment Epithelial Cell Death In Vitro. Antioxidants (Basel) 2019; 8:antiox8010025. [PMID: 30654434 PMCID: PMC6357052 DOI: 10.3390/antiox8010025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 01/13/2019] [Accepted: 01/15/2019] [Indexed: 12/15/2022] Open
Abstract
The capacity of S-Allylmercapto-N-acetylcysteine (ASSNAC) to protect human retinal pigment epithelial (RPE) cells (line ARPE-19) and porcine lenses from oxidative stress was studied. Confluent ARPE-19 cultures were incubated with ASSNAC or N-acetyl-cysteine (NAC) followed by exposure to oxidants and glutathione level and cell survival were determined. Porcine lenses were incubated with ASSNAC and then exposed to H2O2 followed by lens opacity measurement and determination of glutathione (reduced (GSH) and oxidized (GSSG)) in isolated lens adhering epithelial cells (lens capsule) and fiber cells consisting the lens cortex and nucleus (lens core). In ARPE-19 cultures, ASSNAC (0.2 mM; 24 h) increased glutathione level by 2–2.5-fold with significantly higher increase in GSH compared to NAC treated cultures. Similarly, ex-vivo exposure of lenses to ASSNAC (1 mM) significantly reduced the GSSG level and prevented H2O2 (0.5 mM)-induced lens opacification. These results demonstrate that ASSNAC up-regulates glutathione level in RPE cells and protects them from oxidative stress-induced cell death as well as protects lenses from oxidative stress-induced opacity. Further validation of these results in animal models may suggest a potential use for ASSNAC as a protective therapy in retinal degenerative diseases as well as in attenuation of oxidative stress-induced lens opacity.
Collapse
Affiliation(s)
- Naphtali Savion
- Goldschleger Eye Research Institute and Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv 61390, Israel.
| | - Samia Dahamshi
- Goldschleger Eye Research Institute and Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv 61390, Israel.
| | - Milana Morein
- Goldschleger Eye Research Institute and Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv 61390, Israel.
| | - Shlomo Kotev-Emeth
- Goldschleger Eye Research Institute and Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv 61390, Israel.
| |
Collapse
|
14
|
Savion N, Levine A, Kotev-Emeth S, Bening Abu-Shach U, Broday L. S-allylmercapto-N-acetylcysteine protects against oxidative stress and extends lifespan in Caenorhabditis elegans. PLoS One 2018; 13:e0194780. [PMID: 29579097 PMCID: PMC5868827 DOI: 10.1371/journal.pone.0194780] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 03/11/2018] [Indexed: 01/04/2023] Open
Abstract
S-allylmercapto-N-acetylcysteine (ASSNAC) was shown in our previous study to activate Nrf2-mediated processes and increase glutathione level and resistance to oxidative stress in cultured endothelial cells. In this study, we explored the antioxidant protective effect of ASSNAC in Caenorhabditis elegans (C. elegans). Treatment of gst-4 reporter strain (CL2166) with increasing concentrations of ASSNAC (0.2 to 20 mM) for 24 hours and with ASSNAC (10 mM) for various time periods demonstrated a significant concentration- and time-dependent increase in Glutathione S-transferase (GST) gene expression (up to 60-fold at 20 mM after 24 hours). In addition, ASSNAC (2 mM; 24 hours) treatment of C. elegans strains N2 (wild type strain), gst-4 reporter (CL2166) and temperature sensitive sterile strain (CF512) significantly increased GST enzyme activity by 1.9-, 1.5- and 1.8-fold, respectively. ASSNAC (2.0 mM; 24 hours) increased the reduced glutathione content in N2 and CF512 strains by 5.9- and 4.9-fold, respectively. Exposure of C. elegans (N2 strain) to a lethal concentration of H2O2 (3.5 mM; 120 min) resulted in death of 88% of the nematodes while pretreatment with ASSNAC (24 hours) reduced nematodes death in a concentration-dependent manner down to 8% at 2.0 mM. C. elegans nematodes (strain CF512) cultured on agar plates containing ASSNAC (0.5 to 5.0 mM) demonstrated a significant increase in lifespan compared to control (mean lifespan 26.45 ± 0.64 versus 22.90 ± 0.59 days; log-rank p ≤ 0.001 at 2.0 mM) with a maximal lifespan of 40 versus 36 days. In conclusion, ASSNAC up-regulates the GST gene expression and enzyme activity as well as the glutathione content in C. elegans nematodes and thereby increases their resistance to oxidative stress and extends their lifespan.
Collapse
Affiliation(s)
- Naphtali Savion
- Department of Human Molecular Genetics and Biochemistry and Goldschleger Eye Research Institute, Tel Aviv University, Tel-Aviv, Israel
- * E-mail:
| | - Amir Levine
- Department of Human Molecular Genetics and Biochemistry and Goldschleger Eye Research Institute, Tel Aviv University, Tel-Aviv, Israel
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Shlomo Kotev-Emeth
- Department of Human Molecular Genetics and Biochemistry and Goldschleger Eye Research Institute, Tel Aviv University, Tel-Aviv, Israel
| | - Ulrike Bening Abu-Shach
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Limor Broday
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| |
Collapse
|
15
|
Liu S, Zhao Y, He R, Kong L, Xi J, Sun J, Shao Y, Pan X, Zhang J, Zhuang R. Identification of novel N-acetylcysteine derivatives for the treatment of hepatocellular injury. MEDCHEMCOMM 2017; 8:2238-2247. [PMID: 30108739 PMCID: PMC6072425 DOI: 10.1039/c7md00409e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/17/2017] [Indexed: 11/21/2022]
Abstract
New anti-hepatocellular injury drugs with better curative effects and fewer side effects are urgently needed at present. In this study, a series of novel N-acetylcysteine (NAC) derivatives were designed, synthesized and biologically evaluated for their anti-hepatocellular injury activities against two different cell models. In the biological evaluation against hydrogen peroxide (H2O2)-induced LO2 hepatocytes, half of the target compounds exhibited moderate to potent activities in improving the model cell viability, and two compounds (6a and 6b) displayed more potent activities in decreasing malondialdehyde (MDA) levels than the positive control NAC. In further 4-acetamidophenol (APAP)-induced LO2 cell experiment, compounds 6a and 6b could not only improve the cell viability but also significantly reduce the secretion of MDA. Additionally, compound 6a displayed excellent Caco-2 permeability and oral bioavailability in rats. All these experimental results suggested that compounds 6a and 6b could serve as potential lead molecules for further development of anti-hepatocellular injury drugs.
Collapse
Affiliation(s)
- Shourong Liu
- Department of Pharmaceutical Preparation , Hangzhou Xixi Hospital , Hangzhou 310023 , Zhejiang Province , China . ; ; ; Fax: +86 571 8546 3955 ; Tel: +86 571 8648 1960
| | - Yanmei Zhao
- Department of Pharmaceutical Preparation , Hangzhou Xixi Hospital , Hangzhou 310023 , Zhejiang Province , China . ; ; ; Fax: +86 571 8546 3955 ; Tel: +86 571 8648 1960
| | - Ruoyu He
- Department of Pharmaceutical Preparation , Hangzhou Xixi Hospital , Hangzhou 310023 , Zhejiang Province , China . ; ; ; Fax: +86 571 8546 3955 ; Tel: +86 571 8648 1960
| | - Limin Kong
- Department of Pharmacy , The First Affiliated Hospital , College of Medicine , Zhejiang University , Hangzhou 310003 , Zhejiang Province , China
| | - Jianjun Xi
- Department of Pharmaceutical Preparation , Hangzhou Xixi Hospital , Hangzhou 310023 , Zhejiang Province , China . ; ; ; Fax: +86 571 8546 3955 ; Tel: +86 571 8648 1960
| | - Jingjing Sun
- Department of Pharmaceutical Preparation , Hangzhou Xixi Hospital , Hangzhou 310023 , Zhejiang Province , China . ; ; ; Fax: +86 571 8546 3955 ; Tel: +86 571 8648 1960
| | - Yidan Shao
- Department of Pharmaceutical Preparation , Hangzhou Xixi Hospital , Hangzhou 310023 , Zhejiang Province , China . ; ; ; Fax: +86 571 8546 3955 ; Tel: +86 571 8648 1960
| | - Xuwang Pan
- Department of Pharmaceutical Preparation , Hangzhou Xixi Hospital , Hangzhou 310023 , Zhejiang Province , China . ; ; ; Fax: +86 571 8546 3955 ; Tel: +86 571 8648 1960
| | - Jiankang Zhang
- Department of Pharmaceutical Preparation , Hangzhou Xixi Hospital , Hangzhou 310023 , Zhejiang Province , China . ; ; ; Fax: +86 571 8546 3955 ; Tel: +86 571 8648 1960
| | - Rangxiao Zhuang
- Department of Pharmaceutical Preparation , Hangzhou Xixi Hospital , Hangzhou 310023 , Zhejiang Province , China . ; ; ; Fax: +86 571 8546 3955 ; Tel: +86 571 8648 1960
| |
Collapse
|
16
|
Wang WT, Yuan H, Yang BX. Allicin inhibits cell migration and invasion in human hepatocellular carcinoma cell line MHCC97H. Shijie Huaren Xiaohua Zazhi 2016; 24:1166-1174. [DOI: 10.11569/wcjd.v24.i8.1166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To observe the effect of allicin on the proliferation, migration and invasion of human hepatocellular carcinoma cell line MHCC97H and to explore the underlying mechanisms.
METHODS: MTT assay and transwell assay were used to assess the proliferation, migration and invasiveness of MHCC97H treated with varying concentrations of allicin for 24 h. Real-time fluorescence quantitative PCR was performed to detect the mRNA expression of MMP-2, MMP-9 and CD24.
RESULTS: MTT assay demonstrated that the proliferation of MHCC97H cell was inhibited by different concentrations of allicin. Transwell assay demonstrated that compared with the negative control group, the number of penetrating cells in the experimental group was decreased significantly (P < 0.01). Real-time fluorescence quantitative PCR showed that allicin could down-regulate the mRNA levels of MMP-2, MMP-9, and CD24 in a dose-dependent manner in MHCC97H cells (P < 0.01).
CONCLUSION: Allicin inhibits the proliferation, migration and invasion of MHCC97H cells via mechanisms possibly related to down-regulation of the mRNA expression of MMP-2, MMP-9, and CD24.
Collapse
|
17
|
Liu JM, Wu PF, Rao J, Zhou J, Shen ZC, Luo H, Huang JG, Liang X, Long LH, Xie QG, Jiang FC, Wang F, Chen JG. ST09, a Novel Thioester Derivative of Tacrine, Alleviates Cognitive Deficits and Enhances Glucose Metabolism in Vascular Dementia Rats. CNS Neurosci Ther 2016; 22:220-9. [PMID: 26813743 DOI: 10.1111/cns.12495] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 10/30/2015] [Accepted: 11/18/2015] [Indexed: 01/31/2023] Open
Abstract
AIMS Chemical entities containing mercapto group have been increasingly attractive in the therapy of central nerve system (CNS) diseases. In the recent study, we screened a series of mercapto-tacrine derivatives with synergistic neuropharmacological profiles in vitro. METHODS We investigated the effect and mechanism of ST09, a thioester derivative of tacrine containing a potential mercapto group, on the vascular dementia (VaD) model of rat induced by bilateral common carotid arteries occlusion (2-VO). RESULTS ST09 and its active metabolite ST10 retained excellent inhibition on acetylcholinesterase (AChE) activity. ST09 significantly attenuated the 2-VO-induced impairment in spatial acquisition performance and inhibited the 2-VO-induced rise of AChE activity. In the VaD model, ST09 attenuated the oxidative stress and decreased the apoptosis in the cortex and hippocampus. Compared with donepezil, ST09 exhibited a better effect on the regeneration of free thiols in 2-VO rats. Interestingly, ST09, not donepezil, greatly improved glucose metabolism in various brain regions of 2-VO rats using functional imaging of (18) F-labeled fluoro-deoxyglucose (FDG) positron emission tomography (PET). CONCLUSIONS ST09 may serve as a more promising agent for the therapy of VaD than tacrine owing to the introduction of a potential mercapto group into the parent skeleton.
Collapse
Affiliation(s)
- Jian-Min Liu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng-Fei Wu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China.,Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Rao
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Zhou
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zu-Cheng Shen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Han Luo
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Geng Huang
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao Liang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Li-Hong Long
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China.,Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Qing-Guo Xie
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Feng-Chao Jiang
- Department of Medicinal Chemistry, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China.,Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Guo Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China.,Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China.,The Collaborative Innovation Center for Brain Science, Wuhan, China
| |
Collapse
|
18
|
TU GERILE, ZHANG YUFENG, WEI WEI, LI LANGEN, ZHANG YANMEI, YANG JIA, XING YIQIAO. Allicin attenuates H2O2-induced cytotoxicity in retinal pigmented epithelial cells by regulating the levels of reactive oxygen species. Mol Med Rep 2016; 13:2320-6. [DOI: 10.3892/mmr.2016.4797] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 12/10/2015] [Indexed: 11/06/2022] Open
|
19
|
Li J, Man S, Qiu P, Fan W, Zhang L, Gao W. Toxicological risks of Rhizoma paridis saponins in rats involved NF-κB and Nrf2 signaling. RSC Adv 2016. [DOI: 10.1039/c5ra27521k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The aim of the study is to evaluate the safety of long-term use of Rhizoma paridis saponins (RPS).
Collapse
Affiliation(s)
- Jing Li
- Key Laboratory of Industrial Microbiology
- Ministry of Education
- College of Biotechnology
- Tianjin University of Science & Technology
- Tianjin
| | - Shuli Man
- Key Laboratory of Industrial Microbiology
- Ministry of Education
- College of Biotechnology
- Tianjin University of Science & Technology
- Tianjin
| | - Peiyu Qiu
- Key Laboratory of Industrial Microbiology
- Ministry of Education
- College of Biotechnology
- Tianjin University of Science & Technology
- Tianjin
| | - Wei Fan
- Key Laboratory of Industrial Microbiology
- Ministry of Education
- College of Biotechnology
- Tianjin University of Science & Technology
- Tianjin
| | - Liming Zhang
- Key Laboratory of Industrial Microbiology
- Ministry of Education
- College of Biotechnology
- Tianjin University of Science & Technology
- Tianjin
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency
- School of Pharmaceutical Science and Technology
- Tianjin University
- Tianjin
- China
| |
Collapse
|
20
|
Nrf2–ARE pathway: An emerging target against oxidative stress and neuroinflammation in neurodegenerative diseases. Pharmacol Ther 2016; 157:84-104. [DOI: 10.1016/j.pharmthera.2015.11.003] [Citation(s) in RCA: 324] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
21
|
Liu SG, Ren PY, Wang GY, Yao SX, He XJ. Allicin protects spinal cord neurons from glutamate-induced oxidative stress through regulating the heat shock protein 70/inducible nitric oxide synthase pathway. Food Funct 2014; 6:321-30. [PMID: 25473931 DOI: 10.1039/c4fo00761a] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Allicin, the main biologically active compound derived from garlic, exerts a broad spectrum of pharmacological activities and is considered to have therapeutic potential in many neurological disorders. Using an in vitro spinal cord injury model induced by glutamate treatment, we sought to investigate the neuroprotective effects of allicin in primary cultured spinal cord neurons. We found that allicin treatment significantly attenuated glutamate-induced lactate dehydrogenase (LDH) release, loss of cell viability and apoptotic neuronal death. This protection was associated with reduced oxidative stress, as evidenced by decreased reactive oxygen species (ROS) generation, reduced lipid peroxidation and preservation of antioxidant enzyme activities. The results of western blot analysis showed that allicin decreased the expression of inducible nitric oxide synthase (iNOS), but had no effects on the expression of neuronal NOS (nNOS) following glutamate exposure. Moreover, allicin treatment significantly increased the expression of heat shock protein 70 (HSP70) at both mRNA and protein levels. Knockdown of HSP70 by specific targeted small interfere RNA (siRNA) not only mitigated allicin-induced protective activity, but also partially nullified its effects on the regulation of iNOS. Collectively, these data demonstrate that allicin treatment may be an effective therapeutic strategy for spinal cord injury, and that the potential underlying mechanism involves HSP70/iNOS pathway-mediated inhibition of oxidative stress.
Collapse
Affiliation(s)
- Shu-Guang Liu
- Department of Orthopaedics, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China.
| | | | | | | | | |
Collapse
|
22
|
The protective effects of Trolox-loaded chitosan nanoparticles against hypoxia-mediated cell apoptosis. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2014; 10:1411-20. [DOI: 10.1016/j.nano.2014.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Revised: 03/15/2014] [Accepted: 04/04/2014] [Indexed: 12/21/2022]
|
23
|
Savion N, Izigov N, Morein M, Pri-Chen S, Kotev-Emeth S. S-Allylmercapto-N-acetylcysteine (ASSNAC) protects cultured nerve cells from oxidative stress and attenuates experimental autoimmune encephalomyelitis. Neurosci Lett 2014; 583:108-13. [PMID: 25263785 DOI: 10.1016/j.neulet.2014.09.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 08/12/2014] [Accepted: 09/15/2014] [Indexed: 11/18/2022]
Abstract
Oxidative stress and/or low cellular glutathione are associated with development and progression of neurodegenerative diseases. We have shown that S-allylmercapto-N-acetylcysteine (ASSNAC) up-regulates the level of glutathione and phase II detoxifying enzymes in cultured vascular endothelial cells. The present study demonstrates that exposure of nerve cell lines to ASSNAC significantly increases the cellular level of glutathione probably via activation of nuclear factor erythroid-derived 2-related factor 2 (Nrf2) and protects the cells from tBuOOH-induced cytotoxicity. Furthermore, ASSNAC increases the level of mice spinal cord and brain glutathione (by 54% and 47%, respectively) and attenuates the clinical symptoms of experimental autoimmune encephalomyelitis (EAE) in mice. In conclusion, these data implicate ASSNAC to protect nerve cells, both in vitro and in vivo, from oxidative stress and thereby to attenuate the clinical symptoms of EAE, suggesting its potential use for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Naphtali Savion
- Goldschleger Eye Research Institute, Sackler Faculty of Medicine, Tel Aviv University, Sheba Medical Center, Tel Hashomer 52621, Israel.
| | - Nira Izigov
- Goldschleger Eye Research Institute, Sackler Faculty of Medicine, Tel Aviv University, Sheba Medical Center, Tel Hashomer 52621, Israel
| | - Milana Morein
- Goldschleger Eye Research Institute, Sackler Faculty of Medicine, Tel Aviv University, Sheba Medical Center, Tel Hashomer 52621, Israel
| | - Sarah Pri-Chen
- Goldschleger Eye Research Institute, Sackler Faculty of Medicine, Tel Aviv University, Sheba Medical Center, Tel Hashomer 52621, Israel
| | - Shlomo Kotev-Emeth
- Goldschleger Eye Research Institute, Sackler Faculty of Medicine, Tel Aviv University, Sheba Medical Center, Tel Hashomer 52621, Israel
| |
Collapse
|
24
|
Chan JYY, Tsui HT, Chung IYM, Chan RYK, Kwan YW, Chan SW. Allicin protects rat cardiomyoblasts (H9c2 cells) from hydrogen peroxide-induced oxidative injury through inhibiting the generation of intracellular reactive oxygen species. Int J Food Sci Nutr 2014; 65:868-73. [PMID: 24945597 DOI: 10.3109/09637486.2014.925428] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Oxidative stress is considered an important factor that promotes cell death in response to a variety of pathophysiological conditions. This study investigated the antioxidant properties of allicin, the principle ingredient of garlic, on preventing oxidative stress-induced injury. The antioxidant capacities of allicin were measured by using 1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging assay and hydrogen peroxide (H(2)O(2))-induced cell damage on H9c2 cardiomyoblasts. Allicin (0.3-10 μM) pre-incubation could concentration-dependently attenuate the intracellular reactive oxygen species (ROS) increase induced by H(2)O(2) on H9c2 cells. It could also protect H9c2 cells against H(2)O(2)-induced cell damage. However, the DPPH free radical scavenging activity of allicin was shown to be low. Therefore, it is believed that the protective effect of allicin on H9c2 cells could inhibit intracellular ROS production instead of scavenging extracellular H(2)O(2) or free radicals. For the observed protective effect on H9c2 cells, allicin might also be effective in reducing free radical-induced myocardial cell death in ischemic condition.
Collapse
Affiliation(s)
- Jackie Yan-Yan Chan
- Department of Applied Biology and Chemical Technology, Food Safety and Technology Research Centre, The Hong Kong Polytechnic University , Hong Kong , China
| | | | | | | | | | | |
Collapse
|
25
|
Chan JYY, Yuen ACY, Chan RYK, Chan SW. A Review of the Cardiovascular Benefits and Antioxidant Properties of Allicin. Phytother Res 2012; 27:637-46. [DOI: 10.1002/ptr.4796] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 06/14/2012] [Accepted: 07/15/2012] [Indexed: 12/20/2022]
Affiliation(s)
- Jackie Yan-Yan Chan
- Food Safety and Technology Research Centre, Department of Applied Biology and Chemical Technology; The Hong Kong Polytechnic University; Hong Kong SAR PR China
| | - Ailsa Chui-Ying Yuen
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology; Shenzhen PR China
| | - Robbie Yat-Kan Chan
- Programme of Food Science and Technology, Division of Science and Technology; BNU-HKBU United International College; Zhuhai PR China
| | - Shun-Wan Chan
- Food Safety and Technology Research Centre, Department of Applied Biology and Chemical Technology; The Hong Kong Polytechnic University; Hong Kong SAR PR China
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology; Shenzhen PR China
| |
Collapse
|
26
|
Dias T, Liu B, Jones P, Houghton PJ, Mota-Filipe H, Paulo A. Cytoprotective effect of Coreopsis tinctoria extracts and flavonoids on tBHP and cytokine-induced cell injury in pancreatic MIN6 cells. JOURNAL OF ETHNOPHARMACOLOGY 2012; 139:485-92. [PMID: 22143153 DOI: 10.1016/j.jep.2011.11.038] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 11/02/2011] [Accepted: 11/19/2011] [Indexed: 05/22/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE [corrected] Coreopsis tinctoria flowering tops infusion is traditionally used in Portugal for treating the symptoms of diabetes. Recent studies have revealed its antihyperglycemic activity when administered for 3 weeks to a STZ-induced glucose intolerance model in the rat and glucose tolerance regain was even clearer and pancreatic function recovery was achieved when administering Coreopsis tinctoria flavonoid-rich AcOEt fraction. In this study we aimed to evaluate the protective effect of Coreopsis tinctoria flowering tops aqueous extract, AcOEt fraction and the pure compounds marein and flavanomarein, against beta-cell injury, in a mouse insulinoma cell line (MIN6) challenged with pro-oxidant tert-butyl-hydroperoxide (tBHP) or cytokines. MATERIALS AND METHODS The protective effects of Coreopsis tinctoria flowering tops extracts and pure compounds were evaluated through pre-incubating MIN6 cells with samples followed by treatment with tBHP (400 μM for 2 h) after which viability was determined through ATP measurements. In order to assess whether plant extracts were involved in decreasing reactive oxygen species, superoxide anion production was determined through a lucigenin-enhanced chemiluminescent method. Lastly, the direct influence of Coreopsis tinctoria extracts and main compounds on cell survival/apoptosis was determined measuring caspase 3 and 7 cleavage induced by cytokines. RESULTS Coreopsis tinctoria flowering tops extracts (25-100 μg/mL) and pure compounds (200-400 μM), when pre-incubated with MIN6 cells did not present any cytotoxicity, instead they increased cell viability in a dose dependent manner when challenged with tBHP. Treatment with this pro-oxidant also showed a rise in superoxide radical anion formation in MIN6 cells. This increase was significantly reduced by treatment with superoxide dismutase enzyme (SOD) but not by pre-treatment with Coreopsis tinctoria flowering tops extracts. Caspase 3/7 activation measurements show that Coreopsis tinctoria flowering tops extracts, as well as marein and flavanomarein, significantly inhibit apoptosis. CONCLUSIONS Coreopsis tinctoria extracts and pure compounds show cytoprotection that seems to be due to inhibition of the apoptotic pathway, and not through a decrease on superoxide radical production.
Collapse
Affiliation(s)
- Teresa Dias
- i.Med-UL-Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | | | | | | | | | | |
Collapse
|