1
|
Driesschaert B, Mergan L, Lucci C, Simon C, Santos D, De Groef L, Temmerman L. The role of phagocytic cells in aging: insights from vertebrate and invertebrate models. Biogerontology 2024; 25:1301-1314. [PMID: 39168928 DOI: 10.1007/s10522-024-10131-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024]
Abstract
While the main role of phagocytic scavenger cells consists of the neutralization and elimination of pathogens, they also keep the body fluids clean by taking up and breaking down waste material. Since a build-up of waste is thought to contribute to the aging process, these cells become particularly pertinent in the research field of aging. Nevertheless, a direct link between their scavenging functions and the aging process has yet to be established. Integrative approaches involving various model organisms hold promise to elucidate this potential, but are lagging behind since the diversity and evolutionary relationship of these cells across animal species remain unclear. In this perspective, we review the current knowledge associating phagocytic scavenger cells with aging in vertebrate and invertebrate animals, as well as put forward important questions for further exploration. Additionally, we highlight future challenges and propose a constructive approach for tackling them.
Collapse
Affiliation(s)
- Brecht Driesschaert
- Molecular and Functional Neurobiology, Department of Biology, KU Leuven, Naamsestraat 59 - Box 2465, B-3000, Leuven, Belgium
| | - Lucas Mergan
- Molecular and Functional Neurobiology, Department of Biology, KU Leuven, Naamsestraat 59 - Box 2465, B-3000, Leuven, Belgium
| | - Cristiano Lucci
- Cellular Communication and Neurodegeneration, Department of Biology, KU Leuven, Naamsestraat 61 - Box 2464, B-3000, Leuven, Belgium
| | - Caroline Simon
- Molecular Developmental Physiology and Signal Transduction, Department of Biology, KU Leuven, Naamsestraat 59 - Box 2465, B-3000, Leuven, Belgium
| | - Dulce Santos
- Molecular Developmental Physiology and Signal Transduction, Department of Biology, KU Leuven, Naamsestraat 59 - Box 2465, B-3000, Leuven, Belgium
| | - Lies De Groef
- Cellular Communication and Neurodegeneration, Department of Biology, KU Leuven, Naamsestraat 61 - Box 2464, B-3000, Leuven, Belgium
| | - Liesbet Temmerman
- Molecular and Functional Neurobiology, Department of Biology, KU Leuven, Naamsestraat 59 - Box 2465, B-3000, Leuven, Belgium.
| |
Collapse
|
2
|
Mauro M, Vazzana M, Ceraulo M, de Vita C, di Fiore V, Giacalone VM, Grammauta R, Lazzara V, Papale E, Vizzini A, Buscaino G. Effects of seismic water guns on the peristomial membrane of sea urchins (Arbacia lixula, Linnaeus 1758). MARINE POLLUTION BULLETIN 2024; 207:116892. [PMID: 39232412 DOI: 10.1016/j.marpolbul.2024.116892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/06/2024]
Abstract
The seismic water gun is widely used and plays an important role in seabed imaging acquisition; however, acoustic impacts on marine organisms are currently poorly understood. The aim of this study was to analyse the biochemical responses on the peristomial membrane (PM) of the sea urchin, Arbacia lixula, when exposed to water gun shots in open water. The PM (located around the mouth) is involved in vital functions, such as nutrition and protection. Individuals of sea urchins (n = 7 for each time slot) were sampled before, at the end, and at intervals of 3 h and 24 h after acoustic emission (duration of 20 min). Significant increases in superoxide dismutase, peroxidase, esterase and alkaline were observed immediately after water gun shots, highlighting an increase in the oxidative and inflammatory state of the tissue. Our results showed that acoustic impacts could interfere with PM vital functions, compromising the health, survival and ultimately the conservation of the species. Understanding these effects is crucial to predicting consequences on sea urchin populations and marine ecosystems.
Collapse
Affiliation(s)
- M Mauro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi, 18, 90123 Palermo, Italy
| | - M Vazzana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi, 18, 90123 Palermo, Italy
| | - M Ceraulo
- Institute of Anthropic Impact and Sustainability in the Marine Environment (IAS), National Research Council (CNR), UOS Torretta Granitola (TP) Campobello di Mazara, Trapani 91021, Italy; NBFC, National Biodiversity Future Center, Piazza Marina 61, 90133 Palermo, Italy.
| | - C de Vita
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi, 18, 90123 Palermo, Italy; Institute of Anthropic Impact and Sustainability in the Marine Environment (IAS), National Research Council (CNR), UOS Torretta Granitola (TP) Campobello di Mazara, Trapani 91021, Italy
| | - V di Fiore
- Institute of Heritage Science, National Research Council (CNR), Via Cardinale Guglielmo Sanfelice 8, 80134 Napoli (NA), Italy
| | - V M Giacalone
- Institute of Anthropic Impact and Sustainability in the Marine Environment (IAS), National Research Council (CNR), UOS Torretta Granitola (TP) Campobello di Mazara, Trapani 91021, Italy
| | - R Grammauta
- Institute of Anthropic Impact and Sustainability in the Marine Environment (IAS), National Research Council (CNR), UOS Torretta Granitola (TP) Campobello di Mazara, Trapani 91021, Italy
| | - V Lazzara
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi, 18, 90123 Palermo, Italy
| | - E Papale
- Institute of Anthropic Impact and Sustainability in the Marine Environment (IAS), National Research Council (CNR), UOS Torretta Granitola (TP) Campobello di Mazara, Trapani 91021, Italy
| | - A Vizzini
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi, 18, 90123 Palermo, Italy
| | - G Buscaino
- Institute of Anthropic Impact and Sustainability in the Marine Environment (IAS), National Research Council (CNR), UOS Torretta Granitola (TP) Campobello di Mazara, Trapani 91021, Italy
| |
Collapse
|
3
|
Pithan JB, Rinehart JP, Greenlee KJ, López-Martínez G. Effects of age on oxidative stress and locomotion in the pollinator, Megachile rotundata. JOURNAL OF INSECT PHYSIOLOGY 2024; 157:104666. [PMID: 38969333 DOI: 10.1016/j.jinsphys.2024.104666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/07/2024]
Abstract
Despite numerous aging studies, the relationship between oxidative stress, aging, and decline in functions such as locomotion is still debated. Insects offer a promising model for analyzing the relationship between oxidative stress and aging, because they exhibit vast differences in lifespan that may be affected by the environment, social factors, levels of activity, and aging interventions. In this study, we explore the effects of aging on oxidative stress and locomotion using the pollinator, Megachile rotundata, a species that is very mobile and active in the adult stage. Across the adult lifespan of M. rotundata, we assessed changes in walking, flight, oxidative damage, and antioxidant defenses. Our results suggest that M. rotundata experience age-related declines in flight, but not walking. Additionally, we found that oxidative damage and antioxidant capacity initially increase with age and physical activity, but then levels are maintained. Overall, these data show that M. rotundata, like some other organisms, may not perfectly follow the free radical theory of aging.
Collapse
|
4
|
Polinski JM, Castellano KR, Buckley KM, Bodnar AG. Genomic signatures of exceptional longevity and negligible aging in the long-lived red sea urchin. Cell Rep 2024; 43:114021. [PMID: 38564335 DOI: 10.1016/j.celrep.2024.114021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 02/12/2024] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
The red sea urchin (Mesocentrotus franciscanus) is one of the Earth's longest-living animals, reported to live more than 100 years with indeterminate growth, life-long reproduction, and no increase in mortality rate with age. To understand the genetic underpinnings of longevity and negligible aging, we constructed a chromosome-level assembly of the red sea urchin genome and compared it to that of short-lived sea urchin species. Genome-wide syntenic alignments identified chromosome rearrangements that distinguish short- and long-lived species. Expanded gene families in long-lived species play a role in innate immunity, sensory nervous system, and genome stability. An integrated network of genes under positive selection in the red sea urchin was involved in genomic regulation, mRNA fidelity, protein homeostasis, and mitochondrial function. Our results implicated known longevity genes in sea urchin longevity but also revealed distinct molecular signatures that may promote long-term maintenance of tissue homeostasis, disease resistance, and negligible aging.
Collapse
Affiliation(s)
| | | | | | - Andrea G Bodnar
- Gloucester Marine Genomics Institute, Gloucester, MA 01930, USA.
| |
Collapse
|
5
|
Grant B, Sundaram Buitrago PA, Mercado BC, Yajima M. Characterization of p53/p63/p73 and Myc expressions during embryogenesis of the sea urchin. Dev Dyn 2024; 253:333-350. [PMID: 37698352 DOI: 10.1002/dvdy.656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/27/2023] [Accepted: 08/18/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Some marine invertebrate organisms are considered not to develop tumors due to unknown mechanisms. To gain an initial insight into how tumor-related genes may be expressed and function during marine invertebrate development, we here leverage sea urchin embryos as a model system and characterize the expressions of Myc and p53/p63/p73 which are reported to function synergistically in mammalian models as an oncogene and tumor suppressor, respectively. RESULTS During sea urchin embryogenesis, a combo gene of p53/p63/p73 is found to be maternally loaded and decrease after fertilization both in transcript and protein, while Myc transcript and protein are zygotically expressed. p53/p63/p73 and Myc proteins are observed in the cytoplasm and nucleus of every blastomere, respectively, throughout embryogenesis. Both p53/p63/p73 and Myc overexpression results in compromised development with increased DNA damage after the blastula stage. p53/p63/p73 increases the expression of parp1, a DNA repair/cell death marker gene, and suppresses endomesoderm gene expressions. In contrast, Myc does not alter the expression of specification genes or oncogenes yet induces disorganized morphology. CONCLUSIONS p53/p63/p73 appears to be important for controlling cell differentiation, while Myc induces disorganized morphology yet not through conventional oncogene regulations or apoptotic pathways during embryogenesis of the sea urchin.
Collapse
Affiliation(s)
- Blaine Grant
- Department of Molecular Biology Cell Biology Biochemistry, Brown University, Providence, Rhode Island, USA
| | | | - Beatriz C Mercado
- Department of Molecular Biology Cell Biology Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Mamiko Yajima
- Department of Molecular Biology Cell Biology Biochemistry, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
6
|
Ren Q, Lin J, Wang H, Huang M, Tan X, Huang W, Xu Y. Effects of ginseng consumption on the biomarkers of oxidative stress: A systematic review and meta-analysis. Phytother Res 2023; 37:3262-3274. [PMID: 37216939 DOI: 10.1002/ptr.7893] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/07/2023] [Accepted: 05/09/2023] [Indexed: 05/24/2023]
Abstract
Oxidative stress (OS) is a key factor involved in the initiation and development of chronic diseases. Despite its widespread acceptance as an antioxidant, the effects of ginseng on OS in human clinical trials have not been comprehensively analyzed. Therefore, this study aimed to synthesize the results of previous randomized clinical trials (RCTs) examining the impact of ginseng consumption on OS indicators. PubMed, Web of Science, Scopus, and Cochrane databases were searched for articles on the effects of ginseng consumption on oxidative stress markers up to March 20, 2023. Standardized mean difference (SMD) and 95% confidence intervals (CIs) were used to assess effect sizes. Twelve RCTs with 15 effect sizes revealed that the effects of ginseng lowered serum malondialdehyde (MDA) levels (SMD = 0.45, 95% CI: -0.87, -0.08; p = 0.03) and significantly increased the serum total antioxidant capacity (TAC) (SMD = 0.23, 95% CI: 0.01, 0.45; p = 0.04), oxidative dismutase (SOD) (SMD = 0.39, 95% CI: 0.21, 0.57; p < 0.0001), glutathione (GSH) (SMD = 0.36; 95% CI: 0.11, 0.61; p = 0.005), and glutathione reductase (GR) (SMD = 0.56; 95% CI: 0.31, 0.81; p < 0.0001) levels compared to the effects of placebo. However, the effects on serum glutathione peroxidase (GPx) and catalase (CAT) were not significant. Moreover, subgroup analysis based on intervention duration showed that ginseng consumption increased GPx (SMD = 0.91, 95% CI: 0.05, 1.78; p = 0.039) and CAT (SMD = 0.74, 95% CI: 0.27, 1.21; p = 0.002) levels after more than 4 weeks of intervention. According to the results of this meta-analysis, ginseng supplementation dramatically reduced MDA levels and increased TAC, SOD, GSH, and GR levels. Our results open up a new line of defense against oxidative stress-induced diseases.
Collapse
Affiliation(s)
- Qian Ren
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Cardiovascular and Metabolic Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, China
| | - Jie Lin
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Cardiovascular and Metabolic Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, China
| | - Hongya Wang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Cardiovascular and Metabolic Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, China
| | - Mengting Huang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Cardiovascular and Metabolic Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, China
| | - Xiaozhen Tan
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Cardiovascular and Metabolic Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, China
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Wei Huang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Cardiovascular and Metabolic Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, China
| | - Yong Xu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Cardiovascular and Metabolic Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, China
| |
Collapse
|
7
|
Istomina AA, Zhukovskaya AF, Mazeika AN, Barsova EA, Chelomin VP, Mazur MA, Elovskaya OA, Mazur AA, Dovzhenko NV, Fedorets YV, Karpenko AA. The Relationship between Lifespan of Marine Bivalves and Their Fatty Acids of Mitochondria Lipids. BIOLOGY 2023; 12:837. [PMID: 37372122 DOI: 10.3390/biology12060837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/04/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023]
Abstract
Marine bivalves belonging to the Mytilidae and Pectinidae Families were used in this research. The specific objectives of this study were: to determine the Fatty Acids (FAs) of mitochondrial gill membranes in bivalves with different lifespans, belonging to the same family, and to calculate their peroxidation index; to compare the levels of ROS generation, malondialdehyde (MDA), and protein carbonyls in the mitochondria of gills, in vitro, during the initiation of free-radical oxation; to investigate whether the FAs of mitochondria gill membranes affect the degree of their oxidative damage and the maximum lifespan of species (MLS). The qualitative membrane lipid composition was uniform in the studied marine bivalves, regardless of their MLS. In terms of the quantitative content of individual FAs, the mitochondrial lipids differed significantly. It is shown that lipid matrix membranes of the mitochondria of long-lived species are less sensitive to in vitro-initiated peroxidation compared with the medium and short-lived species. The differences in MLS are related to the peculiarities of FAs of mitochondrial membrane lipids.
Collapse
Affiliation(s)
| | - Avianna Fayazovna Zhukovskaya
- Il'ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| | | | | | - Victor Pavlovich Chelomin
- Il'ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| | - Marina Alexandrovna Mazur
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| | - Olesya Alexandrovna Elovskaya
- Il'ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| | - Andrey Alexandrovich Mazur
- Il'ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| | | | - Yuliya Vladimirovna Fedorets
- Il'ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| | - Alexander Alexandrovich Karpenko
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| |
Collapse
|
8
|
Hernández-Álvarez D, Rosado-Pérez J, Gavia-García G, Arista-Ugalde TL, Aguiñiga-Sánchez I, Santiago-Osorio E, Mendoza-Núñez VM. Aging, Physical Exercise, Telomeres, and Sarcopenia: A Narrative Review. Biomedicines 2023; 11:598. [PMID: 36831134 PMCID: PMC9952920 DOI: 10.3390/biomedicines11020598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
Human aging is a gradual and adaptive process characterized by a decrease in the homeostatic response, leading to biochemical and molecular changes that are driven by hallmarks of aging, such as oxidative stress (OxS), chronic inflammation, and telomere shortening. One of the diseases associated with the hallmarks of aging, which has a great impact on functionality and quality of life, is sarcopenia. However, the relationship between telomere length, sarcopenia, and age-related mortality has not been extensively studied. Moderate physical exercise has been shown to have a positive effect on sarcopenia, decreasing OxS and inflammation, and inducing protective effects on telomeric DNA. This results in decreased DNA strand breaks, reduced OxS and IA, and activation of repair pathways. Higher levels of physical activity are associated with an apparent increase in telomere length. This review aims to present the current state of the art of knowledge on the effect of physical exercise on telomeric maintenance and activation of repair mechanisms in sarcopenia.
Collapse
Affiliation(s)
- David Hernández-Álvarez
- Research Unit on Gerontology, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico
| | - Juana Rosado-Pérez
- Research Unit on Gerontology, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico
| | - Graciela Gavia-García
- Research Unit on Gerontology, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico
| | - Taide Laurita Arista-Ugalde
- Research Unit on Gerontology, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico
| | - Itzen Aguiñiga-Sánchez
- Hematopoiesis and Leukemia Laboratory, Research Unit on Cell Differentiation and Cancer, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico
| | - Edelmiro Santiago-Osorio
- Hematopoiesis and Leukemia Laboratory, Research Unit on Cell Differentiation and Cancer, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico
| | - Víctor Manuel Mendoza-Núñez
- Research Unit on Gerontology, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico
| |
Collapse
|
9
|
Pinsino A, Di Bernardo M. Immunosafe(r)-by-design nanoparticles: Molecular targets and cell signaling pathways in a next-generation model proxy for humans. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 130:325-350. [PMID: 35534111 DOI: 10.1016/bs.apcsb.2022.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanotechnology research covers a wide field of studies pointing to design and shape complex matter in a scale between 1 and 100nm, with unique size-depending properties and applications. The value and potential of engineered nanoparticles in human diagnostics and therapies essentially relay on their safety and biocompatibility. Entering a cell, in fact, these particles take complex interactions with the surrounding biological environment, dramatically changing their own identity. The formation of a custom-made protein corona is the first signal of their interplay with the cell defensive mechanisms, and a major issue in their application in medicine. Preliminary in-depth studies in model organisms have been developed to assess immunological safety and competence in facing the host immune system and its defensive response. New affordable animal models are emerging in pilot nano-response and safety studies. Sea urchins, benthic marine Echinoderms, have a wide and very efficient immune system working with innate defense mechanisms and are widely used in immune studies. Nano-safety studies have been showing that the sea urchin Paracentrotus lividus displays an excellent sensing system and high defensive capability, joined to the availability of easily accessible immune cells. As in mammals, nanoparticle recognition and interaction activate specific signaling pathways, metabolic rewiring and homeostasis maintenance. In this chapter, we point to the value of planning new research and developing nano-immune studies using an easy nonmammalian next-generation model, able to unravel new specific response mechanisms to nanoparticles.
Collapse
Affiliation(s)
- Annalisa Pinsino
- Consiglio Nazionale delle Ricerche, Istituto di Farmacologia Traslazionale (IFT), Palermo, Italy; Consiglio Nazionale delle Ricerche, Istituto per la Ricerca e l'Innovazione Biomedica (IRIB), Palermo, Italy.
| | - Maria Di Bernardo
- Consiglio Nazionale delle Ricerche, Istituto per la Ricerca e l'Innovazione Biomedica (IRIB), Palermo, Italy
| |
Collapse
|
10
|
A biomimetic natural sciences approach to understanding the mechanisms of ageing in burden of lifestyle diseases. Clin Sci (Lond) 2021; 135:1251-1272. [PMID: 34037207 DOI: 10.1042/cs20201452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 12/12/2022]
Abstract
The worldwide landscape of an ageing population and age-related disease brings with it huge socio-economic and public healthcare concerns across nations. Correspondingly, monumental human and financial resources have been invested in biomedical research, with a mission to decode the mechanisms of ageing and how these contribute to age-related disease. Multiple hallmarks of ageing have been identified that are common across taxa, highlighting their fundamental importance. These include dysregulated mitochondrial metabolism and telomeres biology, epigenetic modifications, cell-matrix interactions, proteostasis, dysregulated nutrient sensing, stem cell exhaustion, inflammageing and immuno-senescence. While our understanding of the molecular basis of ageing is improving, it remains a complex and multifactorial process that remains to be fully understood. A key aspect of the shortfall in our understanding of the ageing process lies in translating data from standard animal models to humans. Consequently, we suggest that a 'biomimetic' and comparative approach, integrating knowledge from species in the wild, as opposed to inbred genetically homogenous laboratory animals, can provide powerful insights into human ageing processes. Here we discuss some particularities and comparative patterns among several species from the animal kingdom, endowed with longevity or short lifespans and unique metabolic profiles that could be potentially exploited to the understanding of ageing and age-related diseases. Based upon lessons from nature, we also highlight several avenues for renewed focus in the pathophysiology of ageing and age-related disease (i.e. diet-microbiome-health axis, oxidative protein damage, adaptive homoeostasis and planetary health). We propose that a biomimetic alliance with collaborative research from different disciplines can improve our understanding of ageing and age-related diseases with long-term sustainable utility.
Collapse
|
11
|
Stenvinkel P, Avesani CM, Gordon LJ, Schalling M, Shiels PG. Biomimetics provides lessons from nature for contemporary ways to improve human health. J Clin Transl Sci 2021; 5:e128. [PMID: 34367673 PMCID: PMC8327543 DOI: 10.1017/cts.2021.790] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 02/08/2023] Open
Abstract
Homo sapiens is currently living in serious disharmony with the rest of the natural world. For our species to survive, and for our well-being, we must gather knowledge from multiple perspectives and actively engage in studies of planetary health. The enormous diversity of species, one of the most striking aspects of life on our planet, provides a source of solutions that have been developed through evolution by natural selection by animals living in extreme environments. The food system is central to finding solutions; our current global eating patterns have a negative impact on human health, driven climate change and loss of biodiversity. We propose that the use of solutions derived from nature, an approach termed biomimetics, could mitigate the effects of a changing climate on planetary health as well as human health. For example, activation of the transcription factor Nrf2 may play a role in protecting animals living in extreme environments, or animals exposed to heat stress, pollution and pesticides. In order to meet these challenges, we call for the creation of novel interdisciplinary planetary health research teams.
Collapse
Affiliation(s)
- Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, Stockholm, Sweden
| | - Carla M. Avesani
- Division of Renal Medicine, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, Stockholm, Sweden
| | - Line J. Gordon
- Stockholm Resilience Centre Stockholm University, Stockholm, Sweden
| | - Martin Schalling
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Paul G. Shiels
- Institute of Cancer Sciences, Wolfson Wohl Translational Research Centre, University of Glasgow, Bearsden, Glasgow, UK
| |
Collapse
|
12
|
Masullo T, Biondo G, Natale MD, Tagliavia M, Bennici CD, Musco M, Ragusa MA, Costa S, Cuttitta A, Nicosia A. Gene Expression Changes after Parental Exposure to Metals in the Sea Urchin Affect Timing of Genetic Programme of Embryo Development. BIOLOGY 2021; 10:biology10020103. [PMID: 33535713 PMCID: PMC7912929 DOI: 10.3390/biology10020103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/20/2021] [Accepted: 01/30/2021] [Indexed: 12/14/2022]
Abstract
It is widely accepted that phenotypic traits can be modulated at the epigenetic level so that some conditions can affect the progeny of exposed individuals. To assess if the exposure of adult animals could result in effects on the offspring, the Mediterranean sea urchin and its well-characterized gene regulatory networks (GRNs) was chosen as a model. Adult animals were exposed to known concentrations of zinc and cadmium (both individually and in combination) for 10 days, and the resulting embryos were followed during the development. The oxidative stress occurring in parental gonads, embryo phenotypes and mortality, and the expression level of a set of selected genes, including members of the skeletogenic and endodermal GRNs, were evaluated. Increased oxidative stress at F0, high rates of developmental aberration with impaired gastrulation, in association to deregulation of genes involved in skeletogenesis (dri, hex, sm50, p16, p19, msp130), endodermal specification (foxa, hox11/13b, wnt8) and epigenetic regulation (kat2A, hdac1, ehmt2, phf8 and UBE2a) occurred either at 24 or 48 hpf. Results strongly indicate that exposure to environmental pollutants can affect not only directly challenged animals but also their progeny (at least F1), influencing optimal timing of genetic programme of embryo development, resulting in an overall impairment of developmental success.
Collapse
Affiliation(s)
- Tiziana Masullo
- Institute for Studies on the Mediterranean-National Research Council (ISMED-CNR), Detached Unit of Palermo, Via Filippo Parlatore 65, 90145 Palermo, Italy; (T.M.); (M.D.N.); (C.D.B.); (M.M.)
| | - Girolama Biondo
- Institute for Anthropic Impacts and Sustainability in Marine Environment-National Research Council (IAS-CNR), Detached Unit of Capo Granitola, Via del mare 3, 91021 Campobello di Mazara, Italy;
| | - Marilena Di Natale
- Institute for Studies on the Mediterranean-National Research Council (ISMED-CNR), Detached Unit of Palermo, Via Filippo Parlatore 65, 90145 Palermo, Italy; (T.M.); (M.D.N.); (C.D.B.); (M.M.)
- Department of Earth and Marine Science (DiSTeM), University of Palermo, Via Archirafi 20, 90123 Palermo, Italy
| | - Marcello Tagliavia
- Institute for Biomedical Research and Innovation-National Research Council-(IRIB-CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy;
| | - Carmelo Daniele Bennici
- Institute for Studies on the Mediterranean-National Research Council (ISMED-CNR), Detached Unit of Palermo, Via Filippo Parlatore 65, 90145 Palermo, Italy; (T.M.); (M.D.N.); (C.D.B.); (M.M.)
| | - Marianna Musco
- Institute for Studies on the Mediterranean-National Research Council (ISMED-CNR), Detached Unit of Palermo, Via Filippo Parlatore 65, 90145 Palermo, Italy; (T.M.); (M.D.N.); (C.D.B.); (M.M.)
| | - Maria Antonietta Ragusa
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Ed. 16, 90128 Palermo, Italy; (M.A.R.); (S.C.)
| | - Salvatore Costa
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Ed. 16, 90128 Palermo, Italy; (M.A.R.); (S.C.)
| | - Angela Cuttitta
- Institute for Studies on the Mediterranean-National Research Council (ISMED-CNR), Detached Unit of Palermo, Via Filippo Parlatore 65, 90145 Palermo, Italy; (T.M.); (M.D.N.); (C.D.B.); (M.M.)
- Correspondence: (A.C.); (A.N.)
| | - Aldo Nicosia
- Institute for Biomedical Research and Innovation-National Research Council-(IRIB-CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy;
- Correspondence: (A.C.); (A.N.)
| |
Collapse
|
13
|
Ali A, Khan H, Bahadar R, Riaz A, Asad MHHB. The impact of airborne pollution and exposure to solar ultraviolet radiation on skin: mechanistic and physiological insight. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:28730-28736. [PMID: 32462622 DOI: 10.1007/s11356-020-09280-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
For several decades air pollution has been recognized to hit drastically the skin of human body. Air pollutants predominantly accountable for aging, oxidative damage, and inflammatory allergic reactions led to psoriasis, dermatitis, acne, and skin cancer owing to the impaired functions of DNA, proteins, and lipid biomolecules. Elevated air pollution and its detrimental effects along with variations in physiological parameters of the skin are verily the scaffold for anti-pollution assertions and could be recognized as markers. The present article encompasses the salient features of air pollution and UV radiations besides dreadful effects on human skin physiological parameters and some anti-pollution approaches.
Collapse
Affiliation(s)
- Atif Ali
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Hira Khan
- Department of Pharmacy, Abbottabad University of Science and Technology, Havelian, Abbottabad, 22500, Pakistan.
| | - Raheem Bahadar
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Asma Riaz
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Muhammad Hassham Hassan Bin Asad
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan.
- Institute of Fundamental Medicine and Biology, Department of Genetics, Kazan Federal University, Tatarstan, 428001, Russia.
| |
Collapse
|
14
|
Alijagic A, Benada O, Kofroňová O, Cigna D, Pinsino A. Sea Urchin Extracellular Proteins Design a Complex Protein Corona on Titanium Dioxide Nanoparticle Surface Influencing Immune Cell Behavior. Front Immunol 2019; 10:2261. [PMID: 31616433 PMCID: PMC6763604 DOI: 10.3389/fimmu.2019.02261] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/06/2019] [Indexed: 01/07/2023] Open
Abstract
Extensive exploitation of titanium dioxide nanoparticles (TiO2NPs) augments rapid release into the marine environment. When in contact with the body fluids of marine invertebrates, TiO2NPs undergo a transformation and adhere various organic molecules that shape a complex protein corona prior to contacting cells and tissues. To elucidate the potential extracellular signals that may be involved in the particle recognition by immune cells of the sea urchin Paracentrotus lividus, we investigated the behavior of TiO2NPs in contact with extracellular proteins in vitro. Our findings indicate that TiO2NPs are able to interact with sea urchin proteins in both cell-free and cell-conditioned media. The two-dimensional proteome analysis of the protein corona bound to TiO2NP revealed that negatively charged proteins bound preferentially to the particles. The main constituents shaping the sea urchin cell-conditioned TiO2NP protein corona were proteins involved in cellular adhesion (Pl-toposome, Pl-galectin-8, Pl-nectin) and cytoskeletal organization (actin and tubulin). Immune cells (phagocytes) aggregated TiO2NPs on the outer cell surface and within well-organized vesicles without eliciting harmful effects on the biological activities of the cells. Cells showed an active metabolism, no oxidative stress or caspase activation. These results provide a new level of understanding of the extracellular proteins involved in the immune-TiO2NP recognition and interaction in vitro, confirming that primary immune cell cultures from P. lividus can be an optional model for swift and efficient immune-toxicological investigations.
Collapse
Affiliation(s)
- Andi Alijagic
- Istituto per la Ricerca e l'Innovazione Biomedica (IRIB), Consiglio Nazionale delle Ricerche, Palermo, Italy
| | - Oldřich Benada
- Institute of Microbiology of The Czech Academy of Sciences, Prague, Czechia
| | - Olga Kofroňová
- Institute of Microbiology of The Czech Academy of Sciences, Prague, Czechia
| | - Diego Cigna
- Istituto per la Ricerca e l'Innovazione Biomedica (IRIB), Consiglio Nazionale delle Ricerche, Palermo, Italy
| | - Annalisa Pinsino
- Istituto per la Ricerca e l'Innovazione Biomedica (IRIB), Consiglio Nazionale delle Ricerche, Palermo, Italy
| |
Collapse
|
15
|
Migliaccio O, Pinsino A, Maffioli E, Smith AM, Agnisola C, Matranga V, Nonnis S, Tedeschi G, Byrne M, Gambi MC, Palumbo A. Living in future ocean acidification, physiological adaptive responses of the immune system of sea urchins resident at a CO 2 vent system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 672:938-950. [PMID: 30981169 DOI: 10.1016/j.scitotenv.2019.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 02/20/2019] [Accepted: 04/01/2019] [Indexed: 06/09/2023]
Abstract
The effects of ocean acidification, a major anthropogenic impact on marine life, have been mainly investigated in laboratory/mesocosm experiments. We used the CO2 vents at Ischia as a natural laboratory to study the long-term effects of ocean acidification on the sea urchin Paracentrotus lividus population resident in low-pH (7.8 ± 0.2) compared to that at two control sites (pH 8.02 ± 0.00; 8.02 ± 0.01). The novelty of the present study is the analysis of the sea urchin immune cells, the sentinels of environmental stress responses, by a wide-ranging approach, including cell morphology, biochemistry and proteomics. Immune cell proteomics showed that 311 proteins were differentially expressed in urchins across sites with a general shift towards antioxidant processes in the vent urchins. The vent urchin immune cells showed higher levels of total antioxidant capacity, up-regulation of phagosome and microsomal proteins, enzymes of ammonium metabolism, amino-acid degradation, and modulation of carbon metabolism proteins. Lipid-hydroperoxides and nitric oxide levels were not different in urchins from the different sites. No differences in the coelomic fluid pH, immune cell composition, animal respiration, nitrogen excretion and skeletal mineralogy were observed. Our results reveal the phenotypic plasticity of the immune system of sea urchins adapted to life at vent site, under conditions commensurate with near-future ocean acidification projections.
Collapse
Affiliation(s)
- Oriana Migliaccio
- Stazione Zoologica Anton Dohrn, Department of Biology and Evolution of Marine Organisms, Naples, Italy
| | - Annalisa Pinsino
- Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Consiglio Nazionale delle Ricerche, Palermo, Italy
| | - Elisa Maffioli
- DIMEVET - Section of Biochemistry, University of Milan, Milan, Italy
| | - Abigail M Smith
- Department of Marine Science, University of Otago, Dunedin, New Zealand
| | - Claudio Agnisola
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Valeria Matranga
- Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Consiglio Nazionale delle Ricerche, Palermo, Italy
| | - Simona Nonnis
- DIMEVET - Section of Biochemistry, University of Milan, Milan, Italy
| | | | - Maria Byrne
- School of Medical and Science and School of Life and Environmental Science, University of Sydney, Sydney, Australia
| | - Maria Cristina Gambi
- Stazione Zoologica Anton Dohrn, Department of Integrative Marine Ecology (Villa Dohrn-Benthic Ecology Center), Ischia, Naples, Italy
| | - Anna Palumbo
- Stazione Zoologica Anton Dohrn, Department of Biology and Evolution of Marine Organisms, Naples, Italy.
| |
Collapse
|
16
|
Ebert TA. Negative senescence in sea urchins. Exp Gerontol 2019; 122:92-98. [PMID: 31063808 DOI: 10.1016/j.exger.2019.04.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/19/2019] [Accepted: 04/27/2019] [Indexed: 10/26/2022]
Abstract
Negative senescence, a decrease in size-specific mortality of large individuals, is shown by sea urchins. Sea urchins have indeterminate growth and size-specific gamete production increases throughout life. These characteristics are present in short-lived species, Lytechinus pictus and L. variegatus as well as ones that are long-lived: Mesocentrotus franciscanus, Strongylocentrotus purpuratus, Echinometra mathaei, and Stomopneustes variolaris. Both short and long-lived species have cellular mechanisms that counter senescence. Many groups of organisms have species that are short-lived as well species with individuals that may attain ages of many hundreds of years. Generally it is assumed that short-lived species show senescence but results for sea urchins indicate that lack senescence may be present even when mortality is high.
Collapse
Affiliation(s)
- Thomas A Ebert
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
17
|
Buoncervello M, Maccari S, Ascione B, Gambardella L, Marconi M, Spada M, Macchia D, Stati T, Patrizio M, Malorni W, Matarrese P, Marano G, Gabriele L. Inflammatory cytokines associated with cancer growth induce mitochondria and cytoskeleton alterations in cardiomyocytes. J Cell Physiol 2019; 234:20453-20468. [PMID: 30982981 PMCID: PMC6767566 DOI: 10.1002/jcp.28647] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 03/19/2019] [Accepted: 03/19/2019] [Indexed: 12/13/2022]
Abstract
Cardiac dysfunction is often observed in patients with cancer also representing a serious problem limiting chemotherapeutic intervention and even patient survival. In view of the recently established role of the immune system in the control of cancer growth, the present work has been undertaken to investigate the effects of a panel of the most important inflammatory cytokines on the integrity and function of mitochondria, as well as of the cytoskeleton, two key elements in the functioning of cardiomyocytes. Either mitochondria features or actomyosin cytoskeleton organization of in vitro‐cultured cardiomyocytes treated with different inflammatory cytokines were analyzed. In addition, to investigate the interplay between tumor growth and cardiac function in an in vivo system, immunocompetent female mice were inoculated with cancer cells and treated with the chemotherapeutic drug doxorubicin at a dosing schedule able to suppress tumor growth without inducing cardiac alterations. Analyses carried out in cardiomyocytes treated with the inflammatory cytokines, such as tumor necrosis factor α (TNF‐α), interferon γ (IFN‐γ), interleukin 6 (IL‐6), IL‐8, and IL‐1β revealed severe phenotypic changes, for example, of contractile cytoskeletal elements, mitochondrial membrane potential, mitochondrial reactive oxygen species production and mitochondria network organization. Accordingly, in immunocompetent mice, the tumor growth was accompanied by increased levels of the inflammatory cytokines TNF‐α, IFN‐γ, IL‐6, and IL‐8, either in serum or in the heart tissue, together with a significant reduction of ventricular systolic function. The alterations of mitochondria and of microfilament system of cardiomyocytes, due to the systemic inflammation associated with cancer growth, could be responsible for remote cardiac injury and impairment of systolic function observed in vivo.
Collapse
Affiliation(s)
- Maria Buoncervello
- Research Coordination and Support Service, Istituto Superiore di Sanità, Rome, Italy
| | - Sonia Maccari
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Barbara Ascione
- Center for Gender-Specific Medicine, Oncology Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Lucrezia Gambardella
- Center for Gender-Specific Medicine, Oncology Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Matteo Marconi
- Center for Gender-Specific Medicine, Oncology Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Massimo Spada
- National Centre of Animal Research and Welfare, Istituto Superiore di Sanità, Rome, Italy
| | - Daniele Macchia
- National Centre of Animal Research and Welfare, Istituto Superiore di Sanità, Rome, Italy
| | - Tonino Stati
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Mario Patrizio
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Walter Malorni
- Center for Gender-Specific Medicine, Oncology Unit, Istituto Superiore di Sanità, Rome, Italy.,Department of Biology, University of Tor Vergata, Rome, Italy
| | - Paola Matarrese
- Center for Gender-Specific Medicine, Oncology Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Giuseppe Marano
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Lucia Gabriele
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
18
|
Giannetto A, Cappello T, Oliva S, Parrino V, De Marco G, Fasulo S, Mauceri A, Maisano M. Copper oxide nanoparticles induce the transcriptional modulation of oxidative stress-related genes in Arbacia lixula embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 201:187-197. [PMID: 29933146 DOI: 10.1016/j.aquatox.2018.06.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/25/2018] [Accepted: 06/12/2018] [Indexed: 06/08/2023]
Abstract
Copper oxide nanoparticles (CuO NPs) are widely used in various industrial applications, i.e. semiconductor devices, batteries, solar energy converter, gas sensor, microelectronics, heat transfer fluids, and have been recently recognized as emerging pollutants of increasing concern for human and marine environmental health. Therefore, the toxicity of CuO NPs needs to be thoroughly understood. In this study, we evaluated the potential role of oxidative stress in CuO NP toxicity by exploring the molecular response of Arbacia lixula embryos to three CuO NP concentrations (0.7, 10, 20 ppb) by investigating the transcriptional patterns of oxidative stress-related genes (catalase and superoxide dismutase) and metallothionein, here cloned and characterized for the first time. Time- and concentration-dependent changes in gene expression were detected in A. lixula embryos exposed to CuO NPs, up to pluteus stage (72 h post-fertilization, hpf), indicating that oxidative stress is one of the toxicity mechanisms for CuO NPs. These findings provide new insights into the comprehension of the molecular mechanisms underlying copper nanoparticle toxicity in A. lixula sea urchin and give new tools for monitoring of aquatic areas, thus corroborating the suitability of this embryotoxicity assay for future evaluation of impacted sites.
Collapse
Affiliation(s)
- Alessia Giannetto
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres n. 31, 98166 Messina, Italy
| | - Tiziana Cappello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres n. 31, 98166 Messina, Italy
| | - Sabrina Oliva
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres n. 31, 98166 Messina, Italy
| | - Vincenzo Parrino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres n. 31, 98166 Messina, Italy
| | - Giuseppe De Marco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres n. 31, 98166 Messina, Italy
| | - Salvatore Fasulo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres n. 31, 98166 Messina, Italy
| | - Angela Mauceri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres n. 31, 98166 Messina, Italy
| | - Maria Maisano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres n. 31, 98166 Messina, Italy.
| |
Collapse
|
19
|
Detection of peroxiredoxin-like protein in Antarctic sea urchin (Sterechinus neumayeri) under heat stress and induced with pathogen-associated molecular pattern from Vibrio anguillarum. Polar Biol 2018. [DOI: 10.1007/s00300-018-2346-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
20
|
Pomatto LCD, Sun PY, Davies KJA. To adapt or not to adapt: Consequences of declining Adaptive Homeostasis and Proteostasis with age. Mech Ageing Dev 2018; 177:80-87. [PMID: 29778759 DOI: 10.1016/j.mad.2018.05.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 12/17/2022]
Abstract
Many consequences of ageing can be broadly attributed to the inability to maintain homeostasis. Multiple markers of ageing have been identified, including loss of protein homeostasis, increased inflammation, and declining metabolism. Although much effort has been focused on characterization of the ageing phenotype, much less is understood about the underlying causes of ageing. To address this gap, we outline the age-associated consequences of dysregulation of 'Adaptive Homeostasis' and its proposed contributing role as an accelerator of the ageing phenotype. Adaptive Homeostasis is a phenomenon, shared across cells and tissues of both simple and complex organisms, that enables the transient plastic expansion or contraction of the homeostatic range to modulate stress-protective systems (such as the Proteasome, the Immunoproteasome, and the Lon protease) in response to varying internal and external environments. The age-related rise in the baseline of stress-protective systems and the inability to increase beyond a physiological ceiling is likely a contributor to the reduction and loss of Adaptive Homeostasis. We propose that dysregulation of Adaptive Homeostasis in the final third of lifespan is a significant factor in the ageing process, while successful maintenance of Adaptive Homeostasis below a physiological ceiling results in extended longevity.
Collapse
Affiliation(s)
- Laura C D Pomatto
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, the University of Southern California, Los Angeles, CA, 00089-0191, USA
| | - Patrick Y Sun
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, the University of Southern California, Los Angeles, CA, 00089-0191, USA
| | - Kelvin J A Davies
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, the University of Southern California, Los Angeles, CA, 00089-0191, USA; Molecular & Computational Biology Program of the Department of Biological Sciences, Dornsife College of Letters, Arts, and sciences, the University of Southern California, Los Angeles, CA, 90089-0191, USA; Department of Biochemistry & Molecular Medicine, Keck School of Medicine of USC, the University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
21
|
Abstract
In the present scenario, consumers are searching for personal care products that supply multiple benefits with minimal efforts. The outcome has been the introduction of nanotechnology-based cosmetic products that are safe to use and results driven. Some topical cosmetics can act efficaciously when they reach their target sites present in the deeper layers of the skin. The main problem with delivering active ingredients across the skin is the barrier function of the skin. Therefore, to get the maximum benefit from cosmetic products and to overcome the problems associated with their skin penetration, scientists are investigating various strategies to overcome these barrier properties. Vesicular carriers have been claimed to improve the topical delivery of active ingredients. This review offers a brief overview of current approaches in the research and development of vesicular carriers to improve the delivery and performance of active ingredients present in the cosmetics.
Collapse
Affiliation(s)
- Alka Lohani
- a IFTM University , School of Pharmaceutical Sciences , Delhi Road, Moradabad, Moradabad , India
| | - Anurag Verma
- a IFTM University , School of Pharmaceutical Sciences , Delhi Road, Moradabad, Moradabad , India
| |
Collapse
|
22
|
Zhang Y, Huang X, Zhao XY, Hu YJ, Sun HY, Kong WJ. Role of the Ubiquitin C-Terminal Hydrolase L1-Modulated Ubiquitin Proteasome System in Auditory Cortex Senescence. ORL J Otorhinolaryngol Relat Spec 2017; 79:153-163. [PMID: 28407635 DOI: 10.1159/000468944] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 03/06/2017] [Indexed: 12/23/2022]
Abstract
BACKGROUND/AIMS According to recent studies, central auditory impairments are closely related to neurodegenerative diseases. However, the mechanism of central presbycusis remains unclear. Ubiquitin C-terminal hydrolase L1 (UCHL1) is important in maintaining proteasomal activity; however, the detailed mechanism has not yet been fully elucidated. This study aims to investigate the molecular alterations involved in UCHL1 regulation during auditory cortex aging. METHODS D-Galactose (D-gal) induces oxidative stress and senescence in the auditory cortex, as reported in our previous studies. Primary auditory cortex cells were treated with D-gal for 72 h or 5 days. The proteins related to the ubiquitin proteasome system (UPS) and proteasomal activities were evaluated. UCHL1 was overexpressed, and the effects of UCHL1 on the UPS and proteasomal activity were analyzed. RESULTS Proteasomal activity was elevated at 72 h and decreased at 5 days in D-gal-treated primary auditory cortex cells. We also found that overexpression of UCHL1 increased the UPS-related proteins UBE1, PSMA7, ubiquitinated proteins, and monoubiquitin, and proteasomal activity. CONCLUSION The results suggest that UCHL1 may modify the aging process in the auditory cortex by regulating UPS- related proteins.
Collapse
Affiliation(s)
- Ya Zhang
- Department of Otolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | |
Collapse
|
23
|
Jiang J, Zhou Z, Dong Y, Gao S, Sun H, Chen Z, Yang A, Su H. Comparative analysis of immunocompetence between females and males in the sea cucumber Apostichopus japonicus. FISH & SHELLFISH IMMUNOLOGY 2017; 63:438-443. [PMID: 28238861 DOI: 10.1016/j.fsi.2017.02.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 02/11/2017] [Accepted: 02/21/2017] [Indexed: 06/06/2023]
Abstract
In order to preliminarily understand the immune difference between females and males in the sea cucumber Apostichopus japonicus, the activities assay of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), phenoloxidase (PO), acid phosphatase (ACP) and alkaline phosphatase (ALP) with biochemical methods, the detection of PO isozymes with native-PAGE and catechol staining, and the test of antibacterial activities with bacterial growth curve determination method were performed in this study using cell-free coelomic fluid (CCF) and coelomocyte lysate supernatant (CLS) from females and males as the samples. The PO activities were not detected in the CLS and showed no significant difference between the CCF from females and males. However, totally five PO isozyme bands were detected in the CLS of females while only four were detected in the CLS of males after zymogram analysis. These results implied that the PO isozymes in the coelomocytes of viripotent A. japonicus were inactive under natural condition and may be activated by some certain treatments during native-PAGE, and PO might play different immune and physiological roles between females and males. In addition, the activities of SOD, CAT, POD and ALP in the CCF and the activities of CAT, POD, ACP and ALP in the CLS from males were all significantly higher than those from females. The results collectively suggested that in viripotent A. japonicus, the gender had a remarkable effect on the immunity, and the immunocompetence of males might have an advantage over that of females. Furthermore, the activities of all determined enzymes except PO and the number of detected PO isozymes showed higher values in CLS than in CCF, implying that in viripotent A. japonicus, the coelomocytes might take more immune responsibility in comparison with CCF.
Collapse
Affiliation(s)
- Jingwei Jiang
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Zunchun Zhou
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China.
| | - Ying Dong
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Shan Gao
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Hongjuan Sun
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Zhong Chen
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Aifu Yang
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Hesheng Su
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| |
Collapse
|
24
|
Bodnar AG, Coffman JA. Maintenance of somatic tissue regeneration with age in short- and long-lived species of sea urchins. Aging Cell 2016; 15:778-87. [PMID: 27095483 PMCID: PMC4933669 DOI: 10.1111/acel.12487] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2016] [Indexed: 01/08/2023] Open
Abstract
Aging in many animals is characterized by a failure to maintain tissue homeostasis and the loss of regenerative capacity. In this study, the ability to maintain tissue homeostasis and regenerative potential was investigated in sea urchins, a novel model to study longevity and negligible senescence. Sea urchins grow indeterminately, regenerate damaged appendages and reproduce throughout their lifespan and yet different species are reported to have very different life expectancies (ranging from 4 to more than 100 years). Quantitative analyses of cell proliferation and apoptosis indicated a low level of cell turnover in tissues of young and old sea urchins of species with different lifespans (Lytechinus variegatus, Strongylocentrotus purpuratus and Mesocentrotus franciscanus). The ability to regenerate damaged tissue was maintained with age as assessed by the regrowth of amputated spines and tube feet (motor and sensory appendages). Expression of genes involved in cell proliferation (pcna), telomere maintenance (tert) and multipotency (seawi and vasa) was maintained with age in somatic tissues. Immunolocalization of the Vasa protein to areas of the tube feet, spines, radial nerve, esophagus and a sub-population of circulating coelomocytes suggests the presence of multipotent cells that may play a role in normal tissue homeostasis and the regenerative potential of external appendages. The results indicate that regenerative potential was maintained with age regardless of lifespan, contrary to the expectation that shorter lived species would invest less in maintenance and repair.
Collapse
Affiliation(s)
- Andrea G. Bodnar
- Bermuda Institute of Ocean Sciences 17 Biological Station St. George's GE01 Bermuda
| | - James A. Coffman
- MDI Biological Laboratory 159 Old Bar Harbor Road Salisbury Cove ME 04672 USA
| |
Collapse
|
25
|
Zhu CJ, Peng Y, Tong ZH, Lu LY, Cui YH, Yu HQ. Hormetic effect and mechanism of imidazolium-based ionic liquids on the nematode Caenorhabditis elegans. CHEMOSPHERE 2016; 157:65-70. [PMID: 27209554 DOI: 10.1016/j.chemosphere.2016.05.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 04/19/2016] [Accepted: 05/04/2016] [Indexed: 06/05/2023]
Abstract
In the present study, we used Caenorhabditis elegans assay system to investigate in hormetic effects of imidazolium-based bromide Ionic Liquids (ILs) and explored the possible underlying mechanism. Firstly, C. elegans was treated with ILs with different alkyl chain lengths at different concentrations. We found that exposure to ILs at 0.01 mg/L extended the mean lifespan of C. elegans and the ILs with longer alkyl chain showed more obvious effects. To investigate the possible mechanism, the nematodes were exposed to the three ILs at 0.01 mg/L for 2, 5, 7, 9 and 11 days. The levels of reactive oxygen species (ROS) in C. elegans increased significantly when treated for 2 days and then declined gradually compared to those of respective controls as time went on. After exposure for 11 days, the ROS levels and liposuscin accumulation were significantly lower in the treated groups than those of control group. Meanwhile, the expression of aging-related genes sod-5 and daf-16 were both massively up-regulated for the three ILs examined. Our results show that low concentration of ILs exert hormetic effect on C. elegans. ROS generation and expression of aging-related genes may play important roles in the IL-induced hormetic effect on C. elegans.
Collapse
Affiliation(s)
- Chun-Jie Zhu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei, 230026, China
| | - Yong Peng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei, 230026, China
| | - Zhong-Hua Tong
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei, 230026, China.
| | - Li-Ya Lu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei, 230026, China
| | - Yin-Hua Cui
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei, 230026, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei, 230026, China
| |
Collapse
|
26
|
Boroda AV, Kipryushina YO, Yakovlev KV, Odintsova NA. The contribution of apoptosis and necrosis in freezing injury of sea urchin embryonic cells. Cryobiology 2016; 73:7-14. [PMID: 27364314 DOI: 10.1016/j.cryobiol.2016.06.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/20/2016] [Accepted: 06/25/2016] [Indexed: 11/26/2022]
Abstract
Sea urchins have recently been reported to be a promising tool for investigations of oxidative stress, UV light perturbations and senescence. However, few available data describe the pathway of cell death that occurs in sea urchin embryonic cells after cryopreservation. Our study is focused on the morphological and functional alterations that occur in cells of these animals during the induction of different cell death pathways in response to cold injury. To estimate the effect of cryopreservation on sea urchin cell cultures and identify the involved cell death pathways, we analyzed cell viability (via trypan blue exclusion test, MTT assay and DAPI staining), caspase activity (via flow cytometry and spectrophotometry), the level of apoptosis (via annexin V-FITC staining), and cell ultrastructure alterations (via transmission electron microscopy). Using general caspase detection, we found that the level of caspase activity was low in unfrozen control cells, whereas the number of apoptotic cells with activated caspases rose after freezing-thawing depending on cryoprotectants used, also as the number of dead cells and cells in a late apoptosis. The data using annexin V-binding assay revealed a very high apoptosis level in all tested samples, even in unfrozen cells (about 66%). Thus, annexin V assay appears to be unsuitable for sea urchin embryonic cells. Typical necrotic cells with damaged mitochondria were not detected after freezing in sea urchin cell cultures. Our results assume that physical cell disruption but not freezing-induced apoptosis or necrosis is the predominant reason of cell death in sea urchin cultures after freezing-thawing with any cryoprotectant combination.
Collapse
Affiliation(s)
- Andrey V Boroda
- Laboratory of Cytotechnology, A.V. Zhirmunsky Institute of Marine Biology, The Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, 690041, Russia
| | - Yulia O Kipryushina
- Laboratory of Cytotechnology, A.V. Zhirmunsky Institute of Marine Biology, The Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, 690041, Russia
| | - Konstantin V Yakovlev
- Laboratory of Cytotechnology, A.V. Zhirmunsky Institute of Marine Biology, The Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, 690041, Russia
| | - Nelly A Odintsova
- Laboratory of Cytotechnology, A.V. Zhirmunsky Institute of Marine Biology, The Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, 690041, Russia.
| |
Collapse
|
27
|
Aghaei S, Nilforoushzadeh MA, Aghaei M. The role of peroxisome proliferator-activated receptor-coactivator-1 gene in skin aging. JOURNAL OF RESEARCH IN MEDICAL SCIENCES 2016; 21:36. [PMID: 27904582 PMCID: PMC5122240 DOI: 10.4103/1735-1995.183999] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 12/23/2015] [Accepted: 03/31/2016] [Indexed: 01/09/2023]
Abstract
Skin aging is a continuous process that exhibits fine and deep wrinkles, thin and transparent skin, loss of underlying fat, dry skin and itch, following decreased collagen and elastin synthesis. Both extrinsic and intrinsic agents are considered in the pathogenesis on skin aging. Extrinsic factors such as sun exposure, windy and dry weather, nutrition, and lifestyle may induce premature aging, toxic-free radicals, and reactive oxygen species due to decreasing normal function of mitochondria which play the major intrinsic factors in premature skin aging. One of the major genetic factors in mitochondrial function is peroxisome proliferator-activated receptor-coactivator-1 (PGC-1) gene. This factor could delay skin aging by increasing the mitochondrial biogenesis and replication and oxidative phosphorylation and so may induce free radical scavenging. This review is focused on intrinsic skin aging and the role of PGC-1 protein in decreasing effect of aging causes.
Collapse
Affiliation(s)
- Shahrzad Aghaei
- Department of Genetics, Shahrekord University, Shahrekord, Iran
| | | | - Maryam Aghaei
- Skin Disease and Leishmaniasis Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
28
|
Wu Z, Zhang M, Xie M, Dai Z, Wang X, Hu B, Ye H, Zeng X. Extraction, characterization and antioxidant activity of mycelial polysaccharides from Paecilomyces hepiali HN1. Carbohydr Polym 2015; 137:541-548. [PMID: 26686161 DOI: 10.1016/j.carbpol.2015.11.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/04/2015] [Accepted: 11/05/2015] [Indexed: 10/22/2022]
Abstract
Optimization of extraction, characterization and antioxidant activity of mycelial polysaccharides from Paecilomyces hepiali HN1 (PHMPs) were investigated. As results, the optimal parameters for extraction of PHMPs were obtained by a Box-Behnken design as follows: extraction temperature 92 °C, extracting time 190 min and ratio of water to material 43 mL/g. The analysis of monosaccharide composition by high performance liquid chromatography (HPLC) revealed that PHMPs was composed of mannose, ribose, rhamnose, glucuronic acid, galacturonic acid, glucose, galactose, xylose and arabinose in molar ratio of 46.07:0.59:2.25:1.29:1.42:18.82:26.17:1.13:2.26, respectively. Furthermore, it was demonstrated that PHMPs had a significant protective effect against oxidative stress induced by d-galactose in mice, as evident by higher activities of superoxide dismutase, catalase, glutathione peroxidase and level of total antioxidant capacity, as well as lower levels of malondialdehyde in serums and livers compared to the d-galactose-treated group. These results suggested that PHMPs could be explored as promising natural antioxidant.
Collapse
Affiliation(s)
- Zhongwei Wu
- College of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, PR China; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China; Collaborative Innovation Center of Modern Biological Breeding, Xinxiang 453003, Henan Province, PR China
| | - Mingxia Zhang
- College of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, PR China; Collaborative Innovation Center of Modern Biological Breeding, Xinxiang 453003, Henan Province, PR China
| | - Minhao Xie
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zhuqing Dai
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiaoqing Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Bing Hu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Hong Ye
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| |
Collapse
|
29
|
Pinsino A, Russo R, Bonaventura R, Brunelli A, Marcomini A, Matranga V. Titanium dioxide nanoparticles stimulate sea urchin immune cell phagocytic activity involving TLR/p38 MAPK-mediated signalling pathway. Sci Rep 2015; 5:14492. [PMID: 26412401 PMCID: PMC4585977 DOI: 10.1038/srep14492] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 08/19/2015] [Indexed: 02/04/2023] Open
Abstract
Titanium dioxide nanoparticles (TiO2NPs) are one of the most widespread-engineered particles in use for drug delivery, cosmetics, and electronics. However, TiO2NP safety is still an open issue, even for ethical reasons. In this work, we investigated the sea urchin Paracentrotus lividus immune cell model as a proxy to humans, to elucidate a potential pathway that can be involved in the persistent TiO2NP-immune cell interaction in vivo. Morphology, phagocytic ability, changes in activation/inactivation of a few mitogen-activated protein kinases (p38 MAPK, ERK), variations of other key proteins triggering immune response (Toll-like receptor 4-like, Heat shock protein 70, Interleukin-6) and modifications in the expression of related immune response genes were investigated. Our findings indicate that TiO2NPs influence the signal transduction downstream targets of p38 MAPK without eliciting an inflammatory response or other harmful effects on biological functions. We strongly recommend sea urchin immune cells as a new powerful model for nano-safety/nano-toxicity investigations without the ethical normative issue.
Collapse
Affiliation(s)
- Annalisa Pinsino
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare “A. Monroy”, Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Roberta Russo
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare “A. Monroy”, Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Rosa Bonaventura
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare “A. Monroy”, Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Andrea Brunelli
- Dipartimento di Scienze Ambientali, Informatica e Statistica, Università Ca’ Foscari Venezia, Calle Larga S. Marta 2137, 30123 Venezia, Italy
| | - Antonio Marcomini
- Dipartimento di Scienze Ambientali, Informatica e Statistica, Università Ca’ Foscari Venezia, Calle Larga S. Marta 2137, 30123 Venezia, Italy
| | - Valeria Matranga
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare “A. Monroy”, Via Ugo La Malfa 153, 90146 Palermo, Italy
| |
Collapse
|
30
|
Reinardy HC, Bodnar AG. Profiling DNA damage and repair capacity in sea urchin larvae and coelomocytes exposed to genotoxicants. Mutagenesis 2015; 30:829-39. [PMID: 26175033 DOI: 10.1093/mutage/gev052] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The ability to protect the genome from harmful DNA damage is critical for maintaining genome stability and protecting against disease, including cancer. Many echinoderms, including sea urchins, are noted for the lack of neoplastic disease, but there are few studies investigating susceptibility to DNA damage and capacity for DNA repair in these animals. In this study, DNA damage was induced in adult sea urchin coelomocytes and larvae by exposure to a variety of genotoxicants [UV-C (0-3000 J/m(2)), hydrogen peroxide (0-10mM), bleomycin (0-300 µM) and methylmethanesulfonate (MMS, 0-30 mM)] and the capacity for repair was measured over a 24-h period of recovery. Larvae were more sensitive than coelomocytes, with higher levels of initial DNA damage (fast micromethod) for all genotoxicants except MMS and increased levels of mortality 24h following treatment for all genotoxicants. The larvae that survived were able to efficiently repair damage within 24-h recovery. The ability to repair DNA damage differed depending on treatments, but both larvae and coelomocytes were able to most efficiently repair H2O2-induced damage. Time profiles of expression of a panel of DNA repair genes (ddb1, ercc1, xpc, xrcc1, pcna, ogg1, parp1, parp2, ape, brca1, rad51, xrcc2, xrcc3, xrcc4, xrcc5, xrcc6 and gadd45), throughout the period of recovery, showed greater gene induction in coelomocytes compared with larvae, with particularly high expression of xrcc1, ercc1, parp2 and pcna. The heterogeneous response of larvae to DNA damage may reflect a strategy whereby a subset of the population is equipped to withstand acute genotoxic stress, while the ability of coelomocytes to resist and repair DNA damage confirm their significant role in protection against disease. Consideration of DNA repair capacity is critical for understanding effects of genotoxicants on organisms, in addition to shedding light on life strategies and disease susceptibility.
Collapse
Affiliation(s)
- Helena C Reinardy
- Molecular Discovery Laboratory, Bermuda Institute of Ocean Sciences, 17 Biological Station, St. George's, GE 01 Bermuda
| | - Andrea G Bodnar
- Molecular Discovery Laboratory, Bermuda Institute of Ocean Sciences, 17 Biological Station, St. George's, GE 01 Bermuda
| |
Collapse
|
31
|
Differential in vitro effects of homoarginine on oxidative stress in plasma, erythrocytes, kidney and liver of rats in the absence and in the presence α-tocopherol, ascorbic acid or L-NAME. Amino Acids 2015; 47:1931-9. [PMID: 25894889 DOI: 10.1007/s00726-015-1973-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 03/26/2015] [Indexed: 01/18/2023]
Abstract
In the present study, we evaluated the in vitro effects of homoarginine (hArg) at 1, 10 and 20 µM on thiobarbituric acid-reactive substances (TBA-RS), total sulfhydryl content and on the activity of the antioxidant enzymes catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in plasma, erythrocytes, kidney and liver of rats (60 days old). We also investigated the influence of the antioxidants (each at 1 mM) α-tocopherol and ascorbic acid, as well as of the nitric oxide synthase inhibitor N (G)-nitro-L-arginine methyl ester (L-NAME) at 1 mM, on the effects elicited by hArg on the parameters tested. In plasma, hArg at concentrations of 10 and 20 μM decreased moderately the total sulfhydryl content. At 20 µM, hArg enhanced moderately TBA-RS in the plasma. In plasma, the effects of hArg (20 µM) on TBA-RS and total thiol content were abolished by α-tocopherol, ascorbic acid and L-NAME. At all concentrations tested, hArg did not exert any effect on CAT, SOD or GSH-Px activity in the erythrocytes. In the kidney, hArg exerted effects only at 20 µM and in a different manner: TBA-RS levels increased and total thiol content and CAT activity decreased, while SOD and GSH-Px activity increased. In the renal medulla, α-tocopherol and ascorbic acid but not L-NAME abolished the effects of hArg (20 µM) on TBA-RS, while all agents inhibited the hArg-induced increase in SOD activity. In the renal cortex, α-tocopherol, ascorbic acid and L-NAME abolished the effects of hArg (20 µM) on the total sulfhydryl content and GSH-Px activity, but L-NAME did not reverse the inhibitory effects of hArg on CAT activity. In the liver, no effects of hArg were observed of all biomarkers measured. At the pathologically high concentration of 20 µM, as it may occur in plasma in hyperargininemia, hArg may enhance lipid peroxidation and thiol oxidation and inhibit CAT activity, but may increase SOD and GSH-Px activity predominantly in the kidney.
Collapse
|
32
|
Houée-Lévin C, Bobrowski K, Horakova L, Karademir B, Schöneich C, Davies MJ, Spickett CM. Exploring oxidative modifications of tyrosine: An update on mechanisms of formation, advances in analysis and biological consequences. Free Radic Res 2015; 49:347-73. [DOI: 10.3109/10715762.2015.1007968] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
33
|
Pinsino A, Matranga V. Sea urchin immune cells as sentinels of environmental stress. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 49:198-205. [PMID: 25463510 DOI: 10.1016/j.dci.2014.11.013] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 11/14/2014] [Accepted: 11/17/2014] [Indexed: 06/04/2023]
Abstract
Echinoderms, an ancient and very successful phylum of marine invertebrates, play a central role in the maintenance of ecosystem integrity and are constantly exposed to environmental pressure, including: predation, changes in temperature and pH, hypoxia, pathogens, UV radiation, metals, toxicants, and emerging pollutants like nanomaterials. The annotation of the sea urchin genome, so closely related to humans and other vertebrate genomes, revealed an unusually complex immune system, which may be the basis for why sea urchins can adapt to different marine environments and survive even in hazardous conditions. In this review, we give a brief overview of the morphological features and recognized functions of echinoderm immune cells with a focus on studies correlating stress and immunity in the sea urchin. Immune cells from adult Paracentrotus lividus, which have been introduced in the last fifteen years as sentinels of environmental stress, are valid tools to uncover basic molecular and regulatory mechanisms of immune responses, supporting their use in immunological research. Here we summarize laboratory and field studies that reveal the amenability of sea urchin immune cells for toxicological testing.
Collapse
Affiliation(s)
- Annalisa Pinsino
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "A. Monroy", Via Ugo La Malfa 153, 90146 Palermo, Italy.
| | - Valeria Matranga
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "A. Monroy", Via Ugo La Malfa 153, 90146 Palermo, Italy.
| |
Collapse
|
34
|
Bodnar AG. Cellular and molecular mechanisms of negligible senescence: insight from the sea urchin. INVERTEBR REPROD DEV 2015; 59:23-27. [PMID: 26136616 PMCID: PMC4463994 DOI: 10.1080/07924259.2014.938195] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 05/23/2014] [Indexed: 02/05/2023]
Abstract
Sea urchins exhibit a very different life history from humans and short-lived model animals and therefore provide the opportunity to gain new insight into the complex process of aging. Sea urchins grow indeterminately, regenerate damaged appendages, and reproduce throughout their lifespan. Some species show no increase in mortality rate at advanced ages. Nevertheless, different species of sea urchins have very different reported lifespans ranging from 4 to more than 100 years, thus providing a unique model to investigate the molecular, cellular, and physiological mechanisms underlying both lifespan determination and negligible senescence. Studies to date have demonstrated maintenance of telomeres, maintenance of antioxidant and proteasome enzyme activities, and little accumulation of oxidative cellular damage with age in tissues of sea urchin species with different lifespans. Gene expression studies indicate that key cellular pathways involved in energy metabolism, protein homeostasis, and tissue regeneration are maintained with age. Taken together, these studies suggest that long-term maintenance of mechanisms that sustain tissue homeostasis and regenerative capacity is essential for indeterminate growth and negligible senescence, and a better understanding of these processes may suggest effective strategies to mitigate the degenerative decline in human tissues with age.
Collapse
|
35
|
Szafranski K, Mekhail K. The fine line between lifespan extension and shortening in response to caloric restriction. Nucleus 2014; 5:56-65. [PMID: 24637399 PMCID: PMC4028356 DOI: 10.4161/nucl.27929] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Caloric restriction (CR) is generally linked to lifespan extension in various organisms and may limit age-associated diseases. Processes through which caloric restriction promotes lifespan include obesity-countering weight loss, increased DNA repair, control of ribosomal and telomeric DNA repeats, mitochondrial regulation, activation of antioxidants, and protective autophagy. Several of these protective cellular processes are linked to the suppression of TOR (target of rapamycin) or the activation of sirtuins. In stark contrast, CR fails to extend or even shortens lifespan in certain settings. CR-dependent lifespan shortening is linked to weight loss in the non-obese, mitochondrial hyperactivity, genomic inflexibility, and several other processes. Deciphering the balance between positive and negative effects of CR is critical to understanding its ultimate impact on aging. This knowledge is especially needed in order to fulfil the promise of using CR or its mimetic drugs to counteract age-associated diseases and unhealthy aging.
Collapse
Affiliation(s)
- Kirk Szafranski
- Department of Laboratory Medicine and Pathobiology; Faculty of Medicine, University of Toronto; Toronto, ON Canada
| | - Karim Mekhail
- Department of Laboratory Medicine and Pathobiology; Faculty of Medicine, University of Toronto; Toronto, ON Canada; Canada Research Chairs Program; Faculty of Medicine, University of Toronto; Toronto, ON Canada
| |
Collapse
|
36
|
Gragnani A, Cornick SM, Chominski V, Ribeiro de Noronha SM, Alves Corrêa de Noronha SA, Ferreira LM. Review of Major Theories of Skin Aging. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/aar.2014.34036] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|