1
|
García-Niño WR, Correa F, Zúñiga-Muñoz AM, José-Rodríguez A, Castañeda-Gómez P, Mejía-Díaz E. L-theanine abates oxidative stress and mitochondrial dysfunction in myocardial ischemia-reperfusion injury by positively regulating the antioxidant response. Toxicol Appl Pharmacol 2024; 486:116940. [PMID: 38677602 DOI: 10.1016/j.taap.2024.116940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/08/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
L-theanine (L-THE), a non-protein amino acid isolated from Camelia sinensis, has antioxidant properties that could prevent oxidative damage and mitochondrial dysfunction generated by myocardial ischemia and reperfusion (I/R) injury. The present study aimed to identify the effects of pretreatment with L-THE in rat hearts undergoing I/R. Wistar rats received vehicle or 250 mg/Kg L-THE intragastrically for 10 days. On day 11, hearts were removed under anesthesia and exposed to I/R injury in the Langendorff system. Measurement of left ventricular developed pressure and heart rate ex vivo demonstrates that L-THE prevents I/R-induced loss of cardiac function. Consequently, the infarct size of hearts subjected to I/R was significantly decreased when L-THE was administered. L-THE also mitigated I/R-induced oxidative injury in cardiac tissue by decreasing reactive oxygen species and malondialdehyde levels, while increasing the activity of antioxidant enzymes, SOD and CAT. Additionally, L-THE prevents oxidative phosphorylation breakdown and loss of inner mitochondrial membrane potential caused by I/R, restoring oxygen consumption levels, increasing respiratory control and phosphorylation efficiency, as well as buffering calcium overload. Finally, L-THE modifies the expression of genes involved in the antioxidant response through the overexpression of SOD1, SOD2 and CAT; as well as the transcriptional factors PPARα and Nrf2 in hearts undergoing I/R. In conclusion, L-THE confers cardioprotection against I/R injury by preventing oxidative stress, protecting mitochondrial function, and promoting overexpression of antioxidant genes. More studies are needed to place L-THE at the forefront of cardiovascular research and recommend its therapeutic use.
Collapse
Affiliation(s)
- Wylly Ramsés García-Niño
- Department of Cardiovascular Biomedicine, National Institute of Cardiology Ignacio Chávez, Mexico City 14080, Mexico.
| | - Francisco Correa
- Department of Cardiovascular Biomedicine, National Institute of Cardiology Ignacio Chávez, Mexico City 14080, Mexico
| | - Alejandra María Zúñiga-Muñoz
- Department of Cardiovascular Biomedicine, National Institute of Cardiology Ignacio Chávez, Mexico City 14080, Mexico
| | - Aldo José-Rodríguez
- Department of Cardiovascular Biomedicine, National Institute of Cardiology Ignacio Chávez, Mexico City 14080, Mexico
| | - Patricio Castañeda-Gómez
- Department of Cardiovascular Biomedicine, National Institute of Cardiology Ignacio Chávez, Mexico City 14080, Mexico
| | - Edson Mejía-Díaz
- Department of Cardiovascular Biomedicine, National Institute of Cardiology Ignacio Chávez, Mexico City 14080, Mexico
| |
Collapse
|
2
|
Malas KM, Lambert DS, Heisner JS, Camara AKS, Stowe DF. Time and charge/pH-dependent activation of K + channel-mediated K + influx and K +/H + exchange in guinea pig heart isolated mitochondria; role in bioenergetic stability. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148908. [PMID: 35961396 DOI: 10.1016/j.bbabio.2022.148908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 07/17/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Mitochondria play an important role not only in producing energy for the cell but also for regulating mitochondrial and cell function depending on the cell's needs and environment. Uptake of cations, anions, and substrates requires a stable, polarized transmembrane charge potential (ΔΨm). Chemiosmosis requires ion exchangers to remove Na+, K+, Ca2+, PO43-, and other charged species that enter mitochondria. Knowledge of the kinetics of mitochondrial (m) cation channels and exchangers is important in understanding their roles in regulating mitochondrial chemiosmosis and bioenergetics. The influx/efflux of K+, the most abundant mitochondrial cation, alters mitochondrial volume and shape by bringing in anions and H2O by osmosis. The effects of K+ uptake through ligand-specific mK+ channels stimulated/inhibited by agonists/antagonists on mitochondrial volume (swelling/contraction) are well known. However, a more important role for K+ influx is likely its effects on H+ cycling and bioenergetics facilitated by mitochondrial (m) K+/H+ exchange (mKHE), though the kinetics and consequences of K+ efflux by KHE are not well described. We hypothesized that a major role of K+ influx/efflux is stimulation of respiration via the influx of H+ by KHE. We proposed to modulate KHE activity by energizing guinea pig heart isolated mitochondria and by altering the mK+ cycle to capture changes in mitochondrial volume, pHm, ΔΨm, and respiration that would reflect a role for H+ influx via KHE to regulate bioenergetics. To test this, mitochondria were suspended in a 150 mM K+ buffer at pH 6.9, or in a 140 mM Cs+ buffer at pH 7.6 or 6.9 with added 10 mM K+, minimal Ca2+ and free of Na+. O2 content was measured by a Clark electrode, and pHm, ΔΨm, and volume, were measured by fluorescence spectrophotometry and light-scattering. Adding pyruvic acid (PA) alone caused increases in volume and respiration and a rapid decrease in the transmembrane pH gradient (ΔpHm = pHin-pHext) at pHext 6.9> > 7.6, so that ΔΨm was charged and maintained. BKCa agonist NS1619 and antagonist paxilline modified these effects, and KHE inhibitor quinine and K+ ionophore valinomycin depolarized ΔΨm. We postulate that K+ efflux-induced H+ influx via KHE causes an inward H+ leak that stimulates respiration, but at buffer pH 6.9 also utilizes the energy of ΔpHm, the smaller component of the overall proton motive force, ΔμH+. Thus ΔpHm establishes and maintains the ΔΨm required for utilization of substrates, entry of all cations, and for oxidative phosphorylation. Thus, K+ influx/efflux appears to play a pivotal role in regulating energetics while maintaining mitochondrial ionic balance and volume homeostasis.
Collapse
Affiliation(s)
- Kareem M Malas
- Department of Anesthesiology, Research Division, Medical College of Wisconsin, Milwaukee, WI, USA
| | - David S Lambert
- Department of Anesthesiology, Research Division, Medical College of Wisconsin, Milwaukee, WI, USA
| | - James S Heisner
- Department of Anesthesiology, Research Division, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Amadou K S Camara
- Department of Anesthesiology, Research Division, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA; Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - David F Stowe
- Department of Anesthesiology, Research Division, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA; Departments of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, USA; Zablocki Veterans Administration, Research Service, Milwaukee, WI, USA.
| |
Collapse
|
3
|
Hypothermia Prevents Cardiac Dysfunction during Acute Ischemia Reperfusion by Maintaining Mitochondrial Bioenergetics and by Promoting Hexokinase II Binding to Mitochondria. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4476448. [PMID: 35873800 PMCID: PMC9301761 DOI: 10.1155/2022/4476448] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 03/04/2022] [Accepted: 06/14/2022] [Indexed: 11/18/2022]
Abstract
Background Hypothermia (H), cardioplegia (CP), and both combined (HCP) are known to be protective against myocardial ischemia reperfusion (IR) injury. Mitochondria have molecular signaling mechanisms that are associated with both cell survival and cell death. In this study, we investigated the dynamic changes in proapoptotic and prosurvival signaling pathways mediating H, CP, or HCP-induced protection of mitochondrial function after acute myocardial IR injury. Methods Rats were divided into five groups. Each group consists of 3 subgroups based on a specific reperfusion time (5, 20, or 60 min) after a 25-min global ischemia. The time control (TC) groups were not subjected to IR but were perfused with 37 °C Krebs-Ringer's (KR) buffer, containing 4.5 mM K+, in a specific perfusion protocol that corresponded with the duration of each IR protocol. The IR group (control) was perfused for 20 min with KR, followed by 25-min global ischemia, and then KR reperfusion for 5, 20, or 60 min. The treatment groups were exposed to 17 °C H, 37 °C CP (16 mM K+), or HCP (17 °C + CP) for 5 min before ischemia and for 2 min on reperfusion before switching to 37 °C KR perfusion for the remainder of each of the reperfusion times. Cardiac function and mitochondrial redox state (NADH/FAD) were monitored online in the ex vivo hearts before, during, and after ischemia. Mitochondria were isolated at the end of each specified reperfusion time, and changes in O2 consumption, membrane potential (ΔΨm), and Ca2+ retention capacity (CRC) were assessed using complex I and complex II substrates. In another set of hearts, mitochondrial and cytosolic fractions were isolated after a specified reperfusion time to conduct western blot assays to determine hexokinase II (HKII) and Bax binding/translocation to mitochondria, cytosolic pAkt levels, and cytochrome c (Cyto-c) release into the cytosol. Results H and HCP were more protective of mitochondrial integrity and, concomitantly, cardiac function than CP alone; H and HCP improved post-ischemic cardiac function by (1) maintaining mitochondrial bioenergetics, (2) maintaining HKII binding to mitochondria with an increase in pAkt levels, (3) increasing CRC, and (4) decreasing Cyto-c release during reperfusion. Bax translocation/binding to mitochondria was unaffected by any treatment, regardless of cardiac functional recovery. Conclusions Hypothermia preserved mitochondrial function and cardiac function, in part, by maintaining mitochondrial bioenergetics, by retaining HKII binding to mitochondria via upstream pAkt, and by reducing Cyto-c release independently of Bax binding to mitochondria.
Collapse
|
4
|
Mitochondrial Dysfunction in Chronic Respiratory Diseases: Implications for the Pathogenesis and Potential Therapeutics. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5188306. [PMID: 34354793 PMCID: PMC8331273 DOI: 10.1155/2021/5188306] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/30/2021] [Accepted: 07/16/2021] [Indexed: 02/07/2023]
Abstract
Mitochondria are indispensable for energy metabolism and cell signaling. Mitochondrial homeostasis is sustained with stabilization of mitochondrial membrane potential, balance of mitochondrial calcium, integrity of mitochondrial DNA, and timely clearance of damaged mitochondria via mitophagy. Mitochondrial dysfunction is featured by increased generation of mitochondrial reactive oxygen species, reduced mitochondrial membrane potential, mitochondrial calcium imbalance, mitochondrial DNA damage, and abnormal mitophagy. Accumulating evidence indicates that mitochondrial dysregulation causes oxidative stress, inflammasome activation, apoptosis, senescence, and metabolic reprogramming. All these cellular processes participate in the pathogenesis and progression of chronic respiratory diseases, including chronic obstructive pulmonary disease, pulmonary fibrosis, and asthma. In this review, we provide a comprehensive and updated overview of the impact of mitochondrial dysfunction on cellular processes involved in the development of these respiratory diseases. This not only implicates mechanisms of mitochondrial dysfunction for the pathogenesis of chronic lung diseases but also provides potential therapeutic approaches for these diseases by targeting dysfunctional mitochondria.
Collapse
|
5
|
Lin DC, Zheng SY, Zhang ZG, Luo JH, Zhu ZL, Li L, Chen LS, Lin X, Sham JSK, Lin MJ, Zhou RX. TRPC3 promotes tumorigenesis of gastric cancer via the CNB2/GSK3β/NFATc2 signaling pathway. Cancer Lett 2021; 519:211-225. [PMID: 34311033 DOI: 10.1016/j.canlet.2021.07.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/10/2021] [Accepted: 07/22/2021] [Indexed: 01/27/2023]
Abstract
The transient receptor potential canonical (TRPC) channels have been implicated in various types of malignancies including gastric cancer (GC). However, the detailed mechanisms of TRPC channels underlying cell proliferation and apoptosis of GC cells remain largely unknown. Here, we report that TRPC3 was highly expressed in clinical GC specimens and correlated with GC malignant progression and poor prognosis. Forced expression of TRPC3 in GC cells enhanced both receptor-operated Ca2+ entry (ROCE) and store-operated Ca2+ entry (SOCE) and promoted the nuclear factor of activated T cell 2 (NFATc2) nuclear translocation by AKT/GSK-3β and CNB2 signaling. Pharmacological inhibition of TRPC3 or CRISPR/Cas9-mediated TRPC3 knockout effectively inhibited the growth of GC cells both in vitro and in vivo. These effects were reversible by the rescue of TRPC3 expression. Furthermore, we confirmed the role of TRPC3 and the ROCE-AKT/GSK3β-CNB2/NFATc2 signaling cascade in regulating cell cycle checkpoint, apoptosis cascade, and intracellular ROS production in GC. Overall, our findings suggest an oncogenic role of TRPC3 in GC and may highlight a potential target of TRPC3 for therapeutic intervention of GC and its malignant progression.
Collapse
Affiliation(s)
- Da-Cen Lin
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China; Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Fujian Medical University, Fuzhou, China
| | - Si-Yi Zheng
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Fujian Medical University, Fuzhou, China
| | - Zhi-Guang Zhang
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| | - Jian-Hua Luo
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| | - Zhuang-Li Zhu
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Fujian Medical University, Fuzhou, China
| | - Li Li
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| | - Lu-Shan Chen
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| | - Xinjian Lin
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| | - James S K Sham
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Mo-Jun Lin
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Fujian Medical University, Fuzhou, China.
| | - Rui-Xiang Zhou
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China.
| |
Collapse
|
6
|
Gerdes HJ, Yang M, Heisner JS, Camara AKS, Stowe DF. Modulation of peroxynitrite produced via mitochondrial nitric oxide synthesis during Ca 2+ and succinate-induced oxidative stress in cardiac isolated mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148290. [PMID: 32828729 DOI: 10.1016/j.bbabio.2020.148290] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/23/2020] [Accepted: 07/29/2020] [Indexed: 01/09/2023]
Abstract
We hypothesized that NO• is generated in isolated cardiac mitochondria as the source for ONOO- production during oxidative stress. We monitored generation of ONOO- from guinea pig isolated cardiac mitochondria subjected to excess Ca2+ uptake before adding succinate and determined if ONOO- production was dependent on a nitric oxide synthase (NOS) located in cardiac mitochondria (mtNOS). Mitochondria were suspended in experimental buffer at pH 7.15, and treated with CaCl2 and then the complex II substrate Na-succinate, followed by menadione, a quinone redox cycler, to generate O2•-. L-tyrosine was added to the mitochondrial suspension where it is oxidized by ONOO- to form dityrosine (diTyr) in proportion to the ONOO- present. We found that exposing mitochondria to excess CaCl2 before succinate resulted in an increase in diTyr and amplex red fluorescence (H2O2) signals, indicating that mitochondrial oxidant stress, induced by elevated mtCa2+ and succinate, increased mitochondrial ONOO- production via NO• and O2•-. Changes in mitochondrial ONOO- production dependent on NOS were evidenced by using NOS inhibitors L-NAME/L-NNA, TEMPOL, a superoxide dismutase (SOD) mimetic, and PTIO, a potent global NO• scavenger. L-NAME and L-NNA decreased succinate and menadione-mediated ONOO- production, PTIO decreased production of ONOO-, and TEMPOL decreased ONOO- levels by converting more O2•- to H2O2. Electron microscopy showed immuno-gold labeled iNOS and nNOS in mitochondria isolated from cardiomyocytes and heart tissue. Western blots demonstrated iNOS and nNOS bands in total heart tissue, bands for both iNOS and nNOS in β-tubulin-free non-purified (crude) mitochondrial preparations, and a prominent iNOS band, but no nNOS band, in purified (Golgi and ER-free) mitochondria. Prior treatment of guinea pigs with lipopolysacharride (LPS) enhanced expression of iNOS in liver mitochondria but not in heart mitochondria. Our results indicate that release of ONOO- into the buffer is dependent both on O2•- released from mitochondria and NO• derived from a mtCa2+-inducible nNOS isoform, possibly attached to mitochondria, and a mtNOS isoform like iNOS that is non-inducible.
Collapse
Affiliation(s)
- Harrison J Gerdes
- Anesthesiology Research Division, Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Meiying Yang
- Anesthesiology Research Division, Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - James S Heisner
- Anesthesiology Research Division, Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Amadou K S Camara
- Anesthesiology Research Division, Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA; Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - David F Stowe
- Anesthesiology Research Division, Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA; Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Biomedical Engineering, Medical College of Wisconsin and Marquette University, Milwaukee, WI, USA; Research Service, Zablocki Veterans Affairs Medical Center, Milwaukee, WI, USA.
| |
Collapse
|
7
|
Duong QV, Hoffman A, Zhong K, Dessinger MJ, Zhang Y, Bazil JN. Calcium overload decreases net free radical emission in cardiac mitochondria. Mitochondrion 2020; 51:126-139. [PMID: 31982614 DOI: 10.1016/j.mito.2020.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/08/2019] [Accepted: 01/08/2020] [Indexed: 12/21/2022]
Abstract
Elevated calcium and reactive oxygen species (ROS) are responsible for the bulk of cell death occurring in a variety of clinical settings that include acute coronary events, cerebrovascular accidents, and acute kidney injury. It is commonly believed that calcium and ROS participate in a viscous cycle during these events. However, the precise feedback mechanisms are unknown. We quantitatively demonstrate in this study that, on the contrary, calcium does not stimulate free radical production but suppresses it. Isolated mitochondria from guinea pig hearts were energized with a variety of substrates and exposed to calcium concentrations designed to induce moderate calcium overload conditions associated with ischemia/reperfusion injury but do not elicit the well-known mitochondrial permeability transition phenomenon. Metabolic function and free radical emission were simultaneously quantified using high-resolution respirometry and fluorimetry. Membrane potential, high amplitude swelling, and calcium dynamics were also quantified in parallel. Our results reveal that calcium overload does not lead to excessive ROS emission but does decrease ADP stimulated respiration rates for NADH-dependent pathways. Moreover, we developed an empirical model of mitochondrial free radical homeostasis to identify the processes that are different for each substrate and calcium condition. In summary, we show that in healthy guinea pig mitochondria, calcium uptake and free radical generation do not contribute to a viscous cycle and that the relationship between net free radical production and oxygen concentration is hyperbolic. Altogether, these results lay out an important foundation necessary to quantitatively determine the role of calcium in IR injury and ROS production.
Collapse
Affiliation(s)
- Quynh V Duong
- Department of Biochemistry and Molecular Biology, Michigan State University, United States
| | - Adrianna Hoffman
- Department of Physiology, Michigan State University, United States
| | - Katie Zhong
- Department of Physiology, Michigan State University, United States
| | | | - Yizhu Zhang
- Department of Physiology, Michigan State University, United States
| | - Jason N Bazil
- Department of Physiology, Michigan State University, United States.
| |
Collapse
|
8
|
Cyclosporin A Increases Mitochondrial Buffering of Calcium: An Additional Mechanism in Delaying Mitochondrial Permeability Transition Pore Opening. Cells 2019; 8:cells8091052. [PMID: 31500337 PMCID: PMC6770067 DOI: 10.3390/cells8091052] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 08/26/2019] [Accepted: 09/03/2019] [Indexed: 02/07/2023] Open
Abstract
Regulation of mitochondrial free Ca2+ is critically important for cellular homeostasis. An increase in mitochondrial matrix free Ca2+ concentration ([Ca2+]m) predisposes mitochondria to opening of the permeability transition pore (mPTP). Opening of the pore can be delayed by cyclosporin A (CsA), possibly by inhibiting cyclophilin D (Cyp D), a key regulator of mPTP. Here, we report on a novel mechanism by which CsA delays mPTP opening by enhanced sequestration of matrix free Ca2+. Cardiac-isolated mitochondria were challenged with repetitive CaCl2 boluses under Na+-free buffer conditions with and without CsA. CsA significantly delayed mPTP opening primarily by promoting matrix Ca2+ sequestration, leading to sustained basal [Ca2+]m levels for an extended period. The preservation of basal [Ca2+]m during the CaCl2 pulse challenge was associated with normalized NADH, matrix pH (pHm), and mitochondrial membrane potential (ΔΨm). Notably, we found that in PO43− (Pi)-free buffer condition, the CsA-mediated buffering of [Ca2+]m was abrogated, and mitochondrial bioenergetics variables were concurrently compromised. In the presence of CsA, addition of Pi just before pore opening in the Pi-depleted condition reinstated the Ca2+ buffering system and rescued mitochondria from mPTP opening. This study shows that CsA promotes Pi-dependent mitochondrial Ca2+ sequestration to delay mPTP opening and, concomitantly, maintains mitochondrial function.
Collapse
|
9
|
Yang M, Xu Y, Heisner JS, Sun J, Stowe DF, Kwok WM, Camara AKS. Peroxynitrite nitrates adenine nucleotide translocase and voltage-dependent anion channel 1 and alters their interactions and association with hexokinase II in mitochondria. Mitochondrion 2018; 46:380-392. [PMID: 30391711 DOI: 10.1016/j.mito.2018.10.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 09/26/2018] [Accepted: 10/22/2018] [Indexed: 12/17/2022]
Abstract
Cardiac ischemia and reperfusion (IR) injury induces excessive emission of deleterious reactive O2 and N2 species (ROS/RNS), including the non-radical oxidant peroxynitrite (ONOO-) that can cause mitochondria dysfunction and cell death. In this study, we explored whether IR injury in isolated hearts induces tyrosine nitration of adenine nucleotide translocase (ANT) and alters its interaction with the voltage-dependent anion channel 1 (VDAC1). We found that IR injury induced tyrosine nitration of ANT and that exposure of isolated cardiac mitochondria to ONOO- induced ANT tyrosine, Y81, nitration. The exposure of isolated cardiac mitochondria to ONOO- also led ANT to form high molecular weight proteins and dissociation of ANT from VDAC1. We found that IR injury in isolated hearts, hypoxic injury in H9c2 cells, and ONOO- treatment of H9c2 cells and isolated mitochondria, each decreased mitochondrial bound-hexokinase II (HK II), which suggests that ONOO- caused HK II to dissociate from mitochondria. Moreover, we found that mitochondria exposed to ONOO- induced VDAC1 oligomerization which may decrease its binding with HK II. We have reported that ONOO- produced during cardiac IR injury induced tyrosine nitration of VDAC1, which resulted in conformational changes of the protein and increased channel conductance associated with compromised cardiac function on reperfusion. Thus, our results imply that ONOO- produced during IR injury and hypoxic stress impeded HK II association with VDAC1. ONOO- exposure nitrated mitochondrial proteins and also led to cytochrome c (cyt c) release from mitochondria. In addition, in isolated mitochondria exposed to ONOO- or obtained after IR, there was significant compromise in mitochondrial respiration and delayed repolarization of membrane potential during oxidative (ADP) phosphorylation. Taken together, ONOO- produced during cardiac IR injury can nitrate tyrosine residues of two key mitochondrial membrane proteins involved in bioenergetics and energy transfer to contribute to mitochondrial and cellular dysfunction.
Collapse
Affiliation(s)
- Meiying Yang
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Yanji Xu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Preventive Medicine, Medical College of Yanbian University, Yanji, Jilin, China
| | - James S Heisner
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jie Sun
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA; Institute of Clinical Medicine Research, Suzhou Hospital affiliated with Nanjing Medical University, Suzhou, Jiangsu, China; Department of Gastroenterology and Hepatology, Suzhou Hospital affiliated with Nanjing Medical University, Suzhou, Jiangsu, China
| | - David F Stowe
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Biomedical Engineering, Medical College of Wisconsin and Marquette University, Milwaukee, WI, USA; Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA; Research Service, Zablocki VA Medical Center, Milwaukee, WI, USA
| | - Wai-Meng Kwok
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA; Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Amadou K S Camara
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA; Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
10
|
Correa F, Pavón N, Buelna-Chontal M, Chiquete-Félix N, Hernández-Esquivel L, Chávez E. Calcium Induces Mitochondrial Oxidative Stress Because of its Binding to Adenine Nucleotide Translocase. Cell Biochem Biophys 2018; 76:445-450. [PMID: 30159781 DOI: 10.1007/s12013-018-0856-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 08/21/2018] [Indexed: 12/22/2022]
Abstract
Several studies have demonstrated that the mitochondrial membrane switches from selective to non-selective permeability because of its improved matrix Ca2+ accumulation and oxidative stress. This process, known as permeability transition, evokes severe dysfunction in mitochondria through the opening of a non-specific pore, whose chemical nature is still under discussion. There are some proposals regarding the components of the pore structure, e.g., the adenine nucleotide translocase and dimers of the F1 Fo-ATP synthase. Our results reveal that Ca2+ induces oxidative stress, which not only increases lipid peroxidation and ROS generation but also brings about both the collapse of the transmembrane potential and the membrane release of cytochrome c. Additionally, it is shown that Ca2+ increases the binding of the probe eosin-5-maleimide to adenine nucleotide translocase. Interestingly, these effects are diminished after the addition of ADP. It is suggested that pore opening is caused by the binding of Ca2+ to the adenine nucleotide translocase.
Collapse
Affiliation(s)
- Francisco Correa
- Departamento de Biomedicina Cardiovascular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Natalia Pavón
- Departamento de Farmacología, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Mabel Buelna-Chontal
- Departamento de Biomedicina Cardiovascular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Natalia Chiquete-Félix
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Luz Hernández-Esquivel
- Departamento de Bioquímica, . Instituto Nacional de Cardiología, Ignacio Chávez. Tlalpan, Cd. de México, Mexico
| | - Edmundo Chávez
- Departamento de Bioquímica, . Instituto Nacional de Cardiología, Ignacio Chávez. Tlalpan, Cd. de México, Mexico.
| |
Collapse
|
11
|
Stowe DF, Yang M, Heisner JS, Camara AK. Endogenous and Agonist-induced Opening of Mitochondrial Big Versus Small Ca2+-sensitive K+ Channels on Cardiac Cell and Mitochondrial Protection. J Cardiovasc Pharmacol 2017; 70:314-328. [PMID: 28777255 PMCID: PMC5726766 DOI: 10.1097/fjc.0000000000000524] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Both big (BKCa) and small (SKCa) conductance Ca-sensitive K channels are present in mammalian cardiac cell mitochondria (m). We used pharmacological agonists and antagonists of BKCa and SKCa channels to examine the importance of endogenous opening of these channels and the relative contribution of either or both of these channels to protect against contractile dysfunction and reduce infarct size after ischemia reperfusion (IR) injury through a mitochondrial protective mechanism. After global cardiac IR injury of ex vivo perfused Guinea pig hearts, we found the following: both agonists NS1619 (for BKCa) and DCEB (for SKCa) improved contractility; BKCa antagonist paxilline (PAX) alone or with SKCa antagonist NS8593 worsened contractility and enhanced infarct size; both antagonists PAX and NS8593 obliterated protection by their respective agonists; BKCa and SKCa antagonists did not block protection afforded by SKCa and BKCa agonists, respectively; and all protective effects by the agonists were blocked by scavenging superoxide anions (O2) with Mn(III) tetrakis (4-benzoic acid) porphyrin (TBAP). Contractile function was inversely associated with global infarct size. In in vivo rats, infusion of NS8593, PAX, or both antagonists enhanced regional infarct size while infusion of either NS1619 or DCEB reduced infarct size. In cardiac mitochondria isolated from ex vivo hearts after IR, combined SKCa and BKCa agonists improved respiratory control index and Ca retention capacity compared with IR alone, whereas the combined antagonists did not alter respiratory control index but worsened Ca retention capacity. Although the differential protective bioenergetics effects of endogenous or exogenous BKCa and SKCa channel opening remain unclear, each channel likely responds to different sensing Ca concentrations and voltage gradients over time during oxidative stress-induced injury to individually or together protect cardiac mitochondria and myocytes.
Collapse
Affiliation(s)
- David F. Stowe
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, USA
- Cardiovascular Center, The Medical College of Wisconsin, Milwaukee, WI, USA
- Research Service, Zablocki VA Medical Center, Milwaukee, WI, USA
| | - Meiying Yang
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - James S. Heisner
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Amadou K.S. Camara
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
- Cardiovascular Center, The Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
12
|
Wang B, Xiong S, Lin S, Xia W, Li Q, Zhao Z, Wei X, Lu Z, Wei X, Gao P, Liu D, Zhu Z. Enhanced Mitochondrial Transient Receptor Potential Channel, Canonical Type 3-Mediated Calcium Handling in the Vasculature From Hypertensive Rats. J Am Heart Assoc 2017; 6:e005812. [PMID: 28711865 PMCID: PMC5586301 DOI: 10.1161/jaha.117.005812] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/11/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND Mitochondrial Ca2+ homeostasis is fundamental to the regulation of mitochondrial reactive oxygen species (ROS) generation and adenosine triphosphate production. Recently, transient receptor potential channel, canonical type 3 (TRPC3), has been shown to localize to the mitochondria and to play a role in maintaining mitochondrial calcium homeostasis. Inhibition of TRPC3 attenuates vascular calcium influx in spontaneously hypertensive rats (SHRs). However, it remains elusive whether mitochondrial TRPC3 participates in hypertension by increasing mitochondrial calcium handling and ROS production. METHODS AND RESULTS In this study we demonstrated increased TRPC3 expression in purified mitochondria in the vasculature from SHRs, which facilitates enhanced mitochondrial calcium uptake and ROS generation compared with Wistar-Kyoto rats. Furthermore, inhibition of TRPC3 by its specific inhibitor, Pyr3, significantly decreased the vascular mitochondrial ROS production and H2O2 synthesis and increased adenosine triphosphate content. Administration of telmisartan can improve these abnormalities. This beneficial effect was associated with improvement of the mitochondrial respiratory function through recovering the activity of pyruvate dehydrogenase in the vasculature of SHRs. In vivo, chronic administration of telmisartan suppressed TRPC3-mediated excessive mitochondrial ROS generation and vasoconstriction in the vasculature of SHRs. More importantly, TRPC3 knockout mice exhibited significantly ameliorated hypertension through reduction of angiotensin II-induced mitochondrial ROS generation. CONCLUSIONS Together, we give experimental evidence for a potential mechanism by which enhanced TRPC3 activity at the cytoplasmic and mitochondrial levels contributes to redox signaling and calcium dysregulation in the vasculature from SHRs. Angiotensin II or telmisartan can regulate [Ca2+]mito, ROS production, and mitochondrial energy metabolism through targeting TRPC3.
Collapse
MESH Headings
- Adenosine Triphosphate/metabolism
- Angiotensin II Type 1 Receptor Blockers/pharmacology
- Animals
- Antihypertensive Agents/pharmacology
- Benzimidazoles/pharmacology
- Benzoates/pharmacology
- Blood Pressure
- Calcium/metabolism
- Calcium Signaling/drug effects
- Cells, Cultured
- Disease Models, Animal
- Energy Metabolism
- Hypertension/drug therapy
- Hypertension/genetics
- Hypertension/metabolism
- Hypertension/physiopathology
- Male
- Mice, Knockout
- Mitochondria/drug effects
- Mitochondria/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiopathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Oxidation-Reduction
- Rats, Inbred SHR
- Rats, Inbred WKY
- Reactive Oxygen Species/metabolism
- TRPC Cation Channels/genetics
- TRPC Cation Channels/metabolism
- Telmisartan
- Time Factors
- Up-Regulation
- Vasoconstriction
Collapse
Affiliation(s)
- Bin Wang
- Center for Hypertension and Metabolic Diseases, Department of Hypertension and Endocrinology, Daping Hospital, Third Military Medical University Chongqing Institute of Hypertension, Chongqing, China
| | - Shiqiang Xiong
- Center for Hypertension and Metabolic Diseases, Department of Hypertension and Endocrinology, Daping Hospital, Third Military Medical University Chongqing Institute of Hypertension, Chongqing, China
| | - Shaoyang Lin
- Center for Hypertension and Metabolic Diseases, Department of Hypertension and Endocrinology, Daping Hospital, Third Military Medical University Chongqing Institute of Hypertension, Chongqing, China
| | - Weijie Xia
- Center for Hypertension and Metabolic Diseases, Department of Hypertension and Endocrinology, Daping Hospital, Third Military Medical University Chongqing Institute of Hypertension, Chongqing, China
| | - Qiang Li
- Center for Hypertension and Metabolic Diseases, Department of Hypertension and Endocrinology, Daping Hospital, Third Military Medical University Chongqing Institute of Hypertension, Chongqing, China
| | - Zhigang Zhao
- Center for Hypertension and Metabolic Diseases, Department of Hypertension and Endocrinology, Daping Hospital, Third Military Medical University Chongqing Institute of Hypertension, Chongqing, China
| | - Xing Wei
- Center for Hypertension and Metabolic Diseases, Department of Hypertension and Endocrinology, Daping Hospital, Third Military Medical University Chongqing Institute of Hypertension, Chongqing, China
| | - Zongshi Lu
- Center for Hypertension and Metabolic Diseases, Department of Hypertension and Endocrinology, Daping Hospital, Third Military Medical University Chongqing Institute of Hypertension, Chongqing, China
| | - Xiao Wei
- Center for Hypertension and Metabolic Diseases, Department of Hypertension and Endocrinology, Daping Hospital, Third Military Medical University Chongqing Institute of Hypertension, Chongqing, China
| | - Peng Gao
- Center for Hypertension and Metabolic Diseases, Department of Hypertension and Endocrinology, Daping Hospital, Third Military Medical University Chongqing Institute of Hypertension, Chongqing, China
| | - Daoyan Liu
- Center for Hypertension and Metabolic Diseases, Department of Hypertension and Endocrinology, Daping Hospital, Third Military Medical University Chongqing Institute of Hypertension, Chongqing, China
| | - Zhiming Zhu
- Center for Hypertension and Metabolic Diseases, Department of Hypertension and Endocrinology, Daping Hospital, Third Military Medical University Chongqing Institute of Hypertension, Chongqing, China
| |
Collapse
|
13
|
García-Niño WR, Correa F, Rodríguez-Barrena JI, León-Contreras JC, Buelna-Chontal M, Soria-Castro E, Hernández-Pando R, Pedraza-Chaverri J, Zazueta C. Cardioprotective kinase signaling to subsarcolemmal and interfibrillar mitochondria is mediated by caveolar structures. Basic Res Cardiol 2017; 112:15. [PMID: 28160133 DOI: 10.1007/s00395-017-0607-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 01/31/2017] [Indexed: 01/22/2023]
Abstract
The demonstration that caveolin-3 overexpression reduces myocardial ischemia/reperfusion injury and our own finding that multiprotein signaling complexes increase in mitochondria in association with caveolin-3 levels, led us to investigate the contribution of caveolae-driven extracellular signal-regulated kinases 1/2 (ERK1/2) on maintaining the function of cardiac mitochondrial subpopulations from reperfused hearts subjected to postconditioning (PostC). Rat hearts were isolated and subjected to ischemia/reperfusion and to PostC. Enhanced cardiac function, reduced infarct size and preserved ultrastructure of cardiomyocytes were associated with increased formation of caveolar structures, augmented levels of caveolin-3 and mitochondrial ERK1/2 activation in PostC hearts in both subsarcolemmal (SSM) and interfibrillar (IFM) subpopulations. Disruption of caveolae with methyl-β-cyclodextrin abolished cardioprotection in PostC hearts and diminished pho-ERK1/2 gold-labeling in both mitochondrial subpopulations in correlation with suppression of resistance to permeability transition pore opening. Also, differences between the mitochondrial subpopulations in the setting of PostC were evaluated. Caveolae disruption with methyl-β-cyclodextrin abolished the cardioprotective effect of postconditioning by inhibiting the interaction of ERK1/2 with mitochondria and promoted decline in mitochondrial function. SSM, which are particularly sensitive to reperfusion damage, take advantage of their location in cardiomyocyte boundary and benefit from the cardioprotective signaling driven by caveolae, avoiding injury propagation.
Collapse
Affiliation(s)
- Wylly Ramsés García-Niño
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano No. 1, Sección XVI, 14080, Ciudad de México, México.
| | - Francisco Correa
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano No. 1, Sección XVI, 14080, Ciudad de México, México
| | - Julia Isabel Rodríguez-Barrena
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano No. 1, Sección XVI, 14080, Ciudad de México, México
| | - Juan Carlos León-Contreras
- Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", 14000, Ciudad de México, México
| | - Mabel Buelna-Chontal
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano No. 1, Sección XVI, 14080, Ciudad de México, México
| | - Elizabeth Soria-Castro
- Departamento de Patología, Instituto Nacional de Cardiología "Ignacio Chávez", 14080, Ciudad de México, México
| | - Rogelio Hernández-Pando
- Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", 14000, Ciudad de México, México
| | - José Pedraza-Chaverri
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de México, México
| | - Cecilia Zazueta
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano No. 1, Sección XVI, 14080, Ciudad de México, México.
| |
Collapse
|
14
|
Korge P, Calmettes G, Weiss JN. Reactive oxygen species production in cardiac mitochondria after complex I inhibition: Modulation by substrate-dependent regulation of the NADH/NAD(+) ratio. Free Radic Biol Med 2016; 96:22-33. [PMID: 27068062 PMCID: PMC4912463 DOI: 10.1016/j.freeradbiomed.2016.04.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/11/2016] [Accepted: 04/06/2016] [Indexed: 01/21/2023]
Abstract
Reactive oxygen species (ROS) production by isolated complex I is steeply dependent on the NADH/NAD(+) ratio. We used alamethicin-permeabilized mitochondria to study the substrate-dependence of matrix NADH and ROS production when complex I is inhibited by piericidin or rotenone. When complex I was inhibited in the presence of malate/glutamate, membrane permeabilization accelerated O2 consumption and ROS production due to a rapid increase in NADH generation that was not limited by matrix NAD(H) efflux. In the presence of inhibitor, both malate and glutamate were required to generate a high enough NADH/NAD(+) ratio to support ROS production through the coordinated activity of malate dehydrogenase (MDH) and aspartate aminotransferase (AST). With malate and glutamate present, the rate of ROS production was closely related to local NADH generation, whereas in the absence of substrates, ROS production was accelerated by increase in added [NADH]. With malate alone, oxaloacetate accumulation limited NADH production by MDH unless glutamate was also added to promote oxaloacetate removal via AST. α-ketoglutarate (KG) as well as AST inhibition also reversed NADH generation and inhibited ROS production. If malate and glutamate were provided before rather than after piericidin or rotenone, ROS generation was markedly reduced due to time-dependent efflux of CoA. CoA depletion decreased KG oxidation by α-ketoglutarate dehydrogenase (KGDH), such that the resulting increase in [KG] inhibited oxaloacetate removal by AST and NADH generation by MDH. These findings were largely obscured in intact mitochondria due to robust H2O2 scavenging and limited ability to control substrate concentrations in the matrix. We conclude that in mitochondria with inhibited complex I, malate/glutamate-stimulated ROS generation depends strongly on oxaloacetate removal and on the ability of KGDH to oxidize KG generated by AST.
Collapse
Affiliation(s)
- Paavo Korge
- UCLA Cardiovascular Research Laboratory, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Department of Medicine (Cardiology), David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Guillaume Calmettes
- UCLA Cardiovascular Research Laboratory, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Department of Medicine (Cardiology), David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - James N Weiss
- UCLA Cardiovascular Research Laboratory, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Department of Medicine (Cardiology), David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
15
|
Sun W, Wang Z, Cao J, Cui H, Ma Z. Cold stress increases reactive oxygen species formation via TRPA1 activation in A549 cells. Cell Stress Chaperones 2016; 21:367-72. [PMID: 26634370 PMCID: PMC4786528 DOI: 10.1007/s12192-015-0663-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 11/22/2015] [Accepted: 11/24/2015] [Indexed: 01/28/2023] Open
Abstract
Reactive oxygen species (ROS) are responsible for lung damage during inhalation of cold air. However, the mechanism of the ROS production induced by cold stress in the lung is still unclear. In this work, we measured the changes of ROS and the cytosolic Ca(2+) concentration ([Ca(2+)]c) in A549 cell. We observed that cold stress (from 20 to 5 °C) exposure of A549 cell resulted in an increase of ROS and [Ca(2+)]c, which was completely attenuated by removing Ca(2+) from medium. Further experiments showed that cold-sensing transient receptor potential subfamily member 1 (TRPA1) agonist (allyl isothiocyanate, AITC) increased the production of ROS and the level of [Ca(2+)]c in A549 cell. Moreover, HC-030031, a TRPA1 selective antagonist, significantly inhibited the enhanced ROS and [Ca(2+)]c induced by AITC or cold stimulation, respectively. Taken together, these data demonstrated that TRPA1 activation played an important role in the enhanced production of ROS induced by cold stress in A549 cell.
Collapse
Affiliation(s)
- Wenwu Sun
- Department of Respiratory Medicine, General Hospital of Shenyang Military Area Command, No. 83, Wenhua Road, Shenhe District, Shenyang, 110840, China
| | - Zhonghua Wang
- Department of Respiratory Medicine, General Hospital of Shenyang Military Area Command, No. 83, Wenhua Road, Shenhe District, Shenyang, 110840, China
| | - Jianping Cao
- Department of Respiratory Medicine, General Hospital of Shenyang Military Area Command, No. 83, Wenhua Road, Shenhe District, Shenyang, 110840, China
| | - Haiyang Cui
- Department of Respiratory Medicine, General Hospital of Shenyang Military Area Command, No. 83, Wenhua Road, Shenhe District, Shenyang, 110840, China
| | - Zhuang Ma
- Department of Respiratory Medicine, General Hospital of Shenyang Military Area Command, No. 83, Wenhua Road, Shenhe District, Shenyang, 110840, China.
| |
Collapse
|
16
|
González Arbeláez LF, Ciocci Pardo A, Fantinelli JC, Mosca SM. Cyclosporine-A mimicked the ischemic pre- and postconditioning-mediated cardioprotection in hypertensive rats: Role of PKCε. Exp Mol Pathol 2016; 100:266-75. [PMID: 26844384 DOI: 10.1016/j.yexmp.2016.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 01/07/2016] [Accepted: 01/29/2016] [Indexed: 12/11/2022]
Abstract
Our aim was to assess the action of cyclosporine-A (CsA) against reperfusion injury in spontaneously hypertensive rats (SHR) compared to the effects of ischemic pre- (IP) and postconditioning (IPC), examining the role played by PKCε. Isolated hearts were submitted to the following protocols: IC: 45 min global ischemia (GI) and 1h reperfusion (R); IP: a cycle of 5 min GI and 10 min of R prior to 45 min-GI; and IPC: three cycles of 30s-GI/30s-R at the start of R. Other hearts of the IC, IP and IPC groups received CsA (mitochondrial permeability transition pore inhibitor) or chelerythrine (Che, non-selective PKC inhibitor). Infarct size (IS) was assessed. TBARS and reduced glutathione (GSH) content - as parameters of oxidative damage, the expression of P-Akt, P-GSK-3β, P-PKCε and cytochrome c (Cyc) release - as an index of mitochondrial permeability and the response of isolated mitochondria to Ca(2+) were also measured. IS similarly decreased in preconditioned, postconditioned and CsA treated heart showing the highest values in the combinations IP+CsA and IPC+CsA. TBARS decreased and GSH was partially preserved after all interventions. The content of P-Akt, P-GSK-3β and P-PKCε increased in cytosol and decreased in mitochondria after IP and IPC. In CsA treated hearts these enzymes increased in both fractions reaching the highest values. Cyc release was attenuated and the response of mitochondria to Ca(2+) was improved by the interventions. The beneficial effects of IP and IPC were annulled when PKC was inhibited with Che. A PKCε/VDAC association was also detected. These data show that, in SHR, the CsA treatment mimicked and reinforced the cardioprotective action afforded by IP and IPC in which PKCε-mediated attenuation of mitochondrial permeability appears as the main mechanism involved.
Collapse
|
17
|
Blomeyer CA, Bazil JN, Stowe DF, Dash RK, Camara AKS. Mg(2+) differentially regulates two modes of mitochondrial Ca(2+) uptake in isolated cardiac mitochondria: implications for mitochondrial Ca(2+) sequestration. J Bioenerg Biomembr 2016; 48:175-88. [PMID: 26815005 DOI: 10.1007/s10863-016-9644-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 01/12/2016] [Indexed: 12/14/2022]
Abstract
The manner in which mitochondria take up and store Ca(2+) remains highly debated. Recent experimental and computational evidence has suggested the presence of at least two modes of Ca(2+) uptake and a complex Ca(2+) sequestration mechanism in mitochondria. But how Mg(2+) regulates these different modes of Ca(2+) uptake as well as mitochondrial Ca(2+) sequestration is not known. In this study, we investigated two different ways by which mitochondria take up and sequester Ca(2+) by using two different protocols. Isolated guinea pig cardiac mitochondria were exposed to varying concentrations of CaCl2 in the presence or absence of MgCl2. In the first protocol, A, CaCl2 was added to the respiration buffer containing isolated mitochondria, whereas in the second protocol, B, mitochondria were added to the respiration buffer with CaCl2 already present. Protocol A resulted first in a fast transitory uptake followed by a slow gradual uptake. In contrast, protocol B only revealed a slow and gradual Ca(2+) uptake, which was approximately 40 % of the slow uptake rate observed in protocol A. These two types of Ca(2+) uptake modes were differentially modulated by extra-matrix Mg(2+). That is, Mg(2+) markedly inhibited the slow mode of Ca(2+) uptake in both protocols in a concentration-dependent manner, but not the fast mode of uptake exhibited in protocol A. Mg(2+) also inhibited Na(+)-dependent Ca(2+) extrusion. The general Ca(2+) binding properties of the mitochondrial Ca(2+) sequestration system were reaffirmed and shown to be independent of the mode of Ca(2+) uptake, i.e. through the fast or slow mode of uptake. In addition, extra-matrix Mg(2+) hindered Ca(2+) sequestration. Our results indicate that mitochondria exhibit different modes of Ca(2+) uptake depending on the nature of exposure to extra-matrix Ca(2+), which are differentially sensitive to Mg(2+). The implications of these findings in cardiomyocytes are discussed.
Collapse
Affiliation(s)
- Christoph A Blomeyer
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Jason N Bazil
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA.,Biotechnology and Bioengineering Center, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.,Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - David F Stowe
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.,Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.,Department of Biomedical Engineering, Marquette University, Milwaukee, WI, 53233, USA.,Research Service, Zablocki Veterans Affairs Medical Center, Milwaukee, WI, 53295, USA
| | - Ranjan K Dash
- Biotechnology and Bioengineering Center, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.,Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.,Department of Biomedical Engineering, Marquette University, Milwaukee, WI, 53233, USA
| | - Amadou K S Camara
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| |
Collapse
|
18
|
Korotkov SM, Emelyanova LV, Konovalova SA, Brailovskaya IV. Tl+ induces the permeability transition pore in Ca2+-loaded rat liver mitochondria energized by glutamate and malate. Toxicol In Vitro 2015; 29:1034-41. [PMID: 25910914 DOI: 10.1016/j.tiv.2015.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Revised: 04/04/2015] [Accepted: 04/08/2015] [Indexed: 12/14/2022]
Abstract
It is known that Ca2+ and heavy metals more actively induce MPTP opening in mitochondria, energized by the I complex substrates. Thus, a rise in a Tl+-induced MPTP was proposed in experiments on isolated rat liver mitochondria energized by the complex I substrate (glutamate and malate). Expose of the mitochondria to Ca2+ into a medium containing TlNO3, glutamate, and malate as well as sucrose or KNO3 resulted in a decrease in state 3, state 4, or DNP-stimulated respiration as well as an increase of both mitochondrial swelling and ΔΨmito dissipation. The MPTP inhibitors, CsA and ADP, almost completely eliminated the effect of Ca2+, which was more pronounced in the presence of the complex I substrates than the complex II substrate (succinate) and rotenone (Korotkov and Saris, 2011). The present study concludes that Tl+-induced MPTP opening is more appreciable in mitochondria energized by glutamate and malate but not succinate in the presence of rotenone. We assume that the Tl+-induced MPTP opening along with followed swelling and possible structural deformations of the complex I in Ca2+-loaded mitochondria may be a part of the thallium toxicity mechanism on mitochondria in living organisms. At the same time, oxidation of Tl+ to Tl3+ by mitochondrial oxygen reactive species is proposed for the mechanism.
Collapse
Affiliation(s)
- Sergey M Korotkov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, The Russian Academy of Sciences, Thorez pr. 44, 194223 St., Petersburg, Russian Federation.
| | - Larisa V Emelyanova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, The Russian Academy of Sciences, Thorez pr. 44, 194223 St., Petersburg, Russian Federation
| | - Svetlana A Konovalova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, The Russian Academy of Sciences, Thorez pr. 44, 194223 St., Petersburg, Russian Federation
| | - Irina V Brailovskaya
- Sechenov Institute of Evolutionary Physiology and Biochemistry, The Russian Academy of Sciences, Thorez pr. 44, 194223 St., Petersburg, Russian Federation
| |
Collapse
|
19
|
Lindsay DP, Camara AKS, Stowe DF, Lubbe R, Aldakkak M. Differential effects of buffer pH on Ca(2+)-induced ROS emission with inhibited mitochondrial complexes I and III. Front Physiol 2015; 6:58. [PMID: 25805998 PMCID: PMC4354303 DOI: 10.3389/fphys.2015.00058] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 02/13/2015] [Indexed: 11/13/2022] Open
Abstract
Excessive mitochondrial reactive oxygen species (ROS) emission is a critical component in the etiology of ischemic injury. Complex I and complex III of the electron transport chain are considered the primary sources of ROS emission during cardiac ischemia and reperfusion (IR) injury. Several factors modulate ischemic ROS emission, such as an increase in extra-matrix Ca2+, a decrease in extra-matrix pH, and a change in substrate utilization. Here we examined the combined effects of these factors on ROS emission from respiratory complexes I and III under conditions of simulated IR injury. Guinea pig heart mitochondria were suspended in experimental buffer at a given pH and incubated with or without CaCl2. Mitochondria were then treated with either pyruvate, a complex I substrate, followed by rotenone, a complex I inhibitor, or succinate, a complex II substrate, followed by antimycin A, a complex III inhibitor. H2O2 release rate and matrix volume were compared with and without adding CaCl2 and at pH 7.15, 6.9, or 6.5 with pyruvate + rotenone or succinate + antimycin A to simulate conditions that may occur during in vivo cardiac IR injury. We found a large increase in H2O2 release with high [CaCl2] and pyruvate + rotenone at pH 6.9, but not at pHs 7.15 or 6.5. Large increases in H2O2 release rate also occurred at each pH with high [CaCl2] and succinate + antimycin A, with the highest levels observed at pH 7.15. The increases in H2O2 release were associated with significant mitochondrial swelling, and both H2O2 release and swelling were abolished by cyclosporine A, a desensitizer of the mitochondrial permeability transition pore (mPTP). These results indicate that ROS production by complex I and by complex III is differently affected by buffer pH and Ca2+ loading with mPTP opening. The study suggests that changes in the levels of cytosolic Ca2+ and pH during IR alter the relative amounts of ROS produced at mitochondrial respiratory complex I and complex III.
Collapse
Affiliation(s)
- Daniel P Lindsay
- Department of Anesthesiology, The Medical College of Wisconsin Milwaukee, WI, USA
| | - Amadou K S Camara
- Department of Anesthesiology, The Medical College of Wisconsin Milwaukee, WI, USA ; Cardiovascular Research Center, The Medical College of Wisconsin Milwaukee, WI, USA
| | - David F Stowe
- Department of Anesthesiology, The Medical College of Wisconsin Milwaukee, WI, USA ; Cardiovascular Research Center, The Medical College of Wisconsin Milwaukee, WI, USA ; Department of Physiology, The Medical College of Wisconsin Milwaukee, WI, USA ; Department of Anesthesiology, VA Medical Center Research Service Milwaukee, WI, USA ; Department of Biomedical Engineering, Marquette University Milwaukee, WI, USA
| | - Ryan Lubbe
- Department of Anesthesiology, The Medical College of Wisconsin Milwaukee, WI, USA
| | - Mohammed Aldakkak
- Department of Anesthesiology, The Medical College of Wisconsin Milwaukee, WI, USA
| |
Collapse
|
20
|
Riess ML, Matsuura TR, Bartos JA, Bienengraeber M, Aldakkak M, McKnite SH, Rees JN, Aufderheide TP, Sarraf M, Neumar RW, Yannopoulos D. Anaesthetic Postconditioning at the Initiation of CPR Improves Myocardial and Mitochondrial Function in a Pig Model of Prolonged Untreated Ventricular Fibrillation. Resuscitation 2014; 85:1745-51. [PMID: 25281906 PMCID: PMC4276313 DOI: 10.1016/j.resuscitation.2014.09.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Revised: 09/22/2014] [Accepted: 09/22/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND Anaesthetic postconditioning (APoC) attenuates myocardial injury following coronary ischaemia/reperfusion. We hypothesised that APoC at the initiation of cardiopulmonary resuscitation (CPR) will improve post resuscitation myocardial function along with improved mitochondrial function in a pig model of prolonged untreated ventricular fibrillation. METHODS In 32 pigs isoflurane anaesthesia was discontinued prior to induction of ventricular fibrillation that was left untreated for 15 min. At the initiation of CPR, 15 animals were randomised to controls (CON), and 17 to APoC with 2 vol% sevoflurane during the first 3 min CPR. Pigs were defibrillated after 4 min of CPR. After return of spontaneous circulation (ROSC), isoflurane was restarted at 0.8-1.5 vol% in both groups. Systolic and diastolic blood pressures were measured continuously. Of the animals that achieved ROSC, eight CON and eight APoC animals were randomised to have their left ventricular ejection fraction (LVEF%) assessed by echocardiography at 4h. Seven CON and nine APoC were randomised to euthanasia 15 min after ROSC to isolate mitochondria from the left ventricle for bioenergetic studies. RESULTS ROSC was achieved in 10/15 CON and 15/17 APoC animals. APoC improved haemodynamics during CPR and post-CPR LVEF%. Mitochondrial ATP synthesis, coupling of oxidative phosphorylation and calcium retention capacity were improved in cardiac mitochondria isolated after APoC. CONCLUSIONS In a porcine model of prolonged untreated cardiac arrest, APoC with inhaled sevoflurane at the initiation of CPR, is associated with preserved mitochondrial function and improved post resuscitation myocardial dysfunction. Approved by the Institutional Animal Care Committee of the Minneapolis Medical Research Foundation of Hennepin County Medical Center (protocol number 11-05).
Collapse
Affiliation(s)
- Matthias L Riess
- TVHS VA Medical Center, Nashville, TN, United States; Department of Anesthesiology, Vanderbilt University, Nashville, TN, United States.
| | - Timothy R Matsuura
- Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, United States
| | - Jason A Bartos
- Department of Medicine, Cardiovascular Division, University of Minnesota, Minneapolis, MN, United States
| | - Martin Bienengraeber
- Departments of Anesthesiology and Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Mohammed Aldakkak
- Department of Surgery, Division of Surgical Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Scott H McKnite
- Minneapolis Medical Research Foundation, Minneapolis, MN, United States
| | - Jennifer N Rees
- Department of Medicine, Cardiovascular Division, University of Minnesota, Minneapolis, MN, United States
| | - Tom P Aufderheide
- Department of Emergency Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Mohammad Sarraf
- Department of Medicine, Cardiovascular Division, University of Minnesota, Minneapolis, MN, United States
| | - Robert W Neumar
- Department of Emergency Medicine, University of Michigan Health System, Ann Arbor, MI, United States
| | - Demetris Yannopoulos
- Department of Medicine, Cardiovascular Division, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
21
|
Paradies G, Paradies V, Ruggiero FM, Petrosillo G. Cardiolipin and mitochondrial function in health and disease. Antioxid Redox Signal 2014; 20:1925-53. [PMID: 24094094 DOI: 10.1089/ars.2013.5280] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cardiolipin (CL) is a unique phospholipid that is almost exclusively localized at the level of the inner mitochondrial membrane (IMM), where it is biosynthesized. This phospholipid is associated with membranes which are designed to generate an electrochemical gradient that is used to produce ATP. Such membranes include the bacterial plasma membrane and IMM. This ubiquitous and intimate association between CL and energy-transducing membranes suggests an important role for CL in mitochondrial bioenergetic processes. CL has been shown to interact with a number of IMM proteins, including the respiratory chain complexes and substrate carriers. Moreover, CL is involved in different stages of the mitochondrial apoptosis process as well as in mitochondrial membrane stability and dynamics. Alterations in CL structure, content, and acyl chain composition have been associated with mitochondrial dysfunction in multiple tissues in several physiopathological conditions and aging. In this review, we provide an overview of the roles of CL in mitochondrial function and bioenergetics in health and disease.
Collapse
Affiliation(s)
- Giuseppe Paradies
- 1 Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari , Bari, Italy
| | | | | | | |
Collapse
|
22
|
Agarwal B, Dash RK, Stowe DF, Bosnjak ZJ, Camara AKS. Isoflurane modulates cardiac mitochondrial bioenergetics by selectively attenuating respiratory complexes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:354-65. [PMID: 24355434 DOI: 10.1016/j.bbabio.2013.11.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 10/28/2013] [Accepted: 11/13/2013] [Indexed: 12/12/2022]
Abstract
Mitochondrial dysfunction contributes to cardiac ischemia-reperfusion (IR) injury but volatile anesthetics (VA) may alter mitochondrial function to trigger cardioprotection. We hypothesized that the VA isoflurane (ISO) mediates cardioprotection in part by altering the function of several respiratory and transport proteins involved in oxidative phosphorylation (OxPhos). To test this we used fluorescence spectrophotometry to measure the effects of ISO (0, 0.5, 1, 2mM) on the time-course of interlinked mitochondrial bioenergetic variables during states 2, 3 and 4 respiration in the presence of either complex I substrate K(+)-pyruvate/malate (PM) or complex II substrate K(+)-succinate (SUC) at physiological levels of extra-matrix free Ca(2+) (~200nM) and Na(+) (10mM). To mimic ISO effects on mitochondrial functions and to clearly delineate the possible ISO targets, the observed actions of ISO were interpreted by comparing effects of ISO to those elicited by low concentrations of inhibitors that act at each respiratory complex, e.g. rotenone (ROT) at complex I or antimycin A (AA) at complex III. Our conclusions are based primarily on the similar responses of ISO and titrated concentrations of ETC. inhibitors during state 3. We found that with the substrate PM, ISO and ROT similarly decreased the magnitude of state 3 NADH oxidation and increased the duration of state 3 NADH oxidation, ΔΨm depolarization, and respiration in a concentration-dependent manner, whereas with substrate SUC, ISO and ROT decreased the duration of state 3 NADH oxidation, ΔΨm depolarization and respiration. Unlike AA, ISO reduced the magnitude of state 3 NADH oxidation with PM or SUC as substrate. With substrate SUC, after complete block of complex I with ROT, ISO and AA similarly increased the duration of state 3 ΔΨm depolarization and respiration. This study provides a mechanistic understanding in how ISO alters mitochondrial function in a way that may lead to cardioprotection.
Collapse
Affiliation(s)
- Bhawana Agarwal
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ranjan K Dash
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA; Biotechnology and Bioengineering Center, Medical College of Wisconsin, Milwaukee, WI, USA; Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - David F Stowe
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA; Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, WI, USA; Research Service, Zablocki VA Medical Center, Milwaukee, WI, USA; Department of Biomedical Engineering, Marquette University, Milwaukee, WI, USA
| | - Zeljko J Bosnjak
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA; Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Amadou K S Camara
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA; Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|