1
|
Pu Z, Wei Y, Sun Y, Wang Y, Zhu S. Carbon Nanotubes as Carriers in Drug Delivery for Non-Small Cell Lung Cancer, Mechanistic Analysis of Their Carcinogenic Potential, Safety Profiling and Identification of Biomarkers. Int J Nanomedicine 2022; 17:6157-6180. [PMID: 36523423 PMCID: PMC9744892 DOI: 10.2147/ijn.s384592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/23/2022] [Indexed: 04/04/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) is a global burden leading to millions of deaths worldwide every year. Nanomedicine refers to the use of materials at the nanoscale for drug delivery and subsequent therapeutic approaches in cancer. Carbon nanotubes (CNTs) are widely used as nanocarriers for therapeutic molecules such as plasmids, siRNAs, antisense agents, aptamers and molecules related to the immunotherapy for several cancers. They are usually functionalized and loaded with standard drug molecules to improve their therapeutic efficiency. Functionalization and drug loading possibly decrease the genotoxic and carcinogenic potential of CNTs. In addition, the targeted cytotoxic properties of the drug improve and undesired toxicity decreases after drug loading and/or conjugation with proteins, including antibodies. For intended drug delivery, a lysosomal pH of 5.5 is more suitable and effective for the slow and extended release of cytotoxic drugs than a physiological of pH 7.4. Remarkably, CNTs possess intrinsic antitumor properties and are usually internalized by endocytosis. After being internalized, several mechanisms are involved in the therapeutic and carcinogenic effects of CNTs. They are generally safe for therapy, and their toxicity profile remains dependent on their physicochemical properties. Moreover, the dose, route, duration of exposure, surface properties and degradative potential determine the toxicity outcomes of CNTs locally or systemically. In summary, the use of CNTs in drug delivery and NSCLC therapy, as well as their genotoxic and carcinogenic potential and the possible mechanisms, has been discussed in this review. The therapeutic index is generally high for NSCLC cells treated with drug-loaded CNTs; therefore, they are effective carriers in implementing targeted therapy for NSCLC.
Collapse
Affiliation(s)
- Zhongjian Pu
- Department of Oncology, Haian Hospital of Traditional Chinese Medicine, Haian, 216600, People’s Republic of China
| | - Yujia Wei
- School of Medicine, Yangzhou University, Yangzhou, 225009, People’s Republic of China
- Department of General Practice, Suzhou Wuzhong Hospital of Traditional Chinese Medicine, Suzhou, 215101, People’s Republic of China
| | - Yuanpeng Sun
- Department of Oncology, Haian Hospital of Traditional Chinese Medicine, Haian, 216600, People’s Republic of China
| | - Yajun Wang
- Department of Oncology, Haian Hospital of Traditional Chinese Medicine, Haian, 216600, People’s Republic of China
| | - Shilin Zhu
- Department of Oncology, Haian Hospital of Traditional Chinese Medicine, Haian, 216600, People’s Republic of China
| |
Collapse
|
2
|
Nanoparticles as a Tool in Neuro-Oncology Theranostics. Pharmaceutics 2021; 13:pharmaceutics13070948. [PMID: 34202660 PMCID: PMC8309086 DOI: 10.3390/pharmaceutics13070948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/18/2021] [Accepted: 06/18/2021] [Indexed: 11/17/2022] Open
Abstract
The rapid growth of nanotechnology and the development of novel nanomaterials with unique physicochemical characteristics provides potential for the utility of nanomaterials in theranostics, including neuroimaging, for identifying neurodegenerative changes or central nervous system malignancy. Here we present a systematic and thorough review of the current evidence pertaining to the imaging characteristics of various nanomaterials, their associated toxicity profiles, and mechanisms for enhancing tropism in an effort to demonstrate the utility of nanoparticles as an imaging tool in neuro-oncology. Particular attention is given to carbon-based and metal oxide nanoparticles and their theranostic utility in MRI, CT, photoacoustic imaging, PET imaging, fluorescent and NIR fluorescent imaging, and SPECT imaging.
Collapse
|
3
|
Nicholas J, Chen H, Liu K, Venu I, Bolser D, Saleh NB, Bisesi JH, Castleman W, Lee Ferguson P, Sabo-Attwood T. Utilization of Near Infrared Fluorescence Imaging to Track and Quantify the Pulmonary Retention of Single-Walled Carbon Nanotubes in Mice. NANOIMPACT 2019; 14:100167. [PMID: 32818159 PMCID: PMC7430926 DOI: 10.1016/j.impact.2019.100167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
As nanomaterials are used in a wide array of applications, investigations regarding health impacts associated with inhalation are a concern. Reports show that exposure to single-walled carbon nanotubes (SWCNTs) can induce fibrosis, allergic-type reactions, and pathogen susceptibility. Airway clearance is known to play a primary role in these disease states, yet SWCNT detection in biological systems is challenging. Common techniques, such as electron microscopy, lack spatial resolution and specificity to delineate SWCNTs in carbon-based organisms. Here we validated a near-infrared fluorescence imaging (NIRFI) system to track and semi-quantify SWCNTs over 21 days in tissues of mice exposed intratracheally to 1 dose of SWCNTs. In tandem, we optimized a NIRF-based spectrometry method to quantify SWCNTs, showing that NIRFI was consistent with SWCNT burdens quantified by NIRF spectroscopy in whole lung tissue homogenates. Finally, NIRFI was utilized to localize SWCNTs on lung tissue sections used for pathological analysis. Results revealed that SWCNTs remained in the lung over 21 days and were consistent with alveolar wall restructuring and granuloma formation. This study is the first to quantify SWCNTs in mouse lungs using both semi-quantitative tracking and quantitative mass measurements using NIRF, highlighting this as a sensitive and specific technique for assessing SWCNT clearance in vivo.
Collapse
Affiliation(s)
- Justine Nicholas
- Department of Environmental and Global Health, University of Florida, Gainesville, FL 32610, United States
- Department of Physiological Sciences, University of Florida, Gainesville, FL 32610, United States
| | - Hao Chen
- Department of Physiological Sciences, University of Florida, Gainesville, FL 32610, United States
| | - Keira Liu
- Department of Civil and Environmental Engineering, Nicholas School of the Environment, Duke University, Durham, NC, 27708, United States
| | - Indu Venu
- Department of Civil, Architectural and Environmental Engineering, University of Texas, Austin TX, 78712, United States
| | - Donald Bolser
- Department of Physiological Sciences, University of Florida, Gainesville, FL 32610, United States
| | - Navid B. Saleh
- Department of Civil, Architectural and Environmental Engineering, University of Texas, Austin TX, 78712, United States
| | - Joseph H. Bisesi
- Department of Environmental and Global Health, University of Florida, Gainesville, FL 32610, United States
| | - William Castleman
- Department of Infectious Disease and Pathology, University of Florida, Gainesville, FL 32610, United States
| | - P. Lee Ferguson
- Department of Civil and Environmental Engineering, Nicholas School of the Environment, Duke University, Durham, NC, 27708, United States
| | - Tara Sabo-Attwood
- Department of Environmental and Global Health, University of Florida, Gainesville, FL 32610, United States
| |
Collapse
|
4
|
Towner RA, Smith N. In Vivo and In Situ Detection of Macromolecular Free Radicals Using Immuno-Spin Trapping and Molecular Magnetic Resonance Imaging. Antioxid Redox Signal 2018; 28:1404-1415. [PMID: 29084431 DOI: 10.1089/ars.2017.7390] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE In vivo free radical imaging in preclinical models of disease has become a reality. Free radicals have traditionally been characterized by electron spin resonance (ESR) or electron paramagnetic resonance (EPR) spectroscopy coupled with spin trapping. The disadvantage of the ESR/EPR approach is that spin adducts are short-lived due to biological reductive and/or oxidative processes. Immuno-spin trapping (IST) involves the use of an antibody that recognizes macromolecular 5,5-dimethyl-pyrroline-N-oxide (DMPO) spin adducts (anti-DMPO antibody), regardless of the oxidative/reductive state of trapped radical adducts. Recent Advances: The IST approach has been extended to an in vivo application that combines IST with molecular magnetic resonance imaging (mMRI). This combined IST-mMRI approach involves the use of a spin-trapping agent, DMPO, to trap free radicals in disease models, and administration of an mMRI probe, an anti-DMPO probe, which combines an antibody against DMPO-radical adducts and an MRI contrast agent, resulting in targeted free radical adduct detection. CRITICAL ISSUES The combined IST-mMRI approach has been used in several rodent disease models, including diabetes, amyotrophic lateral sclerosis (ALS), gliomas, and septic encephalopathy. The advantage of this approach is that heterogeneous levels of trapped free radicals can be detected directly in vivo and in situ to pin point where free radicals are formed in different tissues. FUTURE DIRECTIONS The approach can also be used to assess therapeutic agents that are either free radical scavengers or generate free radicals. Smaller probe constructs and radical identification approaches are being considered. The focus of this review is on the different applications that have been studied, advantages and limitations, and future directions. Antioxid. Redox Signal. 28, 1404-1415.
Collapse
Affiliation(s)
- Rheal A Towner
- Advanced Magnetic Resonance Center , Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Nataliya Smith
- Advanced Magnetic Resonance Center , Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| |
Collapse
|
5
|
Wang CL, Yang PS, Tsao JT, Jayakumar T, Wang MJ, Sheu JR, Chou DS. Mechanism of free radical generation in platelets and primary hepatocytes: A novel electron spin resonance study. Mol Med Rep 2017; 17:2061-2069. [PMID: 29138834 DOI: 10.3892/mmr.2017.8058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 10/16/2017] [Indexed: 11/06/2022] Open
Abstract
Oxygen free radicals have been implicated in the pathogenesis of toxic liver injury and are thought to be involved in cardiac dysfunction in the cirrhotic heart. Therefore, direct evidence for the electron spin resonance (ESR) detection of how D‑galactosamine (GalN), an established experimental hepatotoxic substance, induced free radicals formation in platelets and primary hepatocytes is presented in the present study. ESR results demonstrated that GalN induced hydroxyl radicals (OH•) in a resting human platelet suspension; however, radicals were not produced in a cell free Fenton reaction system. The GalN‑induced OH• formation was significantly inhibited by the cyclooxygenase (COX) inhibitor indomethasin, though it was not affected by the lipoxygenase (LOX) or cytochrome P450 inhibitors, AA861 and 1‑aminobenzotriazole (ABT), in platelets. In addition, the present study demonstrated that baicalein induced semiquinone free radicals in platelets, which were significantly reduced by the COX inhibitor without affecting the formed OH•. In the mouse primary hepatocytes, the formation of arachidonic acid (AA) induced carbon‑centered radicals that were concentration dependently enhanced by GalN. These radicals were inhibited by AA861, though not affected by indomethasin or ABT. In addition, GalN did not induce platelet aggregation prior to or following collagen pretreatment in human platelets. The results of the present study indicated that GalN and baicalein may induce OH• by COX and LOX in human platelets. GalN also potentiated AA induced carbon‑centered radicals in hepatocytes via cytochrome P450. The present study presented the role of free radicals in the pathophysiological association between platelets and hepatocytes.
Collapse
Affiliation(s)
- Chiun-Lang Wang
- Department of Gynecology and Obstetrics, Min‑Sheng General Hospital, Taoyuan 33044, Taiwan, R.O.C
| | - Po-Sheng Yang
- Department of Surgery, MacKay Memorial Hospital and Mackay Medical College, Taipei 10449, Taiwan, R.O.C
| | - Jeng-Ting Tsao
- Division of Allergy and Immunology, Department of Internal Medicine, Cathay General Hospital, Taipei 10630, Taiwan, R.O.C
| | - Thanasekaran Jayakumar
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan, R.O.C
| | - Meng-Jiy Wang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan, R.O.C
| | - Joen-Rong Sheu
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan, R.O.C
| | - Duen-Suey Chou
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan, R.O.C
| |
Collapse
|
6
|
Zontek T, Ogle BR, Hollenbeck S, Jankovic JT. A comparison of occupational exposure limits and their relationship to reactive oxide species. ACS CHEMICAL HEALTH & SAFETY 2017. [DOI: 10.1016/j.jchas.2017.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Ema M, Takehara H, Naya M, Kataura H, Fujita K, Honda K. Length effects of single-walled carbon nanotubes on pulmonary toxicity after intratracheal instillation in rats. J Toxicol Sci 2017; 42:367-378. [PMID: 28496043 DOI: 10.2131/jts.42.367] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
We aimed to evaluate the effects of the length of single-walled carbon nanotubes (SWCNTs) on pulmonary toxicity in rats. Each rat received a single intratracheal instillation of short (S-) (average length of 0.40 μm) or long (L-) (average length of 2.77 μm) SWCNTs at a dose of 1 mg/kg and was observed for the next 6 months. Neither S- nor L-SWCNTs affected clinical signs, body weight, or autopsy findings. An increase in lung weight was observed after instillation of S- or L-SWCNTs; however, lung weights were slightly higher in the rats that were administered the S-SWCNTs. Distinct differences in bronchoalveolar lavage fluid (BALF) composition were observed between the S- and L-SWCNT-treated rats as early as 7 days after the intratracheal instillations of the SWCNTs. The S-SWCNTs caused persistent lung injury and inflammation during the 6-month observational period. However, the L-SWCNTs induced minimal lung injury and inflammation. Although the S- and L-SWCNTs changed BALF parameters and histopathological features of the lung, the magnitudes of the changes observed after the S-SWCNT treatment were greater than the respective changes observed after the L-SWCNT treatment. These findings indicate that the severity of the pulmonary toxicity caused after intratracheal instillation of SWCNT depends on the length of the SWCNTs. It appears that shorter SWCNTs induce greater pulmonary toxicity than longer SWCNTs do.
Collapse
Affiliation(s)
- Makoto Ema
- Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology (AIST).,Technology Research Association for Single Wall Carbon Nanotubes (TASC)
| | - Hiroshi Takehara
- Public Interest Incorporated Foundation, BioSefety Research Center (BSRC)
| | - Masato Naya
- Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Hiromichi Kataura
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Katsuhide Fujita
- Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology (AIST).,Technology Research Association for Single Wall Carbon Nanotubes (TASC)
| | - Kazumasa Honda
- Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology (AIST).,Technology Research Association for Single Wall Carbon Nanotubes (TASC)
| |
Collapse
|
8
|
Jahan S, Yusoff IB, Alias YB, Bakar AFBA. Reviews of the toxicity behavior of five potential engineered nanomaterials (ENMs) into the aquatic ecosystem. Toxicol Rep 2017; 4:211-220. [PMID: 28959641 PMCID: PMC5615119 DOI: 10.1016/j.toxrep.2017.04.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/07/2017] [Accepted: 04/02/2017] [Indexed: 01/03/2023] Open
Abstract
Presently, engineered nanomaterials (ENMs) are used in a wide variety of commercial applications, resulting in an uncontrolled introduction into the aquatic environment. The purpose of this review is to summarize the pathways and factors that controlling the transport and toxicity of five extensively used ENMs. These toxicological pathways are of great importance and need to be addressed for sustainable implications of ENMs without environmental liabilities. Here we discuss five potentially utilized ENMs with their possible toxicological risk factors to aquatic plants, vertebrates model and microbes. Moreover, the key effect of ENMs surface transformations by significant reaction with environmental objects such as dissolved natural organic matter (DOM) and the effect of ENMs surface coating and surface charge will also be debated. The transformations of ENMs are subsequently facing a major ecological transition that is expected to create a substantial toxicological effect towards the ecosystem. These transformations largely involve chemical and physical processes, which depend on the properties of both ENMs and the receiving medium. In this review article, the critical issues that controlling the transport and toxicity of ENMs are reviewed by exploiting the latest reports and future directions and targets are keenly discussed to minimize the pessimistic effects of ENMs.
Collapse
Affiliation(s)
- Shanaz Jahan
- Department of Geology, Environmental and Earth Sciences, Faculty of Science, University Malaya, Kuala Lumpur, 50603, Malaysia
| | - Ismail Bin Yusoff
- Department of Geology, Environmental and Earth Sciences, Faculty of Science, University Malaya, Kuala Lumpur, 50603, Malaysia
| | - Yatimah Binti Alias
- Department of Chemistry, Faculty of Science, University Malaya, Kuala Lumpur, 50603, Malaysia
- University Malaya Centre for Ionic Liquids (UMCiL), University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Ahmad Farid Bin Abu Bakar
- Department of Geology, Environmental and Earth Sciences, Faculty of Science, University Malaya, Kuala Lumpur, 50603, Malaysia
| |
Collapse
|
9
|
Dong J, Ma Q. Myofibroblasts and lung fibrosis induced by carbon nanotube exposure. Part Fibre Toxicol 2016; 13:60. [PMID: 27814727 PMCID: PMC5097370 DOI: 10.1186/s12989-016-0172-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 10/25/2016] [Indexed: 01/07/2023] Open
Abstract
Carbon nanotubes (CNTs) are newly developed materials with unique properties and a range of industrial and commercial applications. A rapid expansion in the production of CNT materials may increase the risk of human exposure to CNTs. Studies in rodents have shown that certain forms of CNTs are potent fibrogenic inducers in the lungs to cause interstitial, bronchial, and pleural fibrosis characterized by the excessive deposition of collagen fibers and the scarring of involved tissues. The cellular and molecular basis underlying the fibrotic response to CNT exposure remains poorly understood. Myofibroblasts are a major type of effector cells in organ fibrosis that secrete copious amounts of extracellular matrix proteins and signaling molecules to drive fibrosis. Myofibroblasts also mediate the mechano-regulation of fibrotic matrix remodeling via contraction of their stress fibers. Recent studies reveal that exposure to CNTs induces the differentiation of myofibroblasts from fibroblasts in vitro and stimulates pulmonary accumulation and activation of myofibroblasts in vivo. Moreover, mechanistic analyses provide insights into the molecular underpinnings of myofibroblast differentiation and function induced by CNTs in the lungs. In view of the apparent fibrogenic activity of CNTs and the emerging role of myofibroblasts in the development of organ fibrosis, we discuss recent findings on CNT-induced lung fibrosis with emphasis on the role of myofibroblasts in the pathologic development of lung fibrosis. Particular attention is given to the formation and activation of myofibroblasts upon CNT exposure and the possible mechanisms by which CNTs regulate the function and dynamics of myofibroblasts in the lungs. It is evident that a fundamental understanding of the myofibroblast and its function and regulation in lung fibrosis will have a major influence on the future research on the pulmonary response to nano exposure, particle and fiber-induced pneumoconiosis, and other human lung fibrosing diseases.
Collapse
Affiliation(s)
- Jie Dong
- Receptor Biology Laboratory, Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, 1095 Willowdale Road, Morgantown, WV, USA
| | - Qiang Ma
- Receptor Biology Laboratory, Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, 1095 Willowdale Road, Morgantown, WV, USA.
| |
Collapse
|
10
|
Krokosz A, Lichota A, Nowak KE, Grebowski J. Carbon nanoparticles as possible radioprotectors in biological systems. Radiat Phys Chem Oxf Engl 1993 2016. [DOI: 10.1016/j.radphyschem.2016.07.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
11
|
Chong Y, Ge C, Fang G, Tian X, Ma X, Wen T, Wamer WG, Chen C, Chai Z, Yin JJ. Crossover between Anti- and Pro-oxidant Activities of Graphene Quantum Dots in the Absence or Presence of Light. ACS NANO 2016; 10:8690-8699. [PMID: 27584033 DOI: 10.1021/acsnano.6b04061] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Graphene quantum dots (GQDs), zero-dimensional carbon materials displaying excellent luminescence properties, show great promise for medical applications such as imaging, drug delivery, biosensors, and novel therapeutics. A deeper understanding of how the properties of GQDs interact with biological systems is essential for these applications. Our work demonstrates that GQDs can efficiently scavenge a number of free radicals and thereby protect cells against oxidative damage. However, upon exposure to blue light, GQDs exhibit significant phototoxicity through increasing intracellular reactive oxygen species (ROS) levels and reducing cell viability, attributable to the generation of free radicals under light excitation. We confirm that light-induced formation of ROS originates from the electron-hole pair and, more importantly, reveal that singlet oxygen is generated by photoexcited GQDs via both energy-transfer and electron-transfer pathways. Moreover, upon light excitation, GQDs accelerate the oxidation of non-enzymic anti-oxidants and promote lipid peroxidation, contributing to the phototoxicity of GQDs. Our results reveal that GQDs can display both anti- and pro-oxidant activities, depending upon light exposure, which will be useful in guiding the safe application and development of potential anticancer/antibacterial applications for GQDs.
Collapse
Affiliation(s)
- Yu Chong
- School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou 215123, China
- Division of Bioanalytical Chemistry and Division of Analytical Chemistry, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration , College Park, Maryland 20740, United States
| | - Cuicui Ge
- School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou 215123, China
- Division of Bioanalytical Chemistry and Division of Analytical Chemistry, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration , College Park, Maryland 20740, United States
| | - Ge Fang
- School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou 215123, China
| | - Xin Tian
- School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou 215123, China
| | - Xiaochuan Ma
- School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou 215123, China
| | - Tao Wen
- Division of Bioanalytical Chemistry and Division of Analytical Chemistry, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration , College Park, Maryland 20740, United States
| | - Wayne G Wamer
- Division of Bioanalytical Chemistry and Division of Analytical Chemistry, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration , College Park, Maryland 20740, United States
| | - Chunying Chen
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China and Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100190, China
| | - Zhifang Chai
- School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou 215123, China
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China and Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100190, China
| | - Jun-Jie Yin
- Division of Bioanalytical Chemistry and Division of Analytical Chemistry, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration , College Park, Maryland 20740, United States
| |
Collapse
|
12
|
Bostan HB, Rezaee R, Valokala MG, Tsarouhas K, Golokhvast K, Tsatsakis AM, Karimi G. Cardiotoxicity of nano-particles. Life Sci 2016; 165:91-99. [PMID: 27686832 DOI: 10.1016/j.lfs.2016.09.017] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 09/14/2016] [Accepted: 09/23/2016] [Indexed: 01/08/2023]
Abstract
Nano-particles (NPs) are used in industrial and biomedical fields such as cosmetics, food additives and biosensors. Beside their favorable properties, nanoparticles are responsible for toxic effects. Local adverse effects and/or systemic toxicity are described with nanoparticle delivery to target organs of the human body. Animal studies provide evidence for the aforementioned toxicity. Cardiac function is a specific target of nanoparticles. Thus, reviewing the current bibliography on cardiotoxicity of nanoparticles and specifically of titanium, zinc, silver, carbon, silica and iron oxide nano-materials is the aim of this study.
Collapse
Affiliation(s)
- Hasan Badie Bostan
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ramin Rezaee
- Department of Physiology and Pharmacology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran; Scientific Educational Center of Nanotechnology, Far Eastern Federal University, 10 Pushkinskaya Street, Vladivostok 690950, Russia
| | - Mahmoud Gorji Valokala
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Kirill Golokhvast
- Scientific Educational Center of Nanotechnology, Far Eastern Federal University, 10 Pushkinskaya Street, Vladivostok 690950, Russia
| | - Aristidis M Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, Heraklion 71003, Greece.
| | - Gholamreza Karimi
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
13
|
Park EJ, Choi J, Kim JH, Lee BS, Yoon C, Jeong U, Kim Y. Subchronic immunotoxicity and screening of reproductive toxicity and developmental immunotoxicity following single instillation of HIPCO-single-walled carbon nanotubes: purity-based comparison. Nanotoxicology 2016; 10:1188-202. [DOI: 10.1080/17435390.2016.1202348] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Eun-Jung Park
- Myunggok Eye Research Institute, Konyang University, Daejeon, Republic of Korea,
| | - Je Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea,
| | - Jae-Ho Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea,
| | - Byoung-Seok Lee
- Toxicologic Pathology Center, Korea Institute of Toxicology, Daejeon, Republic of Korea,
| | - Cheolho Yoon
- Seoul Center, Korea Basic Science Institute, Seoul, Republic of Korea, and
| | - Uiseok Jeong
- Department of Chemical Engineering, Kwangwoon University, Seoul, Republic of Korea
| | - Younghun Kim
- Department of Chemical Engineering, Kwangwoon University, Seoul, Republic of Korea
| |
Collapse
|
14
|
Park EJ, Hong YS, Lee BS, Yoon C, Jeong U, Kim Y. Single-walled carbon nanotubes disturbed the immune and metabolic regulation function 13-weeks after a single intratracheal instillation. ENVIRONMENTAL RESEARCH 2016; 148:184-195. [PMID: 27078092 DOI: 10.1016/j.envres.2016.03.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 03/20/2016] [Accepted: 03/21/2016] [Indexed: 06/05/2023]
Abstract
Due to their unique physicochemical properties, the potential health effects of single-walled carbon nanotubes (SWCNTs) have attracted continuous attention together with their extensive application. In this study, we aimed to identify local and systemic health effects following pulmonary persistence of SWCNTs. As expected, SWCNTs remained in the lung for 13 weeks after a single intratracheal instillation (50, 100, and 200μg/kg). In the lung, the total number of cells and the percentages of lymphocytes and neutrophils significantly increased at 200μg/kg compared to the control, and the Th1-polarized immune response was induced accompanying enhanced expression of tissue damage-related genes and increased release of chemokines. Additionally, SWCNTs enhanced the expression of antigen presentation-related proteins on the surface of antigen-presenting cells, however, maturation of dendritic cells was inhibited by their persistence. As compared to the control, a significant increase in the percentage of neutrophils and a remarkable decrease of BUN and potassium level were observed in the blood of mice treated with the highest dose. This was accompanied by the down-regulation of the expression of antigen presentation-related proteins on splenocytes. Moreover, protein and glucose metabolism were disturbed with an up-regulation of fatty acid β-oxidation. Taken together, we conclude that SWCNTs may induce adverse health effects by disturbing immune and metabolic regulation functions in the body. Therefore, careful application of SWCNTs is necessary for the enforcement of safety in nano-industries.
Collapse
Affiliation(s)
- Eun-Jung Park
- Myunggok Eye Research Institute, Konyang University, Daejeon 302-718, Republic of Korea.
| | - Young-Shick Hong
- Division of Food and Nutrition, Chonnam National University, Yongbong-Ro, Buk-Gu, Gwangju 500-757, Republic of Korea
| | - Byoung-Seok Lee
- Toxicologic Pathology Center, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Cheolho Yoon
- Seoul Center, Korea Basic Science Institute, Seoul 126-16, Republic of Korea
| | - Uiseok Jeong
- Department of Chemical Engineering, Kwangwoon University, Seoul 139-701, Republic of Korea
| | - Younghun Kim
- Department of Chemical Engineering, Kwangwoon University, Seoul 139-701, Republic of Korea
| |
Collapse
|
15
|
Vietti G, Lison D, van den Brule S. Mechanisms of lung fibrosis induced by carbon nanotubes: towards an Adverse Outcome Pathway (AOP). Part Fibre Toxicol 2016; 13:11. [PMID: 26926090 PMCID: PMC4772332 DOI: 10.1186/s12989-016-0123-y] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 02/12/2016] [Indexed: 12/17/2022] Open
Abstract
Several experimental studies have shown that carbon nanotubes (CNT) can induce respiratory effects, including lung fibrosis. The cellular and molecular events through which these effects develop are, however, not clearly elucidated. The purpose of the present review was to analyze the key events involved in the lung fibrotic reaction induced by CNT and to assess their relationships. We thus address current knowledge and gaps with a view to draft an Adverse Outcome Pathway (AOP) concerning the fibrotic potential of CNT. As for many inhaled particles, CNT can indirectly activate fibroblasts through the release of pro-inflammatory (IL-1β) and pro-fibrotic (PDGF and TGF-β) mediators by inflammatory cells (macrophages and epithelial cells) via the induction of oxidative stress, inflammasome or NF-kB. We also highlight here direct effects of CNT on fibroblasts, which appear as a new mode of toxicity relatively specific for CNT. Direct effects of CNT on fibroblasts include the induction of fibroblast proliferation, differentiation and collagen production via ERK 1/2 or Smad signaling. We also point out the physico-chemical properties of CNT important for their toxicity and the relationship between in vitro and in vivo effects. This knowledge provides evidence to draft an AOP for the fibrogenic activity of CNT, which allows developing simple in vitro models contributing to predict the CNT effects in lung fibrosis, and risk assessment tools for regulatory decision.
Collapse
Affiliation(s)
- Giulia Vietti
- Louvain centre for Toxicology and Applied Pharmacology, Université Catholique de Louvain, Avenue E. Mounier, 52 - bte B1.52.12, 1200, Brussels, Belgium.
| | - Dominique Lison
- Louvain centre for Toxicology and Applied Pharmacology, Université Catholique de Louvain, Avenue E. Mounier, 52 - bte B1.52.12, 1200, Brussels, Belgium.
| | - Sybille van den Brule
- Louvain centre for Toxicology and Applied Pharmacology, Université Catholique de Louvain, Avenue E. Mounier, 52 - bte B1.52.12, 1200, Brussels, Belgium.
| |
Collapse
|
16
|
Ema M, Gamo M, Honda K. A review of toxicity studies of single-walled carbon nanotubes in laboratory animals. Regul Toxicol Pharmacol 2016; 74:42-63. [DOI: 10.1016/j.yrtph.2015.11.015] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 11/19/2015] [Accepted: 11/20/2015] [Indexed: 12/26/2022]
|
17
|
Abstract
Nanomaterials, including nanoparticles and nanoobjects, are being incorporated into everyday products at an increasing rate. These products include consumer products of interest to toxicologists such as pharmaceuticals, cosmetics, food, food packaging, household products, and so on. The manufacturing of products containing or utilizing nanomaterials in their composition may also present potential toxicologic concerns in the workplace. The molecular complexity and composition of these nanomaterials are ever increasing, and the means and methods being applied to characterize and perform useful toxicologic assessments are rapidly advancing. This article includes presentations by experienced toxicologists in the nanotoxicology community who are focused on the applied aspect of the discipline toward supporting state of the art toxicologic assessments for food products and packaging, pharmaceuticals and medical devices, inhaled nanoparticle and gastrointestinal exposures, and addressing occupational safety and health issues and concerns. This symposium overview article summarizes 5 talks that were presented at the 35th Annual meeting of the American College of Toxicology on the subject of "Applied Nanotechnology."
Collapse
Affiliation(s)
| | | | - Anna A Shvedova
- CDC-National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | | | | | - Robin C Guy
- Robin Guy Consulting LLC, Lake Forest, IL, USA
| |
Collapse
|
18
|
Effects of Various Carbon Nanotube Suspensions on A549, THP-1, and Peritoneal Macrophage Cells. JOURNAL OF BIOMIMETICS BIOMATERIALS AND BIOMEDICAL ENGINEERING 2015. [DOI: 10.4028/www.scientific.net/jbbbe.24.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effects of iron content, fiber length, and stability of carbon nanotube (CNT) suspension on cells were examined. Five kinds of single-wall carbon nanotube (SWCNT) suspensions were prepared: with catalytic iron, without iron, long SWCNTs (stable), short SWCNTs (stable), and short SWCNT (unstable). These suspensions were applied to A549, THP-1, and mouse peritoneal macrophage cells. After a 24-h exposure, the mitochondrial activity, cell membrane damage, intracellular oxidative stress, and expression of cytokine genes were determined. Among these properties of SWCNTs, stability of CNT suspension had the most influence on the cells, whereas the effects of iron content and fiber length were small. The unstable SWCNT suspension caused a substantial increase in intracellular ROS levels. Additionally, the cellular effects of stable multi-wall carbon nanotubes (MWCNTs) were examined. The MWCNT suspension did not show any cellular effects. Overall, influences of CNT suspension on mitochondrial activity and cell membrane damage were small. These results suggest that the physical properties of CNT suspension are important factors for their cellular effects. Thus, CNT suspensions prepared with the same material but having different physical properties would differ in the cellular effects they exert, including cytotoxicity. Therefore, physical characterization of CNT suspensions is essential to the evaluation of CNT toxicity. In particular, stability of CNT suspension notably influenced the intracellular ROS level.
Collapse
|
19
|
Shvedova AA, Kisin ER, Yanamala N, Tkach AV, Gutkin DW, Star A, Shurin GV, Kagan VE, Shurin MR. MDSC and TGFβ Are Required for Facilitation of Tumor Growth in the Lungs of Mice Exposed to Carbon Nanotubes. Cancer Res 2015; 75:1615-23. [PMID: 25744719 DOI: 10.1158/0008-5472.can-14-2376] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 02/20/2015] [Indexed: 11/16/2022]
Abstract
During the last decades, changes have been observed in the frequency of different histologic subtypes of lung cancer, one of the most common causes of morbidity and mortality, with a declining proportion of squamous cell carcinomas and an increasing proportion of adenocarcinomas, particularly in developed countries. This suggests the emergence of new etiologic factors and mechanisms, including those defining the lung microenvironment, promoting tumor growth. Assuming that the lung is the main portal of entry for broadly used nanomaterials and their established proinflammatory propensities, we hypothesized that nanomaterials may contribute to changes facilitating tumor growth. Here, we report that an acute exposure to single-walled carbon nanotubes (SWCNT) induces recruitment and accumulation of lung-associated myeloid-derived suppressor cells (MDSC) and MDSC-derived production of TGFβ, resulting in upregulated tumor burden in the lung. The production of TGFβ by MDSC requires their interaction with both SWCNT and tumor cells. We conclude that pulmonary exposure to SWCNT favors the formation of a niche that supports ingrowth of lung carcinoma in vivo via activation of TGFβ production by SWCNT-attracted and -presensitized MDSC.
Collapse
Affiliation(s)
- Anna A Shvedova
- HELD, NIOSH, CDC, Morgantown, West Virginia. Department of Pharmacology and Physiology, West Virginia University, Morgantown, West Virginia.
| | | | | | | | - Dmitriy W Gutkin
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Alexander Star
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Galina V Shurin
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Valerian E Kagan
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania. Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michael R Shurin
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania. Department of Immunology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| |
Collapse
|