1
|
Rodríguez AF, Buitrago JS, Castillo Y, Lafaurie GI, Buitrago-Ramirez DM. Effects of Pro-inflammatory Cytokines Induced by Porphyromonas gingivalis on Cell Cycle Regulation in Brain Endothelial Cells. J Oral Biosci 2025; 67:100668. [PMID: 40319939 DOI: 10.1016/j.job.2025.100668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/24/2025] [Accepted: 04/28/2025] [Indexed: 05/07/2025]
Abstract
OBJECTIVES Advanced periodontitis potentially contributes to Alzheimer's disease (AD) development and progression by altering the blood-brain barrier microenvironment in the cerebral microvascular endothelium. This results, in cytotoxicity, cell cycle disruption, and increased pro-inflammatory cytokine expression, allowing pathogens to enter the brain and damage the central nervous system (CNS). This study evaluated the effects of Porphyromonas gingivalis W83 infection on pro-inflammatory response, cell viability, and cell cycle regulation in mouse brain endothelial cells (mBECs). METHODS mBECs were stimulated with live P. gingivalis at different multiplicity of infection (MOI) values (1:5, 1:10, 1:50, 1:100, 1:200) for 6, 12, 24, and 48 h. Cell viability, cell cycle regulation, and pro-inflammatory cytokine mRNA expression were assessed using the alamarBlue assay, flow cytometry, and reverse transcription quantitative polymerase chain reaction (RT-qPCR), respectively. RESULTS P. gingivalis reduced cell viability, induced morphological changes in mBECs by >50% after 48 h (p < 0.05) and caused concentration-dependent arrest in the S and G0/G1 phases of the cell cycle at MOI=1:100 and 1:200. The Il6, Il1b, and tumor necrosis factor alpha (Tnf) mRNA expression increased significantly compared to that of the controls (p < 0.05). CONCLUSIONS P. gingivalis reduced cellular metabolism and induced early cell cycle arrest at the G0/G1 phase in MBEC cells. It also increased the pro-inflammatory response, which could be associated with cell death and possible senescence of brain endothelial cells. These results suggested a possible role for P. gingivalis in the pathogenesis of AD. Further studies are required to elucidate these underlying mechanisms.
Collapse
Affiliation(s)
- Andrea Fernanda Rodríguez
- Facultad de Odontología-UBSIFO, Universidad El Bosque, Cra. 9 No. 131 A - 02, Bogota, 110121, Colombia
| | - Juan Sebastian Buitrago
- Facultad de Odontología-UBSIFO, Universidad El Bosque, Cra. 9 No. 131 A - 02, Bogota, 110121, Colombia
| | - Yormaris Castillo
- Unidad de Investigación Básica Oral-UIBO, Facultad de Odontología, Universidad El Bosque, Bogotá 110121, Colombia
| | - Gloria Inés Lafaurie
- Unidad de Investigación Básica Oral-UIBO, Facultad de Odontología, Universidad El Bosque, Bogotá 110121, Colombia
| | | |
Collapse
|
2
|
Cupido G, Günther G. Post tuberculosis lung disease and tuberculosis sequelae: A narrative review. Indian J Tuberc 2024; 71:64-72. [PMID: 38296392 DOI: 10.1016/j.ijtb.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 03/28/2023] [Accepted: 04/05/2023] [Indexed: 02/08/2024]
Abstract
Post Tuberculosis lung disease (PTLD) and post tuberculosis sequelae is a global and poorly recognized problem, amplified by social factors and immunocompromising conditions, inadequate treatment, lack of effective prevention of tuberculosis (TB) infection and disease. As a disease, it remained until recently poorly defined, with studies heterogenous with regards to regions, population demographics, risk factors, cohort sizes, and methods. Pathophysiologically, even successfully treated pulmonary TB disease has sequelae i.e. involving central and peripheral airways, lung parenchyma and pleura, resulting in airway narrowing and dilatation, fibrocavitation and emphysema, pulmonary vascular changes as well as pleural fibrosis. Functionally patients have airflow limitation, restrictive disease or a mixture of both not rarely associated with respiratory, or even ventilatory failure. Quality of life is often impaired through disability, TB relapse, superinfections and through increased susceptibility to reinfection and persistent inflammation, leading to progressive lung function decline and an increased risk of cardiovascular disease and cancer. Premature mortality due to PTLD is very likely, but poorly described.
Collapse
Affiliation(s)
- Gordon Cupido
- Department of Internal Medicine, Katutura State Hospital, Windhoek, Namibia.
| | - Gunar Günther
- Department of Pulmonology and Allergology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department of Medical Sciences, University of Namibia, School of Medicine, Windhoek, Namibia
| |
Collapse
|
3
|
Byanova KL, Abelman R, North CM, Christenson SA, Huang L. COPD in People with HIV: Epidemiology, Pathogenesis, Management, and Prevention Strategies. Int J Chron Obstruct Pulmon Dis 2023; 18:2795-2817. [PMID: 38050482 PMCID: PMC10693779 DOI: 10.2147/copd.s388142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/09/2023] [Indexed: 12/06/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive respiratory disorder characterized by airflow limitation and persistent respiratory symptoms. People with HIV (PWH) are particularly vulnerable to COPD development; PWH have demonstrated both higher rates of COPD and an earlier and more rapid decline in lung function than their seronegative counterparts, even after accounting for differences in cigarette smoking. Factors contributing to this HIV-associated difference include chronic immune activation and inflammation, accelerated aging, a predilection for pulmonary infections, alterations in the lung microbiome, and the interplay between HIV and inhalational toxins. In this review, we discuss what is known about the epidemiology and pathobiology of COPD among PWH and outline screening, diagnostic, prevention, and treatment strategies.
Collapse
Affiliation(s)
- Katerina L Byanova
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Rebecca Abelman
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Crystal M North
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Stephanie A Christenson
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Laurence Huang
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
4
|
Kartchner D, McCoy K, Dubey J, Zhang D, Zheng K, Umrani R, Kim JJ, Mitchell CS. Literature-Based Discovery to Elucidate the Biological Links between Resistant Hypertension and COVID-19. BIOLOGY 2023; 12:1269. [PMID: 37759668 PMCID: PMC10526006 DOI: 10.3390/biology12091269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
Multiple studies have reported new or exacerbated persistent or resistant hypertension in patients previously infected with COVID-19. We used literature-based discovery to identify and prioritize multi-scalar explanatory biology that relates resistant hypertension to COVID-19. Cross-domain text mining of 33+ million PubMed articles within a comprehensive knowledge graph was performed using SemNet 2.0. Unsupervised rank aggregation determined which concepts were most relevant utilizing the normalized HeteSim score. A series of simulations identified concepts directly related to COVID-19 and resistant hypertension or connected via one of three renin-angiotensin-aldosterone system hub nodes (mineralocorticoid receptor, epithelial sodium channel, angiotensin I receptor). The top-ranking concepts relating COVID-19 to resistant hypertension included: cGMP-dependent protein kinase II, MAP3K1, haspin, ral guanine nucleotide exchange factor, N-(3-Oxododecanoyl)-L-homoserine lactone, aspartic endopeptidases, metabotropic glutamate receptors, choline-phosphate cytidylyltransferase, protein tyrosine phosphatase, tat genes, MAP3K10, uridine kinase, dicer enzyme, CMD1B, USP17L2, FLNA, exportin 5, somatotropin releasing hormone, beta-melanocyte stimulating hormone, pegylated leptin, beta-lipoprotein, corticotropin, growth hormone-releasing peptide 2, pro-opiomelanocortin, alpha-melanocyte stimulating hormone, prolactin, thyroid hormone, poly-beta-hydroxybutyrate depolymerase, CR 1392, BCR-ABL fusion gene, high density lipoprotein sphingomyelin, pregnancy-associated murine protein 1, recQ4 helicase, immunoglobulin heavy chain variable domain, aglycotransferrin, host cell factor C1, ATP6V0D1, imipramine demethylase, TRIM40, H3C2 gene, COL1A1+COL1A2 gene, QARS gene, VPS54, TPM2, MPST, EXOSC2, ribosomal protein S10, TAP-144, gonadotropins, human gonadotropin releasing hormone 1, beta-lipotropin, octreotide, salmon calcitonin, des-n-octanoyl ghrelin, liraglutide, gastrins. Concepts were mapped to six physiological themes: altered endocrine function, 23.1%; inflammation or cytokine storm, 21.3%; lipid metabolism and atherosclerosis, 17.6%; sympathetic input to blood pressure regulation, 16.7%; altered entry of COVID-19 virus, 14.8%; and unknown, 6.5%.
Collapse
Affiliation(s)
- David Kartchner
- Laboratory for Pathology Dynamics, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Kevin McCoy
- Laboratory for Pathology Dynamics, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Janhvi Dubey
- Laboratory for Pathology Dynamics, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Dongyu Zhang
- Laboratory for Pathology Dynamics, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Kevin Zheng
- Laboratory for Pathology Dynamics, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Rushda Umrani
- Laboratory for Pathology Dynamics, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- College of Computing, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - James J. Kim
- Laboratory for Pathology Dynamics, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Cassie S. Mitchell
- Laboratory for Pathology Dynamics, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- Center for Machine Learning at Georgia Tech, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
5
|
Hedayati-Moghadam M, Rezaee SAR, Boskabady MH, Mohamadian Roshan N, Saadat S, Bavarsad K, Niazmand S. Human T-Cell Leukemia Virus Type 1 Changes Leukocyte Number and Oxidative Stress in the Lung and Blood of Female BALB/c Mice. Adv Biomed Res 2021; 10:6. [PMID: 33959563 PMCID: PMC8095261 DOI: 10.4103/abr.abr_117_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/01/2020] [Accepted: 08/17/2020] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Human T-cell leukemia virus type 1(HTLV-1) infection is likely to induce nonneoplastic inflammatory pulmonary diseases. Therefore, an experimental study was conducted to evaluate the leukocytes' number alteration and oxidative stress in the lung and blood of HTLV-1-infected BALB/c mice, which could be of benefit for the recognition of HTLV-1 mechanism in the induction of pulmonary disorders. MATERIALS AND METHODS Twenty female BALB/c mice were divided into two groups of control and HTLV-1-infected animals. The HTLV-1-infected group was inoculated with 106 MT-2 HTLV-1-infected cells. Two months later, the infection was confirmed using real-time polymerase chain reaction, and then lung pathological changes, total and differential inflammatory cell counts in the blood and bronchoalveolar lavage fluid (BALF), along with oxidative stress biomarker levels in the BALF and lung tissue were evaluated. RESULTS In the HTLV-1-infected group, the peribronchitis score (P < 0.01), the number of total leukocytes, neutrophils, lymphocytes, and monocytes (P < 0.05) in the blood and BALF were increased. The number of eosinophils in the blood of the HTLV-1-infected group was higher than in the control group (P < 0.01), whereas the number of basophils of BALF was increased in the HTLV-1-infected group (P < 0.001). The lung and BALF oxidative stress results showed that the MDA level was increased, while the total thiol level and superoxide dismutase activity were decreased in the HTLV-1-infected group (P < 0.01). CONCLUSION The HTLV-1 infection seems to induce pulmonary inflammatory reactions by recruiting leukocytes as well as inducing oxidative stress in the lung tissue.
Collapse
Affiliation(s)
- Mahdiyeh Hedayati-Moghadam
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - S. A. Rahim Rezaee
- Immunology Research Center, Division of Inflammation and Inflammatory Diseases, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Nema Mohamadian Roshan
- Department of Pathology, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeideh Saadat
- Department of Physiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Kowsar Bavarsad
- Department of Physiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeed Niazmand
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Almodovar S, Wade BE, Porter KM, Smith JM, Lopez-Astacio RA, Bijli K, Kang BY, Cribbs SK, Guidot DM, Molehin D, McNair BK, Pumarejo-Gomez L, Perez Hernandez J, Salazar EA, Martinez EG, Huang L, Kessing CF, Suarez-Martinez EB, Pruitt K, Hsue PY, Tyor WR, Flores SC, Sutliff RL. HIV X4 Variants Increase Arachidonate 5-Lipoxygenase in the Pulmonary Microenvironment and are associated with Pulmonary Arterial Hypertension. Sci Rep 2020; 10:11696. [PMID: 32678115 PMCID: PMC7366722 DOI: 10.1038/s41598-020-68060-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 06/18/2020] [Indexed: 01/28/2023] Open
Abstract
Pulmonary Arterial Hypertension (PAH) is overrepresented in People Living with Human Immunodeficiency Virus (PLWH). HIV protein gp120 plays a key role in the pathogenesis of HIV-PAH. Genetic changes in HIV gp120 determine viral interactions with chemokine receptors; specifically, HIV-X4 viruses interact with CXCR4 while HIV-R5 interact with CCR5 co-receptors. Herein, we leveraged banked samples from patients enrolled in the NIH Lung HIV studies and used bioinformatic analyses to investigate whether signature sequences in HIV-gp120 that predict tropism also predict PAH. Further biological assays were conducted in pulmonary endothelial cells in vitro and in HIV-transgenic rats. We found that significantly more persons living with HIV-PAH harbor HIV-X4 variants. Multiple HIV models showed that recombinant gp120-X4 as well as infectious HIV-X4 remarkably increase arachidonate 5-lipoxygenase (ALOX5) expression. ALOX5 is essential for the production of leukotrienes; we confirmed that leukotriene levels are increased in bronchoalveolar lavage fluid of HIV-infected patients. This is the first report associating HIV-gp120 genotype to a pulmonary disease phenotype, as we uncovered X4 viruses as potential agents in the pathophysiology of HIV-PAH. Altogether, our results allude to the supplementation of antiretroviral therapy with ALOX5 antagonists to rescue patients with HIV-X4 variants from fatal PAH.
Collapse
Affiliation(s)
- Sharilyn Almodovar
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Brandy E Wade
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep, Emory University School of Medicine, Atlanta, GA, USA
| | - Kristi M Porter
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta Veterans Affairs Medical Center, Decatur, GA, USA
| | - Justin M Smith
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Robert A Lopez-Astacio
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Biology, University of Puerto Rico in Ponce, Ponce, PR, USA
| | - Kaiser Bijli
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta Veterans Affairs Medical Center, Decatur, GA, USA
| | - Bum-Yong Kang
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta Veterans Affairs Medical Center, Decatur, GA, USA
| | - Sushma K Cribbs
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta Veterans Affairs Medical Center, Decatur, GA, USA
| | - David M Guidot
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta Veterans Affairs Medical Center, Decatur, GA, USA
| | - Deborah Molehin
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Bryan K McNair
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Laura Pumarejo-Gomez
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jaritza Perez Hernandez
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ethan A Salazar
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Edgar G Martinez
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Laurence Huang
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Cari F Kessing
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta Veterans Affairs Medical Center, Decatur, GA, USA
| | | | - Kevin Pruitt
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Priscilla Y Hsue
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - William R Tyor
- Atlanta Veterans Affairs Medical Center, Decatur, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Sonia C Flores
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Roy L Sutliff
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta Veterans Affairs Medical Center, Decatur, GA, USA
| |
Collapse
|
7
|
Manevski M, Muthumalage T, Devadoss D, Sundar IK, Wang Q, Singh KP, Unwalla HJ, Chand HS, Rahman I. Cellular stress responses and dysfunctional Mitochondrial-cellular senescence, and therapeutics in chronic respiratory diseases. Redox Biol 2020; 33:101443. [PMID: 32037306 PMCID: PMC7251248 DOI: 10.1016/j.redox.2020.101443] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 01/14/2020] [Accepted: 01/22/2020] [Indexed: 02/06/2023] Open
Abstract
The abnormal inflammatory responses due to the lung tissue damage and ineffective repair/resolution in response to the inhaled toxicants result in the pathological changes associated with chronic respiratory diseases. Investigation of such pathophysiological mechanisms provides the opportunity to develop the molecular phenotype-specific diagnostic assays and could help in designing the personalized medicine-based therapeutic approaches against these prevalent diseases. As the central hubs of cell metabolism and energetics, mitochondria integrate cellular responses and interorganellar signaling pathways to maintain cellular and extracellular redox status and the cellular senescence that dictate the lung tissue responses. Specifically, as observed in chronic obstructive pulmonary disease (COPD) and pulmonary fibrosis, the mitochondria-endoplasmic reticulum (ER) crosstalk is disrupted by the inhaled toxicants such as the combustible and emerging electronic nicotine-delivery system (ENDS) tobacco products. Thus, the recent research efforts have focused on understanding how the mitochondria-ER dysfunctions and oxidative stress responses can be targeted to improve inflammatory and cellular dysfunctions associated with these pathologic illnesses that are exacerbated by viral infections. The present review assesses the importance of these redox signaling and cellular senescence pathways that describe the role of mitochondria and ER on the development and function of lung epithelial responses, highlighting the cause and effect associations that reflect the disease pathogenesis and possible intervention strategies.
Collapse
Affiliation(s)
- Marko Manevski
- Department of Immunology and NanoMedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Thivanka Muthumalage
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Dinesh Devadoss
- Department of Immunology and NanoMedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Isaac K Sundar
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Qixin Wang
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Kameshwar P Singh
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Hoshang J Unwalla
- Department of Immunology and NanoMedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Hitendra S Chand
- Department of Immunology and NanoMedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
8
|
Simenauer A, Nozik-Grayck E, Cota-Gomez A. The DNA Damage Response and HIV-Associated Pulmonary Arterial Hypertension. Int J Mol Sci 2020; 21:ijms21093305. [PMID: 32392789 PMCID: PMC7246454 DOI: 10.3390/ijms21093305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/17/2022] Open
Abstract
The HIV-infected population is at a dramatically increased risk of developing pulmonary arterial hypertension (PAH), a devastating and fatal cardiopulmonary disease that is rare amongst the general population. It is increasingly apparent that PAH is a disease with complex and heterogeneous cellular and molecular pathologies, and options for therapeutic intervention are limited, resulting in poor clinical outcomes for affected patients. A number of soluble HIV factors have been implicated in driving the cellular pathologies associated with PAH through perturbations of various signaling and regulatory networks of uninfected bystander cells in the pulmonary vasculature. While these mechanisms are likely numerous and multifaceted, the overlapping features of PAH cellular pathologies and the effects of viral factors on related cell types provide clues as to the potential mechanisms driving HIV-PAH etiology and progression. In this review, we discuss the link between the DNA damage response (DDR) signaling network, chronic HIV infection, and potential contributions to the development of pulmonary arterial hypertension in chronically HIV-infected individuals.
Collapse
Affiliation(s)
- Ari Simenauer
- Department of Medicine Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Eva Nozik-Grayck
- Cardiovascular Pulmonary Research Labs and Pediatric Critical Care Medicine, University of Colorado Denver, Pediatric Critical Care Medicine, Aurora, CO 80045, USA;
| | - Adela Cota-Gomez
- Department of Medicine Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
- Correspondence: ; Tel.: +1-(303)-724-6085
| |
Collapse
|
9
|
Manes TL, Simenauer A, Geohring JL, Flemming J, Brehm M, Cota-Gomez A. The HIV-Tat protein interacts with Sp3 transcription factor and inhibits its binding to a distal site of the sod2 promoter in human pulmonary artery endothelial cells. Free Radic Biol Med 2020; 147:102-113. [PMID: 31863909 PMCID: PMC7039131 DOI: 10.1016/j.freeradbiomed.2019.12.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/03/2019] [Accepted: 12/16/2019] [Indexed: 12/16/2022]
Abstract
Redox imbalance results in damage to cellular macromolecules and interferes with signaling pathways, leading to an inflammatory cellular and tissue environment. As such, the cellular oxidative environment is tightly regulated by several redox-modulating pathways. Many viruses have evolved intricate mechanisms to manipulate these pathways for their benefit, including HIV-1, which requires a pro-oxidant cellular environment for optimal replication. One such virulence factor responsible for modulating the redox environment is the HIV Transactivator of transcription (Tat). Tat is of particular interest as it is actively secreted by infected cells and internalized by uninfected bystander cells where it can elicit pro-oxidant effects resulting in inflammation and damage. Previously, we demonstrated that Tat regulates basal expression of Superoxide Dismutase 2 (sod2) by altering the binding of the Sp-transcription factors at regions relatively near (approx. -210 nucleotides) upstream of the transcriptional start site. Now, using in silico analysis and a series of sod2 promoter reporter constructs, we have identified putative clusters of Sp-binding sites located further upstream of the proximal sod2 promoter, between nucleotides -3400 to -210, and tested their effect on basal transcription and for their sensitivity to HIV-1 Tat. In this report, we demonstrate that under basal conditions, maximal transcription requires a cluster of Sp-binding sites in the -584 nucleotide region, which is extremely sensitive to Tat. Using chromatin immunoprecipitation (ChIP) we demonstrate that Tat results in altered occupancy of Sp1 and Sp3 at this distal Tat-sensitive regulatory element and strongly stimulated endogenous expression of SOD2 in human pulmonary artery endothelial cells (HPAEC). We also report altered expression of Sp1 and Sp3 in Tat-expressing HPAEC as well as in the lungs of HIV-1 infected humanized mice. Lastly, Tat co-immunoprecipitated with endogenous Sp3 but not Sp1 and did not alter the acetylation state of Sp3. Thus, here, we have defined a novel and important cis-acting factor in HIV-1 Tat-mediated regulation of SOD2, demonstrated that modulation of Sp1 and Sp3 activity by Tat promotes SOD2 expression in primary human pulmonary artery endothelial cells and determined that pulmonary levels of Sp3 as well as SOD2 are increased in the lungs of a mouse model of HIV infection.
Collapse
Affiliation(s)
- Terrin L Manes
- University of Colorado Anschutz Medical Campus, Department of Medicine Division of Pulmonary Sciences and Critical Care Medicine, 12700 E. 19th Avenue, Mailstop C272, Aurora, CO, 80045, USA
| | - Ari Simenauer
- University of Colorado Anschutz Medical Campus, Department of Medicine Division of Pulmonary Sciences and Critical Care Medicine, 12700 E. 19th Avenue, Mailstop C272, Aurora, CO, 80045, USA
| | - Jason L Geohring
- University of Colorado Anschutz Medical Campus, Department of Medicine Division of Pulmonary Sciences and Critical Care Medicine, 12700 E. 19th Avenue, Mailstop C272, Aurora, CO, 80045, USA
| | - Juliana Flemming
- University of Colorado Anschutz Medical Campus, Department of Medicine Division of Pulmonary Sciences and Critical Care Medicine, 12700 E. 19th Avenue, Mailstop C272, Aurora, CO, 80045, USA
| | - Michael Brehm
- University of Massachusetts Medical School, 368 Plantation Street, AS7-2053, Worcester, MA, 01605, USA
| | - Adela Cota-Gomez
- University of Colorado Anschutz Medical Campus, Department of Medicine Division of Pulmonary Sciences and Critical Care Medicine, 12700 E. 19th Avenue, Mailstop C272, Aurora, CO, 80045, USA.
| |
Collapse
|
10
|
Cribbs SK, Crothers K, Morris A. Pathogenesis of HIV-Related Lung Disease: Immunity, Infection, and Inflammation. Physiol Rev 2019; 100:603-632. [PMID: 31600121 DOI: 10.1152/physrev.00039.2018] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Despite anti-retroviral therapy (ART), human immunodeficiency virus-1 (HIV)-related pulmonary disease continues to be a major cause of morbidity and mortality for people living with HIV (PLWH). The spectrum of lung diseases has changed from acute opportunistic infections resulting in death to chronic lung diseases for those with access to ART. Chronic immune activation and suppression can result in impairment of innate immunity and progressive loss of T cell and B cell functionality with aberrant cytokine and chemokine responses systemically as well as in the lung. HIV can be detected in the lungs of PLWH and has profound effects on cellular immune functions. In addition, HIV-related lung injury and disease can occur secondary to a number of mechanisms including altered pulmonary and systemic inflammatory pathways, viral persistence in the lung, oxidative stress with additive effects of smoke exposure, microbial translocation, and alterations in the lung and gut microbiome. Although ART has had profound effects on systemic viral suppression in HIV, the impact of ART on lung immunology still needs to be fully elucidated. Understanding of the mechanisms by which HIV-related lung diseases continue to occur is critical to the development of new preventive and therapeutic strategies to improve lung health in PLWH.
Collapse
Affiliation(s)
- Sushma K Cribbs
- Pulmonary Medicine, Department of Veterans Affairs, Atlanta, Georgia; Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep, Emory University, Atlanta, Georgia; Department of Medicine, Veterans Affairs Puget Sound Health Care System and Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, Washington; and Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kristina Crothers
- Pulmonary Medicine, Department of Veterans Affairs, Atlanta, Georgia; Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep, Emory University, Atlanta, Georgia; Department of Medicine, Veterans Affairs Puget Sound Health Care System and Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, Washington; and Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Alison Morris
- Pulmonary Medicine, Department of Veterans Affairs, Atlanta, Georgia; Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep, Emory University, Atlanta, Georgia; Department of Medicine, Veterans Affairs Puget Sound Health Care System and Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, Washington; and Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
11
|
Simenauer A, Assefa B, Rios-Ochoa J, Geraci K, Hybertson B, Gao B, McCord J, Elajaili H, Nozik-Grayck E, Cota-Gomez A. Repression of Nrf2/ARE regulated antioxidant genes and dysregulation of the cellular redox environment by the HIV Transactivator of Transcription. Free Radic Biol Med 2019; 141:244-252. [PMID: 31238128 PMCID: PMC7096131 DOI: 10.1016/j.freeradbiomed.2019.06.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/11/2019] [Accepted: 06/11/2019] [Indexed: 11/17/2022]
Abstract
Chronic HIV infection in the era of anti-retroviral therapy is associated with dramatically increased risk of developing severe cardio pulmonary disease. Common to these diseases is increased oxidative burden and chronic inflammation despite low viremia and restoration of CD4+ T-cell levels. Soluble viral factors are heavily implicated in these disease processes, including the HIV Transactivator of Transcription (Tat). Tat is produced in high levels during infection and secreted from infected cells into circulation where it is internalized by bystander cells and is known to regulate inflammatory pathways and elicit a pro-oxidant environment. We have examined the effects of Tat on the anti-oxidant regulatory network driven by the transcription factor Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) in primary human pulmonary arterial endothelial cells, which are heavily involved in pathogenesis of HIV associated lung diseases including pulmonary arterial hypertension and COPD. Co-expression of Tat and a luciferase reporter construct driven by the Nrf2 activated anti-oxidant response element (ARE) demonstrated markedly reduced Nrf2/ARE activity, even when stimulated by the potent Nrf2 activating compound PB125. Additionally, Heme-oxygenase-1 (HO-1) transcription was potently repressed by Tat in a cell line as well as primary endothelial cells, and treatment with PB125 failed to restore transcriptional activity. Other anti-oxidant Nrf2 genes examined included NADPH Dehydrogenase Quinone 1 (NQO1) and Sulfiredoxin-1 (SRXN1). NQO1 was repressed basally by Tat, while SRXN1 transcription was refractory to activation by PB125 in the presence of Tat. Lastly, we demonstrated that Tat expressing cells have increased indicators of oxidative stress including elevated production of reactive oxygen species, measured by electron paramagnetic resonance spectroscopy, and increased levels of nitrotyrosine content. These observations suggest a novel mechanism by which HIV Tat increases oxidative burden by dysregulation of the Nrf2/ARE pathway.
Collapse
Affiliation(s)
- Ari Simenauer
- University of Colorado Anschutz Medical Campus, Department of Medicine Division of Pulmonary Sciences and Critical Care Medicine, 12700 E. 19th Avenue, Mailstop C272, 80045, Aurora, CO, USA
| | - Betelhem Assefa
- University of Colorado Anschutz Medical Campus, Department of Medicine Division of Pulmonary Sciences and Critical Care Medicine, 12700 E. 19th Avenue, Mailstop C272, 80045, Aurora, CO, USA
| | - Jose Rios-Ochoa
- University of Colorado Anschutz Medical Campus, Department of Medicine Division of Pulmonary Sciences and Critical Care Medicine, 12700 E. 19th Avenue, Mailstop C272, 80045, Aurora, CO, USA
| | - Kara Geraci
- University of Colorado Anschutz Medical Campus, Department of Medicine Division of Pulmonary Sciences and Critical Care Medicine, 12700 E. 19th Avenue, Mailstop C272, 80045, Aurora, CO, USA
| | - Brooks Hybertson
- University of Colorado Anschutz Medical Campus, Department of Medicine Division of Pulmonary Sciences and Critical Care Medicine, 12700 E. 19th Avenue, Mailstop C272, 80045, Aurora, CO, USA; Pathways Bioscience, USA
| | - Bifeng Gao
- University of Colorado Anschutz Medical Campus, Department of Medicine Division of Pulmonary Sciences and Critical Care Medicine, 12700 E. 19th Avenue, Mailstop C272, 80045, Aurora, CO, USA; Pathways Bioscience, USA
| | - Joe McCord
- University of Colorado Anschutz Medical Campus, Department of Medicine Division of Pulmonary Sciences and Critical Care Medicine, 12700 E. 19th Avenue, Mailstop C272, 80045, Aurora, CO, USA; Pathways Bioscience, USA
| | - Hanan Elajaili
- University of Colorado Anschutz Medical Campus, Department of Pediatrics, Cardiovascular Pulmonary Research Labs and Pediatric Critical Care Medicine, University of Colorado Denver, Pediatric Critical Care Medicine, Box B131, 12700 E. 19th Avenue, Research 2, Room, 6121, USA
| | - Eva Nozik-Grayck
- University of Colorado Anschutz Medical Campus, Department of Pediatrics, Cardiovascular Pulmonary Research Labs and Pediatric Critical Care Medicine, University of Colorado Denver, Pediatric Critical Care Medicine, Box B131, 12700 E. 19th Avenue, Research 2, Room, 6121, USA
| | - Adela Cota-Gomez
- University of Colorado Anschutz Medical Campus, Department of Medicine Division of Pulmonary Sciences and Critical Care Medicine, 12700 E. 19th Avenue, Mailstop C272, 80045, Aurora, CO, USA.
| |
Collapse
|
12
|
Nookala AR, Schwartz DC, Chaudhari NS, Glazyrin A, Stephens EB, Berman NEJ, Kumar A. Methamphetamine augment HIV-1 Tat mediated memory deficits by altering the expression of synaptic proteins and neurotrophic factors. Brain Behav Immun 2018; 71:37-51. [PMID: 29729322 PMCID: PMC6003882 DOI: 10.1016/j.bbi.2018.04.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 04/29/2018] [Accepted: 04/30/2018] [Indexed: 01/06/2023] Open
Abstract
Methamphetamine (METH) abuse is common among individuals infected with HIV-1 and has been shown to affect HIV replication and pathogenesis. These HIV-1 infected individuals also exhibit greater neuronal injury and higher cognitive decline. HIV-1 proteins, specifically gp120 and HIV-1 Tat, have been earlier shown to affect neurocognition. HIV-1 Tat, a viral protein released early during HIV-1 replication, contributes to HIV-associated neurotoxicity through various mechanisms including production of pro-inflammatory cytokines, reactive oxygen species and dysregulation of neuroplasticity. However, the combined effect of METH and HIV-1 Tat on neurocognition and its potential effect on neuroplasticity mechanisms remains largely unknown. Therefore, the present study was undertaken to investigate the combined effect of METH and HIV-1 Tat on behavior and on the expression of neuroplasticity markers by utilizing Doxycycline (DOX)-inducible HIV-1 Tat (1-86) transgenic mice. Expression of Tat in various brain regions of these mice was confirmed by RT-PCR. The mice were administered with an escalating dose of METH (0.1 mg/kg to 6 mg/kg, i.p) over a 7-day period, followed by 6 mg/kg, i.p METH twice a day for four weeks. After three weeks of METH administration, Y maze and Morris water maze assays were performed to determine the effect of Tat and METH on working and spatial memory, respectively. Compared with controls, working memory was significantly decreased in Tat mice that were administered METH. Moreover, significant deficits in spatial memory were also observed in Tat-Tg mice that were administered METH. A significant reduction in the protein expressions of synapsin 1, synaptophysin, Arg3.1, PSD-95, and BDNF in different brain regions were also observed. Expression levels of Calmodulin kinase II (CaMKII), a marker of synaptodendritic integrity, were also significantly decreased in HIV-1 Tat mice that were treated with METH. Together, this data suggests that METH enhances HIV-1 Tat-induced memory deficits by reducing the expression of pre- and postsynaptic proteins and neuroplasticity markers, thus providing novel insights into the molecular mechanisms behind neurocognitive impairments in HIV-infected amphetamine users.
Collapse
Affiliation(s)
- Anantha Ram Nookala
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108, USA
| | - Daniel C. Schwartz
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108, USA
| | - Nitish S. Chaudhari
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108, USA
| | - Alexy Glazyrin
- Department of Pathology, School of Medicine, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, 64108, USA
| | - Edward B. Stephens
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Nancy E. J. Berman
- Department of Anatomy and Cell biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Anil Kumar
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108, USA.
| |
Collapse
|
13
|
Almodovar S, Swanson J, Giavedoni LD, Kanthaswamy S, Long CS, Voelkel NF, Edwards MG, Folkvord JM, Connick E, Westmoreland SV, Luciw PA, Flores SC. Lung Vascular Remodeling, Cardiac Hypertrophy, and Inflammatory Cytokines in SHIVnef-Infected Macaques. Viral Immunol 2017; 31:206-222. [PMID: 29256819 DOI: 10.1089/vim.2017.0051] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Fatal pulmonary arterial hypertension (PAH) affects HIV-infected individuals at significantly higher frequencies. We previously showed plexiform-like lesions characterized by recanalized lumenal obliteration, intimal disruption, medial hypertrophy, and thrombosis consistent with PAH in rhesus macaques infected with chimeric SHIVnef but not with the parental SIVmac239, suggesting that Nef is implicated in the pathophysiology of HIV-PAH. However, the current literature on non-human primates as animal models for SIV(HIV)-associated pulmonary disease reports the ultimate pathogenic pulmonary outcomes of the research efforts; however, the variability and features in the actual disease progression remain poorly described, particularly when using different viral sources for infection. We analyzed lung histopathology, performed immunophenotyping of cells in plexogenic lesions pathognomonic of PAH, and measured cardiac hypertrophy biomarkers and cytokine expression in plasma and lung of juvenile SHIVnef-infected macaques. Here, we report significant hematopathologies, changes in cardiac biomarkers consistent with ventricular hypertrophy, significantly increased levels of interleukin-12 and GM-CSF and significantly decreased sCD40 L, CCL-2, and CXCL-1 in plasma of the SHIVnef group. Pathway analysis of inflammatory gene expression predicted activation of NF-κB transcription factor RelB and inhibition of bone morphogenetic protein type-2 in the setting of SHIVnef infection. Our findings highlight the utility of SHIVnef-infected macaques as suitable models of HIV-associated pulmonary vascular remodeling as pathogenetic changes are concordant with features of idiopathic, familial, scleroderma, and HIV-PAH.
Collapse
Affiliation(s)
- Sharilyn Almodovar
- 1 Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus , Aurora, Colorado.,2 Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center , Lubbock, Texas
| | - Jessica Swanson
- 1 Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus , Aurora, Colorado
| | - Luis D Giavedoni
- 3 Department of Virology and Immunology, and Southwest National Primate Research Center, Texas Biomedical Research Institute , San Antonio, Texas
| | - Sreetharan Kanthaswamy
- 4 School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University , Arizona
| | - Carlin S Long
- 5 Department of Medicine, University of California , San Francisco, San Francisco, California
| | - Norbert F Voelkel
- 6 Victoria Johnson Center for Obstructive Lung Diseases, Virginia Commonwealth University , Richmond, Virginia
| | - Michael G Edwards
- 1 Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus , Aurora, Colorado
| | - Joy M Folkvord
- 7 Division of Infectious Diseases, Department of Medicine, University of Arizona College of Medicine , Tucson, Arizona
| | - Elizabeth Connick
- 7 Division of Infectious Diseases, Department of Medicine, University of Arizona College of Medicine , Tucson, Arizona
| | - Susan V Westmoreland
- 8 New England Primate Research Center , Division of Comparative Pathology, Southborough, Massachusetts
| | - Paul A Luciw
- 9 Center for Comparative Medicine, University of California , Davis, Davis, California
| | - Sonia C Flores
- 1 Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus , Aurora, Colorado
| |
Collapse
|
14
|
Presti RM, Flores SC, Palmer BE, Atkinson JJ, Lesko CR, Lau B, Fontenot AP, Roman J, McDyer JF, Twigg HL. Mechanisms Underlying HIV-Associated Noninfectious Lung Disease. Chest 2017; 152:1053-1060. [PMID: 28427967 DOI: 10.1016/j.chest.2017.04.154] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 02/28/2017] [Accepted: 04/05/2017] [Indexed: 01/15/2023] Open
Abstract
Pulmonary disease remains a primary source of morbidity and mortality in persons living with HIV (PLWH), although the advent of potent combination antiretroviral therapy has resulted in a shift from predominantly infectious to noninfectious pulmonary complications. PLWH are at high risk for COPD, pulmonary hypertension, and lung cancer even in the era of combination antiretroviral therapy. The underlying mechanisms of this are incompletely understood, but recent research in both human and animal models suggests that oxidative stress, expression of matrix metalloproteinases, and genetic instability may result in lung damage, which predisposes PLWH to these conditions. Some of the factors that drive these processes include tobacco and other substance use, direct HIV infection and expression of specific HIV proteins, inflammation, and shifts in the microbiome toward pathogenic and opportunistic organisms. Further studies are needed to understand the relative importance of these factors to the development of lung disease in PLWH.
Collapse
Affiliation(s)
- Rachel M Presti
- Department of Medicine, Washington University School of Medicine, St. Louis, MO.
| | - Sonia C Flores
- Department of Medicine, University of Colorado Denver, Aurora, CO
| | - Brent E Palmer
- Department of Medicine, University of Colorado Denver, Aurora, CO
| | - Jeffrey J Atkinson
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Catherine R Lesko
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, School of Medicine, Johns Hopkins University, Baltimore, MD
| | - Bryan Lau
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, School of Medicine, Johns Hopkins University, Baltimore, MD
| | | | - Jesse Roman
- Department of Medicine, University of Louisville, Health Sciences Center and Robley Rex VA Medical Center, Louisville, KY
| | - John F McDyer
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Homer L Twigg
- Department of Medicine, Indiana University, Indianapolis, IN
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW Human immunodeficiency virus (HIV) is now managed as a chronic disease. Non-infectious pulmonary conditions have replaced infection as the biggest threat to lung health, particularly as HIV cohorts age, but there is no consensus on how best to maintain long-term lung health. We review the epidemiology and pathogenesis of chronic obstructive pulmonary disease (COPD), pulmonary arterial hypertension (PAH), and lung cancer in HIV-seropositive individuals. RECENT FINDINGS Diagnoses of COPD are now up to 50% more prevalent in HIV-seropositive individuals than HIV-uninfected controls, and prospective pulmonary function studies find significant impairment in 7% to more than 50% of HIV-seropositive individuals. The prevalence of HIV-PAH is 0.2-0.5%, and lung cancer is two to three times more prevalent in HIV-seropositive individuals. Although host factors such as age and smoking have a role, HIV is an independent contributor to the pathogenesis of COPD, PAH, and lung cancer. Chronic inflammation, immune senescence, oxidative stress, and direct effects of viral proteins are all potential pathogenetic mechanisms. Despite their prevalence, non-infectious lung diseases remain underrecognized and evidence for effective screening strategies in HIV-seropositive individuals is limited. SUMMARY COPD, PAH, and lung cancer are a growing threat to lung health in the highly active antiretroviral therapy era necessitating early recognition.
Collapse
Affiliation(s)
- Paul Collini
- aDepartment of Infection, Immunity & Cardiovascular Disease, University of Sheffield Medical School, Sheffield, UK bDepartment of Medicine, University of Pittsburgh, 628 NW Montefiore University Hospital, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
16
|
Rao PSS, Midde NM, Miller DD, Chauhan S, Kumar A, Kumar S. Diallyl Sulfide: Potential Use in Novel Therapeutic Interventions in Alcohol, Drugs, and Disease Mediated Cellular Toxicity by Targeting Cytochrome P450 2E1. Curr Drug Metab 2016; 16:486-503. [PMID: 26264202 DOI: 10.2174/1389200216666150812123554] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 08/05/2015] [Indexed: 12/16/2022]
Abstract
Diallyl sulfide (DAS) and other organosulfur compounds are chief constituents of garlic. These compounds have many health benefits, as they are very efficient in detoxifying natural agents. Therefore, these compounds may be useful for prevention/treatment of cancers. However, DAS has shown appreciable allergic reactions and toxicity, as they can also affect normal cells. Thus their use as in the prevention and treatment of cancer is limited. DAS is a selective inhibitor of cytochrome P450 2E1 (CYP2E1), which is known to metabolize many xenobiotics including alcohol and analgesic drugs in the liver. CYP2E1-mediated alcohol/drug metabolism produce reactive oxygen species and reactive metabolites, which damage DNA, protein, and lipid membranes, subsequently causing liver damage. Several groups have shown that DAS is not only capable of inhibiting alcohol- and drug-mediated cellular toxicities, but also HIV protein- and diabetes-mediated toxicities by selectively inhibiting CYP2E1 in various cell types. However, due to known DAS toxicities, its use as a treatment modality for alcohol/drug- and HIV/diabetes-mediated toxicity have only limited clinical relevance. Therefore, effort is being made to generate DAS analogs, which are potent and selective inhibitor of CYP2E1 and poor substrate of CYP2E1. This review summarizes current advances in the field of DAS, its anticancer properties, role as a CYP2E1 inhibitor, preventing agent of cellular toxicities from alcohol, analgesic drugs, xenobiotics, as well as, from diseases like HIV and diabetes. Finally, this review also provides insights toward developing novel DAS analogues for chemical intervention of many disease conditions by targeting CYP2E1 enzyme.
Collapse
Affiliation(s)
| | | | | | | | | | - Santosh Kumar
- College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Ave, Rm 456, Memphis, TN 38163, USA.
| |
Collapse
|
17
|
Shirley DK, Kaner RJ, Glesby MJ. Screening for Chronic Obstructive Pulmonary Disease (COPD) in an Urban HIV Clinic: A Pilot Study. AIDS Patient Care STDS 2015; 29:232-9. [PMID: 25723842 DOI: 10.1089/apc.2014.0265] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Increased smoking and a detrimental response to tobacco smoke in the lungs of HIV/AIDS patients result in an increased risk for COPD. We aimed to determine the predictive value of a COPD screening strategy validated in the general population and to identify HIV-related factors associated with decreased lung function. Subjects at least 35 years of age at an HIV clinic in New York City completed a COPD screening questionnaire and peak flow measurement. Those with abnormal results and a random one-third of normal screens had spirometry. 235 individuals were included and 89 completed spirometry. Eleven (12%) had undiagnosed airway obstruction and 5 had COPD. A combination of a positive questionnaire and abnormal peak flow yielded a sensitivity of 20% (specificity 93%) for detection of COPD. Peak flow alone had a sensitivity of 80% (specificity 80%). Abnormal peak flow was associated with an AIDS diagnosis (p=0.04), lower nadir (p=0.001), and current CD4 counts (p=0.001). Nadir CD4 remained associated in multivariate analysis (p=0.05). Decreased FEV1 (<80% predicted) was associated with lower CD4 count nadir (p=0.04) and detectable current HIV viral load (p=0.01) in multivariate analysis. Questionnaire and peak flow together had low sensitivity, but abnormal peak flow shows potential as a screening tool for COPD in HIV/AIDS. These data suggest that lung function may be influenced by HIV-related factors.
Collapse
Affiliation(s)
- Daniel K Shirley
- 1 Divisions of Infectious Disease and Hospital Medicine, Department of Medicine, University of Wisconsin School of Medicine and Public Health , Madison, Wisconsin
| | | | | |
Collapse
|
18
|
Bhaskar A, Munshi M, Khan SZ, Fatima S, Arya R, Jameel S, Singh A. Measuring glutathione redox potential of HIV-1-infected macrophages. J Biol Chem 2014; 290:1020-38. [PMID: 25406321 PMCID: PMC4294471 DOI: 10.1074/jbc.m114.588913] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Redox signaling plays a crucial role in the pathogenesis of human immunodeficiency virus type-1 (HIV-1). The majority of HIV redox research relies on measuring redox stress using invasive technologies, which are unreliable and do not provide information about the contributions of subcellular compartments. A major technological leap emerges from the development of genetically encoded redox-sensitive green fluorescent proteins (roGFPs), which provide sensitive and compartment-specific insights into redox homeostasis. Here, we exploited a roGFP-based specific bioprobe of glutathione redox potential (EGSH; Grx1-roGFP2) and measured subcellular changes in EGSH during various phases of HIV-1 infection using U1 monocytic cells (latently infected U937 cells with HIV-1). We show that although U937 and U1 cells demonstrate significantly reduced cytosolic and mitochondrial EGSH (approximately −310 mV), active viral replication induces substantial oxidative stress (EGSH more than −240 mV). Furthermore, exposure to a physiologically relevant oxidant, hydrogen peroxide (H2O2), induces significant deviations in subcellular EGSH between U937 and U1, which distinctly modulates susceptibility to apoptosis. Using Grx1-roGFP2, we demonstrate that a marginal increase of about ∼25 mV in EGSH is sufficient to switch HIV-1 from latency to reactivation, raising the possibility of purging HIV-1 by redox modulators without triggering detrimental changes in cellular physiology. Importantly, we show that bioactive lipids synthesized by clinical drug-resistant isolates of Mycobacterium tuberculosis reactivate HIV-1 through modulation of intracellular EGSH. Finally, the expression analysis of U1 and patient peripheral blood mononuclear cells demonstrated a major recalibration of cellular redox homeostatic pathways during persistence and active replication of HIV.
Collapse
Affiliation(s)
- Ashima Bhaskar
- From the Department of Microbiology and Cell Biology, Centre for Infectious Disease and Research, Indian Institute of Sciences, Bangalore 560012
| | - MohamedHusen Munshi
- From the Department of Microbiology and Cell Biology, Centre for Infectious Disease and Research, Indian Institute of Sciences, Bangalore 560012, the Department of Biotechnology, Jamia Millia Islamia, New Delhi 25, India
| | - Sohrab Zafar Khan
- the International Centre for Genetic Engineering and Biotechnology, New Delhi 110 67, and
| | - Sadaf Fatima
- the Department of Biotechnology, Jamia Millia Islamia, New Delhi 25, India
| | - Rahul Arya
- the International Centre for Genetic Engineering and Biotechnology, New Delhi 110 67, and
| | - Shahid Jameel
- the International Centre for Genetic Engineering and Biotechnology, New Delhi 110 67, and
| | - Amit Singh
- From the Department of Microbiology and Cell Biology, Centre for Infectious Disease and Research, Indian Institute of Sciences, Bangalore 560012,
| |
Collapse
|
19
|
Almodovar S. The complexity of HIV persistence and pathogenesis in the lung under antiretroviral therapy: challenges beyond AIDS. Viral Immunol 2014; 27:186-99. [PMID: 24797368 DOI: 10.1089/vim.2013.0130] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Antiretroviral therapy (ART) represents a significant milestone in the battle against AIDS. However, we continue learning about HIV and confronting challenges 30 years after its discovery. HIV has cleverly tricked both the host immune system and ART. First, the many HIV subtypes and recombinant forms have different susceptibilities to antiretroviral drugs, which may represent an issue in countries where ART is just being introduced. Second, even under the suppressive pressures of ART, HIV still increases inflammatory mediators, deregulates apoptosis and proliferation, and induces oxidative stress in the host. Third, the preference of HIV for CXCR4 as a co-receptor may also have noxious outcomes, including potential malignancies. Furthermore, HIV still replicates cryptically in anatomical reservoirs, including the lung. HIV impairs bronchoalveolar T-lymphocyte and macrophage immune responses, rendering the lung susceptible to comorbidities. In addition, HIV-infected individuals are significantly more susceptible to long-term HIV-associated complications. This review focuses on chronic obstructive pulmonary disease (COPD), pulmonary arterial hypertension, and lung cancer. Almost two decades after the advent of highly active ART, we now know that HIV-infected individuals on ART live as long as the uninfected population. Fortunately, its availability is rapidly increasing in low- and middle-income countries. Nevertheless, ART is not risk-free: the developed world is facing issues with antiretroviral drug toxicity, resistance, and drug-drug interactions, while developing countries are confronting issues with immune reconstitution inflammatory syndrome. Several aspects of the complexity of HIV persistence and challenges with ART are discussed, as well as suggestions for new avenues of research.
Collapse
Affiliation(s)
- Sharilyn Almodovar
- Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver Anschutz Medical Campus , Aurora, Colorado
| |
Collapse
|
20
|
Cribbs SK, Rimland D. Alcohol and HIV: Experimental and Clinical Evidence of Combined Impact on the Lung. ALCOHOL USE DISORDERS AND THE LUNG 2014. [PMCID: PMC7121129 DOI: 10.1007/978-1-4614-8833-0_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Despite antiretroviral therapy, lung disease is a leading cause of death in individuals infected with human immunodeficiency virus type 1 (HIV). Individuals infected with HIV are susceptible to serious bacterial and viral infections, such as pneumococcus and influenza, which are particularly problematic for lung health, resulting in lung injury. Additionally, HIV-infected individuals are susceptible to a number of pulmonary diseases for unknown reasons. Alcohol, the most commonly abused drug in the world, continues to exact an enormous toll on morbidity and mortality in individuals living with HIV. Chronic alcohol abuse has been shown to affect lung immunity, resulting in significant lung injury. There is a paucity of literature on the additive effects of HIV and alcohol, two diseases of immune senescence, in the lung. This chapter begins by discussing the latest literature evaluating the epidemiology of HIV, alcohol use, and lung health focusing on two prevalent infections, tuberculosis and pneumococcal pneumonia. In parallel, we discuss the interactions of alcohol and HIV on the risk for acute lung injury and subsequent morbidity and mortality. We then discuss the pathophysiology of how these two diseases of immune dysfunction affect the lung, with a focus on the oxidative stress, alveolar macrophage host immune capacity, and immunomodulatory role of zinc in the airway. Finally, we review the latest literature on how HIV and alcohol affect other pulmonary disorders including chronic obstructive pulmonary disease, pulmonary hypertension, and lung cancer.
Collapse
|
21
|
Porter KM, Walp ER, Elms SC, Raynor R, Mitchell PO, Guidot DM, Sutliff RL. Human immunodeficiency virus-1 transgene expression increases pulmonary vascular resistance and exacerbates hypoxia-induced pulmonary hypertension development. Pulm Circ 2013; 3:58-67. [PMID: 23662175 PMCID: PMC3641741 DOI: 10.4103/2045-8932.109915] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease characterized by increased pulmonary arterial resistance and vessel remodeling. Patients living with human immunodeficiency virus-1 (HIV-1) have an increased susceptibility to develop severe pulmonary hypertension (PH) irrespective of their CD4+ lymphocyte counts. While the underlying cause of HIV-PAH remains unknown, the interaction of HIV-1 proteins with the vascular endothelium may play a critical role in HIV-PAH development. Hypoxia promotes PH in experimental models and in humans, but the impact of HIV-1 proteins on hypoxia-induced pulmonary vascular dysfunction and PAH has not been examined. Therefore, we hypothesize that the presence of HIV-1 proteins and hypoxia synergistically augment the development of pulmonary vascular dysfunction and PH. We examined the effect of HIV-1 proteins on pulmonary vascular resistance by measuring pressure-volume relationships in isolated lungs from wild-type (WT) and HIV-1 Transgenic (Tg) rats. WT and HIV-1 Tg rats were exposed to 10% O2 for four weeks to induce experimental pulmonary hypertension to assess whether HIV-1 protein expression would impact the development of hypoxia-induced PH. Our results demonstrate that HIV-1 protein expression significantly increased pulmonary vascular resistance (PVR). HIV-1 Tg mice demonstrated exaggerated pulmonary vascular responses to hypoxia as evidenced by greater increases in right ventricular systolic pressures, right ventricular hypertrophy and vessel muscularization when compared to wild-type controls. This enhanced PH was associated with enhanced expression of HIF-1α and PCNA. In addition, in vitro studies reveal that medium from HIV-infected monocyte derived macrophages (MDM) potentiates hypoxia-induced pulmonary artery endothelial proliferation. These results indicate that the presence of HIV-1 proteins likely impact pulmonary vascular resistance and exacerbate hypoxia-induced PH.
Collapse
Affiliation(s)
- Kristi M Porter
- Department of Pulmonary, Allergy, and Critical Care, Emory University School of Medicine/Atlanta Veterans Affairs Medical Center Medicine, Atlanta, Georgia, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Honda JR, Shang S, Shanley CA, Caraway ML, Henao-Tamayo M, Chan ED, Basaraba RJ, Orme IM, Ordway DJ, Flores SC. Immune Responses of HIV-1 Tat Transgenic Mice to Mycobacterium Tuberculosis W-Beijing SA161. Open AIDS J 2011; 5:86-95. [PMID: 22046211 PMCID: PMC3204420 DOI: 10.2174/1874613601105010086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 04/22/2011] [Accepted: 05/11/2011] [Indexed: 11/30/2022] Open
Abstract
Background: Mycobacterium tuberculosis remains among the leading causes of death from an infectious agent in the world and exacerbates disease caused by the human immunodeficiency virus (HIV). HIV infected individuals are prone to lung infections by a variety of microbial pathogens, including M. tuberculosis. While the destruction of the adaptive immune response by HIV is well understood, the actual pathogenesis of tuberculosis in co-infected individuals remains unclear. Tat is an HIV protein essential for efficient viral gene transcription, is secreted from infected cells, and is known to influence a variety of host inflammatory responses. We hypothesize Tat contributes to pathophysiological changes in the lung microenvironment, resulting in impaired host immune responses to infection by M. tuberculosis. Results: Herein, we show transgenic mice that express Tat by lung alveolar cells are more susceptible than non-transgenic control littermates to a low-dose aerosol infection of M. tuberculosis W-Beijing SA161. Survival assays demonstrate accelerated mortality rates of the Tat transgenic mice compared to non-transgenics. Tat transgenic mice also showed poorly organized lung granulomata-like lesions. Analysis of the host immune response using quantitative RT-PCR, flow cytometry for surface markers, and intracellular cytokine staining showed increased expression of pro-inflammatory cytokines in the lungs, increased numbers of cells expressing ICAM1, increased numbers of CD4+CD25+Foxp3+ T regulatory cells, and IL-4 producing CD4+ T cells in the Tat transgenics compared to infected non-tg mice. Conclusions: Our data show quantitative differences in the inflammatory response to the SA161 clinical isolate of M. tuberculosis W-Beijing between Tat transgenic and non-transgenic mice, suggesting Tat contributes to the pathogenesis of tuberculosis.
Collapse
Affiliation(s)
- Jennifer R Honda
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, 80045, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|