1
|
Zhou S, Lei S, She Y, Shi H, Li Y, Zhou X, Chen R. Running improves muscle mass by activating autophagic flux and inhibiting ubiquitination degradation in mdx mice. Gene 2024; 899:148136. [PMID: 38185293 DOI: 10.1016/j.gene.2024.148136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/15/2023] [Accepted: 01/03/2024] [Indexed: 01/09/2024]
Abstract
BACKGROUND Exercise therapy can improve muscle mass, strengthen muscle and cardiorespiratory function, and may be an excellent adjunctive treatment option for Duchenne muscular dystrophy. METHODS This article investigates the effects of 10 weeks of treadmill training on skeletal muscle in control and mdx mice. Hematoxylin and eosin (H&E) staining was used to detect the morphometry of skeletal muscle; the grip strength test, suspension test, and rotarod test were used to detect limb muscle strength of mice, and Aurora Scientific Instruments were used to detect in vivo Muscle Stimulation Measuring Maximum Force of pre-fatigue and post-fatigue. The expression levels of myogenic proteins, ubiquitination markers, autophagy pathway proteins, and the proportion of different muscle fiber types were detected. RESULTS The experimental results show that running exercise can significantly improve the muscle mass of mdx mice, promote muscle strength, endurance, and anti-fatigue ability, reverse the pathological state of skeletal muscle destruction in mdx mice, and promote muscle regeneration. WB experiments showed that running inhibited the ubiquitination and degradation of muscle protein in mdx mice, inhibited AKT activation, decreased phosphorylated FoxO1 and FoxO3a, and restored the suppressed autophagic flux. Running enhances muscle strength and endurance by comprehensively promoting the expression of Myh1/2/4/7 fast and slow muscle fibers in mdx mice. CONCLUSIONS Running can inhibit the degradation of muscle protein in mdx mice, and promote the reuse and accumulation of proteins, thereby slowing down muscle loss. Running improves skeletal muscle mass by activating autophagic flux and inhibiting ubiquitination degradation in mdx mice.
Collapse
Affiliation(s)
- Shanyao Zhou
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, 466 Xin Gang Zhong Road, Guangzhou 510317, China
| | - Si Lei
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, 466 Xin Gang Zhong Road, Guangzhou 510317, China
| | - Yanling She
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, 466 Xin Gang Zhong Road, Guangzhou 510317, China
| | - Huacai Shi
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, 466 Xin Gang Zhong Road, Guangzhou 510317, China
| | - Yang Li
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, 466 Xin Gang Zhong Road, Guangzhou 510317, China
| | - Xin Zhou
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, 466 Xin Gang Zhong Road, Guangzhou 510317, China
| | - Rui Chen
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, 466 Xin Gang Zhong Road, Guangzhou 510317, China.
| |
Collapse
|
2
|
Mikhail AI, Ng SY, Mattina SR, Ljubicic V. AMPK is mitochondrial medicine for neuromuscular disorders. Trends Mol Med 2023:S1471-4914(23)00070-9. [PMID: 37080889 DOI: 10.1016/j.molmed.2023.03.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/22/2023]
Abstract
Duchenne muscular dystrophy (DMD), myotonic dystrophy type 1 (DM1), and spinal muscular atrophy (SMA) are the most prevalent neuromuscular disorders (NMDs) in children and adults. Central to a healthy neuromuscular system are the processes that govern mitochondrial turnover and dynamics, which are regulated by AMP-activated protein kinase (AMPK). Here, we survey mitochondrial stresses that are common between, as well as unique to, DMD, DM1, and SMA, and which may serve as potential therapeutic targets to mitigate neuromuscular disease. We also highlight recent advances that leverage a mutation-agnostic strategy featuring physiological or pharmacological AMPK activation to enhance mitochondrial health in these conditions, as well as identify outstanding questions and opportunities for future pursuit.
Collapse
Affiliation(s)
- Andrew I Mikhail
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada.
| | - Sean Y Ng
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada.
| | - Stephanie R Mattina
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada.
| | - Vladimir Ljubicic
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
3
|
Su Y, Song Y. The new challenge of “exercise + X″ therapy for Duchenne muscular dystrophy—Individualized identification of exercise tolerance and precise implementation of exercise intervention. Front Physiol 2022; 13:947749. [PMID: 35991169 PMCID: PMC9389311 DOI: 10.3389/fphys.2022.947749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/07/2022] [Indexed: 12/05/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked recessive fatal muscular disease. Gene therapy, cell therapy, and drug therapy are currently the most widely used treatments for DMD. However, many experiments on animals and humans suggested that appropriate exercise could improve the effectiveness of such precision medicine treatment, thereby improving patient’s muscle quality and function. Due to the striated muscle damage of DMD individuals, there are still many debates about whether DMD animals or patients can exercise, how to exercise, when to exercise best, and how to exercise effectively. The purpose of this review is to summarize and investigate the scientific basis and efficacy of exercise as an adjuvant therapy for DMD gene therapy, cell therapy and drug therapy, as well as to present the theoretical framework and optional strategies of “exercise + X″″ combination therapy.
Collapse
Affiliation(s)
- Yuhui Su
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
- Institute of Physical Education, Jilin Normal University, Siping, China
| | - Yafeng Song
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
- *Correspondence: Yafeng Song,
| |
Collapse
|
4
|
Nitahara-Kasahara Y, Mizumoto S, Inoue YU, Saka S, Posadas-Herrera G, Nakamura-Takahashi A, Takahashi Y, Hashimoto A, Konishi K, Miyata S, Masuda C, Matsumoto E, Maruoka Y, Yoshizawa T, Tanase T, Inoue T, Yamada S, Nomura Y, Takeda S, Watanabe A, Kosho T, Okada T. A new mouse model of Ehlers-Danlos syndrome generated using CRISPR/Cas9-mediated genomic editing. Dis Model Mech 2021; 14:273847. [PMID: 34850861 PMCID: PMC8713987 DOI: 10.1242/dmm.048963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 11/08/2021] [Indexed: 11/28/2022] Open
Abstract
Musculocontractural Ehlers-Danlos syndrome (mcEDS) is caused by generalized depletion of dermatan sulfate (DS) due to biallelic pathogenic variants in CHST14 encoding dermatan 4-O-sulfotransferase 1 (D4ST1) (mcEDS-CHST14). Here, we generated mouse models for mcEDS-CHST14 carrying homozygous mutations (1 bp deletion or 6 bp insertion/10 bp deletion) in Chst14 through CRISPR/Cas9 genome engineering to overcome perinatal lethality in conventional Chst14-deleted knockout mice. DS depletion was detected in the skeletal muscle of these genome-edited mutant mice, consistent with loss of D4ST1 activity. The mutant mice showed common pathophysiological features, regardless of the variant, including growth impairment and skin fragility. Notably, we identified myopathy-related phenotypes. Muscle histopathology showed variation in fiber size and spread of the muscle interstitium. Decorin localized diffusely in the spread endomysium and perimysium of skeletal muscle, unlike in wild-type mice. The mutant mice showed lower grip strength and decreased exercise capacity compared to wild type, and morphometric evaluation demonstrated thoracic kyphosis in mutant mice. The established CRISPR/Cas9-engineered Chst14 mutant mice could be a useful model to further our understanding of mcEDS pathophysiology and aid in the development of novel treatment strategies. Summary: CRISPR/Cas9 genome-engineered Chst14−/− mouse models of musculocontractural Ehlers-Danlos syndrome (mcEDS) display similar myopathic features (particularly those caused by the loss of D4ST1) to mcEDS patients and may facilitate further understanding of mcEDS.
Collapse
Affiliation(s)
- Yuko Nitahara-Kasahara
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo 113-8603, Japan.,Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Shuji Mizumoto
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya 468-8503, Japan
| | - Yukiko U Inoue
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira 187-8502, Japan
| | - Shota Saka
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu 183-8509, Japan.,Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira 187-8502, Japan
| | - Guillermo Posadas-Herrera
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | | | - Yuki Takahashi
- Department of Medical Genetics, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Ayana Hashimoto
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu 183-8509, Japan
| | - Kohei Konishi
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu 183-8509, Japan
| | - Shinji Miyata
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu 183-8509, Japan
| | - Chiaki Masuda
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo 113-8603, Japan
| | - Emi Matsumoto
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo 113-8603, Japan
| | - Yasunobu Maruoka
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo 113-8603, Japan
| | - Takahiro Yoshizawa
- Division of Animal Research, Research Center for Supports to Advanced Science, Shinshu University, Matsumoto 390-8621, Japan
| | - Toshiki Tanase
- Department of Pediatric Dentistry, Tokyo Dental College, Tokyo 101-0061, Japan
| | - Takayoshi Inoue
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira 187-8502, Japan
| | - Shuhei Yamada
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya 468-8503, Japan
| | - Yoshihiro Nomura
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu 183-8509, Japan
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira 187-8502, Japan
| | - Atsushi Watanabe
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo 113-8603, Japan.,Division of Clinical Genetics, Kanazawa University Hospital, Kanazawa 920-8640, Japan
| | - Tomoki Kosho
- Department of Medical Genetics, Shinshu University School of Medicine, Matsumoto 390-8621, Japan.,Center for Medical Genetics, Shinshu University Hospital, Matsumoto 390-8621, Japan.,Research Center for Supports to Advanced Science, Shinshu University, Matsumoto 390-8621, Japan.,Division of Clinical Sequencing, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Takashi Okada
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan.,Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira 187-8502, Japan
| |
Collapse
|
5
|
Nocetti PM, Alberti A, Freiberger V, Ventura L, Grigollo LR, Andreau CS, Júnior RJN, Martins DF, Comim CM. Swimming Improves Memory and Antioxidant Defense in an Animal Model of Duchenne Muscular Dystrophy. Mol Neurobiol 2021; 58:5067-5077. [PMID: 34245442 DOI: 10.1007/s12035-021-02482-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/01/2021] [Indexed: 01/15/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a genetic disease associated with progressive skeletal muscle degeneration. In humans, DMD has an early onset, causes developmental delays, and is a devastating disease that drastically diminishes the quality of life of young individuals affected. The objective of this study was to evaluate the effects of a swimming protocol on memory and oxidative stress in an animal model of DMD. Male mdx and wild-type mice aged ≥ 28 days were used in this study. The animals were trained for a stepped swimming protocol for four consecutive weeks. The swimming protocol significantly reduced the levels of lipid peroxidation and protein carbonylation in the gastrocnemius, hippocampus, and striatum in the exercised animals. It also prevented lipid peroxidation in the diaphragm. Moreover, it increased the free thiol levels in the gastrocnemius, the diaphragm, and all central nervous system structures. The results showed that the protocol that applied swimming as a low-intensity aerobic exercise for 4 weeks prevented aversive memory and habituation in mdx mice.
Collapse
Affiliation(s)
- Priscila Mantovani Nocetti
- Research Group on Neurodevelopment of Childhood and Adolescence, Laboratory of Experimental Neuroscience, Postgraduate Program in Health Sciences, University of South Santa Catarina, Cidade Universitária Pedra Branca, 88137-272, Palhoça, SC, Brazil
| | - Adriano Alberti
- Research Group on Neurodevelopment of Childhood and Adolescence, Laboratory of Experimental Neuroscience, Postgraduate Program in Health Sciences, University of South Santa Catarina, Cidade Universitária Pedra Branca, 88137-272, Palhoça, SC, Brazil.
| | - Viviane Freiberger
- Research Group on Neurodevelopment of Childhood and Adolescence, Laboratory of Experimental Neuroscience, Postgraduate Program in Health Sciences, University of South Santa Catarina, Cidade Universitária Pedra Branca, 88137-272, Palhoça, SC, Brazil
| | - Letícia Ventura
- Research Group on Neurodevelopment of Childhood and Adolescence, Laboratory of Experimental Neuroscience, Postgraduate Program in Health Sciences, University of South Santa Catarina, Cidade Universitária Pedra Branca, 88137-272, Palhoça, SC, Brazil
| | - Leoberto Ricardo Grigollo
- Research Group on Neurodevelopment of Childhood and Adolescence, Laboratory of Experimental Neuroscience, Postgraduate Program in Health Sciences, University of South Santa Catarina, Cidade Universitária Pedra Branca, 88137-272, Palhoça, SC, Brazil
| | - Cristina Salar Andreau
- CEU Cardenal Herrera University, Carrer Lluís Vives, 1, 46115, Valencia, Alfara del Patriarca, Spain
| | - Rudy José Nodari Júnior
- Department of Physical Education, University of West Santa Catarina, Área das Ciências Biológicas E da Saúde, Rua José Firmo Bernardi, 1591, Bairro Flor da Serra, Joaçaba, Santa Catarina, 89600-000, Brazil
| | - Daniel Fernandes Martins
- Research Group on Neurodevelopment of Childhood and Adolescence, Laboratory of Experimental Neuroscience, Postgraduate Program in Health Sciences, University of South Santa Catarina, Cidade Universitária Pedra Branca, 88137-272, Palhoça, SC, Brazil
| | - Clarissa M Comim
- Research Group on Neurodevelopment of Childhood and Adolescence, Laboratory of Experimental Neuroscience, Postgraduate Program in Health Sciences, University of South Santa Catarina, Cidade Universitária Pedra Branca, 88137-272, Palhoça, SC, Brazil
| |
Collapse
|
6
|
Beneficial Role of Exercise in the Modulation of mdx Muscle Plastic Remodeling and Oxidative Stress. Antioxidants (Basel) 2021; 10:antiox10040558. [PMID: 33916762 PMCID: PMC8066278 DOI: 10.3390/antiox10040558] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/02/2021] [Accepted: 03/15/2021] [Indexed: 12/15/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked recessive progressive lethal disorder caused by the lack of dystrophin, which determines myofibers mechanical instability, oxidative stress, inflammation, and susceptibility to contraction-induced injuries. Unfortunately, at present, there is no efficient therapy for DMD. Beyond several promising gene- and stem cells-based strategies under investigation, physical activity may represent a valid noninvasive therapeutic approach to slow down the progression of the pathology. However, ethical issues, the limited number of studies in humans and the lack of consistency of the investigated training interventions generate loss of consensus regarding their efficacy, leaving exercise prescription still questionable. By an accurate analysis of data about the effects of different protocol of exercise on muscles of mdx mice, the most widely-used pre-clinical model for DMD research, we found that low intensity exercise, especially in the form of low speed treadmill running, likely represents the most suitable exercise modality associated to beneficial effects on mdx muscle. This protocol of training reduces muscle oxidative stress, inflammation, and fibrosis process, and enhances muscle functionality, muscle regeneration, and hypertrophy. These conclusions can guide the design of appropriate studies on human, thereby providing new insights to translational therapeutic application of exercise to DMD patients.
Collapse
|
7
|
Pedrazzani PS, Araújo TOP, Sigoli E, da Silva IR, da Roza DL, Chesca DL, Rassier DE, Cornachione AS. Twenty-one days of low-intensity eccentric training improve morphological characteristics and function of soleus muscles of mdx mice. Sci Rep 2021; 11:3579. [PMID: 33574358 PMCID: PMC7878734 DOI: 10.1038/s41598-020-79168-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/25/2020] [Indexed: 11/09/2022] Open
Abstract
Duchene muscular dystrophy (DMD) is caused by the absence of the protein dystrophin, which leads to muscle weakness, progressive degeneration, and eventually death due to respiratory failure. Low-intensity eccentric training (LIET) has been used as a rehabilitation method in skeletal muscles after disuse. Recently, LIET has also been used for rehabilitating dystrophic muscles, but its effects are still unclear. The purpose of this study was to investigate the effects of 21 days of LIET in dystrophic soleus muscle. Thirty-six male mdx mice were randomized into six groups (n = 6/each): mdx sedentary group; mdx training group-3 days; mdx training group-21 days; wild-type sedentary group; wild-type training group-3 days and wild-type training group-21 days. After the training sessions, animals were euthanized, and fragments of soleus muscles were removed for immunofluorescence and histological analyses, and measurements of active force and Ca2+ sensitivity of the contractile apparatus. Muscles of the mdx training group-21 days showed an improvement in morphological characteristics and an increase of active force when compared to the sedentary mdx group. The results show that LIET can improve the functionality of dystrophic soleus muscle in mice.
Collapse
Affiliation(s)
- Paulo S Pedrazzani
- Department of Physiological Science, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - Tatiana O P Araújo
- Department of Physiological Science, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - Emilly Sigoli
- Department of Physiological Science, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - Isabella R da Silva
- Department of Physiological Science, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - Daiane Leite da Roza
- Department of Neurosciences and Behaviour, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Deise Lucia Chesca
- Department of Pathology and Legal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Dilson E Rassier
- Department of Kinesiology and Physical Education, McGill University, Montreal, Canada
| | - Anabelle S Cornachione
- Department of Physiological Science, Federal University of São Carlos (UFSCar), São Carlos, Brazil.
| |
Collapse
|
8
|
Nitahara-Kasahara Y, Kuraoka M, Guillermo PH, Hayashita-Kinoh H, Maruoka Y, Nakamura-Takahasi A, Kimura K, Takeda S, Okada T. Dental pulp stem cells can improve muscle dysfunction in animal models of Duchenne muscular dystrophy. Stem Cell Res Ther 2021; 12:78. [PMID: 33494794 PMCID: PMC7831244 DOI: 10.1186/s13287-020-02099-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/13/2020] [Indexed: 12/11/2022] Open
Abstract
Background Duchenne muscular dystrophy (DMD) is an inherited progressive disorder that causes skeletal and cardiac muscle deterioration with chronic inflammation. Dental pulp stem cells (DPSCs) are attractive candidates for cell-based strategies for DMD because of their immunosuppressive properties. Therefore, we hypothesized that systemic treatment with DPSCs might show therapeutic benefits as an anti-inflammatory therapy. Methods To investigate the potential benefits of DPSC transplantation for DMD, we examined disease progression in a DMD animal model, mdx mice, by comparing them with different systemic treatment conditions. The DPSC-treated model, a canine X-linked muscular dystrophy model in Japan (CXMDJ), which has a severe phenotype similar to that of DMD patients, also underwent comprehensive analysis, including histopathological findings, muscle function, and locomotor activity. Results We demonstrated a therapeutic strategy for long-term functional recovery in DMD using repeated DPSC administration. DPSC-treated mdx mice and CXMDJ showed no serious adverse events. MRI findings and muscle histology suggested that DPSC treatment downregulated severe inflammation in DMD muscles and demonstrated a milder phenotype after DPSC treatment. DPSC-treated models showed increased recovery in grip-hand strength and improved tetanic force and home cage activity. Interestingly, maintenance of long-term running capability and stabilized cardiac function was also observed in 1-year-old DPSC-treated CXMDJ. Conclusions We developed a novel strategy for the safe and effective transplantation of DPSCs for DMD recovery, which included repeated systemic injection to regulate inflammation at a young age. This is the first report on the efficacy of a systemic DPSC treatment, from which we can propose that DPSCs may play an important role in delaying the DMD disease phenotype.
Collapse
Affiliation(s)
- Yuko Nitahara-Kasahara
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo, Japan. .,Division of Cell and Gene Therapy, Nippon Medical School, Bunkyo-city, Tokyo, Japan. .,Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan.
| | - Mutsuki Kuraoka
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan.,Laboratory of Experimental Animal Science, Nippon Veterinary and Life Science University, Musashino, Tokyo, Japan
| | - Posadas Herrera Guillermo
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo, Japan.,Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, Institute of Medical Science, The University of Tokyo, Minato-city, Tokyo, Japan
| | - Hiromi Hayashita-Kinoh
- Division of Cell and Gene Therapy, Nippon Medical School, Bunkyo-city, Tokyo, Japan.,Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan.,Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, Institute of Medical Science, The University of Tokyo, Minato-city, Tokyo, Japan
| | - Yasunobu Maruoka
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo, Japan
| | | | - Koichi Kimura
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan.,Department of General Medicine, The Institute of Medical Science, The University of Tokyo, Minato-city, Tokyo, Japan
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Takashi Okada
- Division of Cell and Gene Therapy, Nippon Medical School, Bunkyo-city, Tokyo, Japan. .,Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan. .,Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, Institute of Medical Science, The University of Tokyo, Minato-city, Tokyo, Japan.
| |
Collapse
|
9
|
Corlin L, Liu C, Lin H, Leone D, Yang Q, Ngo D, Levy D, Cupples LA, Gerszten RE, Larson MG, Vasan RS. Proteomic Signatures of Lifestyle Risk Factors for Cardiovascular Disease: A Cross-Sectional Analysis of the Plasma Proteome in the Framingham Heart Study. J Am Heart Assoc 2021; 10:e018020. [PMID: 33372532 PMCID: PMC7955453 DOI: 10.1161/jaha.120.018020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023]
Abstract
Background Proteomic biomarkers related to cardiovascular disease risk factors may offer insights into the pathogenesis of cardiovascular disease. We investigated whether modifiable lifestyle risk factors for cardiovascular disease are associated with distinctive proteomic signatures. Methods and Results We analyzed 1305 circulating plasma proteomic biomarkers (assayed using the SomaLogic platform) in 897 FHS (Framingham Heart Study) Generation 3 participants (mean age 46±8 years; 56% women; discovery sample) and 1121 FOS (Framingham Offspring Study) participants (mean age 52 years; 54% women; validation sample). Participants were free of hypertension, diabetes mellitus, and clinical cardiovascular disease. We used linear mixed effects models (adjusting for age, sex, body mass index, and family structure) to relate levels of each inverse-log transformed protein to 3 lifestyle factors (ie, smoking, alcohol consumption, and physical activity). A Bonferroni-adjusted P value indicated statistical significance (based on number of proteins and traits tested, P<4.2×10-6 in the discovery sample; P<6.85×10-4 in the validation sample). We observed statistically significant associations of 60 proteins with smoking (37/40 top proteins validated in FOS), 30 proteins with alcohol consumption (23/30 proteins validated), and 5 proteins with physical activity (2/3 proteins associated with the physical activity index validated). We assessed the associations of protein concentrations with previously identified genetic variants (protein quantitative trait loci) linked to lifestyle-related disease traits in the genome-wide-association study catalogue. The protein quantitative trait loci were associated with coronary artery disease, inflammation, and age-related mortality. Conclusions Our cross-sectional study from a community-based sample elucidated distinctive sets of proteins associated with 3 key lifestyle factors.
Collapse
Affiliation(s)
- Laura Corlin
- Boston University Department of MedicineBostonMA
- Department of Public Health and Community MedicineTufts University School of MedicineBostonMA
- Department of Civil and Environmental EngineeringTufts University School of EngineeringMedfordMA
| | - Chunyu Liu
- Boston University School of Public HealthBostonMA
| | | | | | - Qiong Yang
- Boston University School of Public HealthBostonMA
| | - Debby Ngo
- Department of MedicineBeth Israel Deaconess Medical CenterBostonMA
- Harvard Medical SchoolBostonMA
| | - Daniel Levy
- Population Sciences BranchNational Heart, Lung, and Blood Institute, National Institutes of HealthBethesdaMD
- Framingham Heart StudyFraminghamMA
| | - L. Adrienne Cupples
- Boston University School of Public HealthBostonMA
- Framingham Heart StudyFraminghamMA
| | - Robert E. Gerszten
- Department of MedicineBeth Israel Deaconess Medical CenterBostonMA
- Harvard Medical SchoolBostonMA
| | - Martin G. Larson
- Boston University School of Public HealthBostonMA
- Framingham Heart StudyFraminghamMA
| | - Ramachandran S. Vasan
- Boston University Department of MedicineBostonMA
- Boston University School of Public HealthBostonMA
- Framingham Heart StudyFraminghamMA
- Boston University Center for Computing and Data SciencesBostonMA
| |
Collapse
|
10
|
Dubinin MV, Talanov EY, Tenkov KS, Starinets VS, Belosludtseva NV, Belosludtsev KN. The Effect of Deflazacort Treatment on the Functioning of Skeletal Muscle Mitochondria in Duchenne Muscular Dystrophy. Int J Mol Sci 2020; 21:8763. [PMID: 33228255 PMCID: PMC7699511 DOI: 10.3390/ijms21228763] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 01/10/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe hereditary disease caused by a lack of dystrophin, a protein essential for myocyte integrity. Mitochondrial dysfunction is reportedly responsible for DMD. This study examines the effect of glucocorticoid deflazacort on the functioning of the skeletal-muscle mitochondria of dystrophin-deficient mdx mice and WT animals. Deflazacort administration was found to improve mitochondrial respiration of mdx mice due to an increase in the level of ETC complexes (complexes III and IV and ATP synthase), which may contribute to the normalization of ATP levels in the skeletal muscle of mdx animals. Deflazacort treatment improved the rate of Ca2+ uniport in the skeletal muscle mitochondria of mdx mice, presumably by affecting the subunit composition of the calcium uniporter of organelles. At the same time, deflazacort was found to reduce the resistance of skeletal mitochondria to MPT pore opening, which may be associated with a change in the level of ANT2 and CypD. In this case, deflazacort also affected the mitochondria of WT mice. The paper discusses the mechanisms underlying the effect of deflazacort on the functioning of mitochondria and contributing to the improvement of the muscular function of mdx mice.
Collapse
MESH Headings
- Adenine Nucleotide Translocator 2/genetics
- Adenine Nucleotide Translocator 2/metabolism
- Adenosine Triphosphate/biosynthesis
- Animals
- Calcium/metabolism
- Calcium Channels/genetics
- Calcium Channels/metabolism
- Peptidyl-Prolyl Isomerase F/genetics
- Peptidyl-Prolyl Isomerase F/metabolism
- Electron Transport Complex III/genetics
- Electron Transport Complex III/metabolism
- Electron Transport Complex IV/genetics
- Electron Transport Complex IV/metabolism
- Gene Expression Regulation/drug effects
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred mdx
- Mitochondria, Muscle/drug effects
- Mitochondria, Muscle/genetics
- Mitochondria, Muscle/metabolism
- Mitochondrial Proton-Translocating ATPases/genetics
- Mitochondrial Proton-Translocating ATPases/metabolism
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Dystrophy, Duchenne/drug therapy
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Pregnenediones/pharmacology
Collapse
Affiliation(s)
- Mikhail V. Dubinin
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia; (K.S.T.); (V.S.S.); (K.N.B.)
| | - Eugeny Yu. Talanov
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia; (E.Y.T.); (N.V.B.)
| | - Kirill S. Tenkov
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia; (K.S.T.); (V.S.S.); (K.N.B.)
| | - Vlada S. Starinets
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia; (K.S.T.); (V.S.S.); (K.N.B.)
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia; (E.Y.T.); (N.V.B.)
| | - Natalia V. Belosludtseva
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia; (E.Y.T.); (N.V.B.)
| | - Konstantin N. Belosludtsev
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia; (K.S.T.); (V.S.S.); (K.N.B.)
- Biophotonics Center, Prokhorov General Physics Institute, Russian Academy of Sciences, Vavilov st. 38, 119991 Moscow, Russia
| |
Collapse
|
11
|
Hoepers A, Alberti A, Freiberger V, Ventura L, Grigollo LR, Andreu CS, da Silva BB, Martins DF, Junior RJN, Streck EL, Comim CM. Effect of Aerobic Physical Exercise in an Animal Model of Duchenne Muscular Dystrophy. J Mol Neurosci 2020; 70:1552-1564. [PMID: 32507928 DOI: 10.1007/s12031-020-01565-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 04/22/2020] [Indexed: 12/31/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a condition caused by an amendment to the X chromosome, inherited as a recessive trait, and affects 1:3500 live births, especially males. Low-intensity exercise is known to decrease certain parameters associated with muscular degeneration in animal models of progressive muscular dystrophies. In the present study, 28-day-old male mdx and wild-type (wild) mice were used. The animals were subjected to a low-intensity physical exercise protocol for 8 weeks. It was found that this protocol was able to reduce oxidative stress in muscle tissue and in most of the CNS structures analyzed, with a significant increase in antioxidant activity in all analyzed structures. It is thus possible to infer that this exercise protocol was able to reduce oxidative stress and improve the energy metabolism in brain tissue and in the gastrocnemius muscle of animals with DMD.
Collapse
Affiliation(s)
- Andreza Hoepers
- Research Group on Neurodevelopment of Childhood and Adolescence, Laboratory of Experimental Neuroscience, Postgraduate Program in Health Sciences University of South Santa Catarina, Palhoça, SC, Brazil
| | - Adriano Alberti
- Research Group on Neurodevelopment of Childhood and Adolescence, Laboratory of Experimental Neuroscience, Postgraduate Program in Health Sciences University of South Santa Catarina, Palhoça, SC, Brazil.
| | - Viviane Freiberger
- Research Group on Neurodevelopment of Childhood and Adolescence, Laboratory of Experimental Neuroscience, Postgraduate Program in Health Sciences University of South Santa Catarina, Palhoça, SC, Brazil
| | - Letícia Ventura
- Research Group on Neurodevelopment of Childhood and Adolescence, Laboratory of Experimental Neuroscience, Postgraduate Program in Health Sciences University of South Santa Catarina, Palhoça, SC, Brazil
| | - Leoberto Ricardo Grigollo
- Research Group on Neurodevelopment of Childhood and Adolescence, Laboratory of Experimental Neuroscience, Postgraduate Program in Health Sciences University of South Santa Catarina, Palhoça, SC, Brazil
| | | | - Bruna Becker da Silva
- Research Group on Neurodevelopment of Childhood and Adolescence, Laboratory of Experimental Neuroscience, Postgraduate Program in Health Sciences University of South Santa Catarina, Palhoça, SC, Brazil
| | - Daniel Fernandes Martins
- Research Group on Neurodevelopment of Childhood and Adolescence, Laboratory of Experimental Neuroscience, Postgraduate Program in Health Sciences University of South Santa Catarina, Palhoça, SC, Brazil
| | | | - Emilio L Streck
- Laboratory of Experimental Physiopathology, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Clarissa M Comim
- Research Group on Neurodevelopment of Childhood and Adolescence, Laboratory of Experimental Neuroscience, Postgraduate Program in Health Sciences University of South Santa Catarina, Palhoça, SC, Brazil
| |
Collapse
|
12
|
Siciliano G, Chico L, Lo Gerfo A, Simoncini C, Schirinzi E, Ricci G. Exercise-Related Oxidative Stress as Mechanism to Fight Physical Dysfunction in Neuromuscular Disorders. Front Physiol 2020; 11:451. [PMID: 32508674 PMCID: PMC7251329 DOI: 10.3389/fphys.2020.00451] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/09/2020] [Indexed: 12/12/2022] Open
Abstract
Neuromuscular diseases (NMDs) are a group of often severely disabling disorders characterized by dysfunction in one of the main constituents of the motor unit, the cardinal anatomic-functional structure behind force and movement production. Irrespective of the different pathogenic mechanisms specifically underlying these disease conditions genetically determined or acquired, and the related molecular pathways involved in doing that, oxidative stress has often been shown to play a relevant role within the chain of events that induce or at least modulate the clinical manifestations of these disorders. Due to such a putative relevance of the imbalance of redox status occurring in contractile machinery and/or its neural drive in NMDs, physical exercise appears as one of the most important conditions able to positively interfere along an ideal axis, going from a deranged metabolic cell homeostasis in motor unit components to the reduced motor performance profile exhibited by the patient in everyday life. If so, it comes out that it would be important to identify a proper training program, suitable for load and type of exercise that is able to improve motor performance in adaptation and response to such a homeostatic imbalance. This review therefore analyzes the role of different exercise trainings on oxidative stress mechanisms, both in healthy and in NMDs, also including preclinical studies, to elucidate at which extent these can be useful to counteract muscle impairment associated to the disease, with the final aim of improving physical functions and quality of life of NMD patients.
Collapse
Affiliation(s)
- Gabriele Siciliano
- Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, Pisa, Italy
| | - Lucia Chico
- Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, Pisa, Italy
| | - Annalisa Lo Gerfo
- Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, Pisa, Italy
| | - Costanza Simoncini
- Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, Pisa, Italy
| | - Erika Schirinzi
- Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, Pisa, Italy
| | - Giulia Ricci
- Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, Pisa, Italy
| |
Collapse
|
13
|
Lanza G, Pino M, Fisicaro F, Vagli C, Cantone M, Pennisi M, Bella R, Bellomo M. Motor activity and Becker's muscular dystrophy: lights and shadows. PHYSICIAN SPORTSMED 2020; 48:151-160. [PMID: 31646922 DOI: 10.1080/00913847.2019.1684810] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/21/2019] [Indexed: 02/07/2023]
Abstract
Becker's disease is an inherited muscular dystrophy caused by mutations in the gene coding for the dystrophin protein that leads to quantitative and/or qualitative protein dysfunction and consequent muscle degeneration. Studies in animal models demonstrate that, while eccentric or high-intensity training are deleterious for dystrophic muscles, low-intensity aerobic training may slowdown the disease process and progression. Based on these preclinical data, the available studies in patients with Becker's muscular dystrophy undergoing workout on a cycle ergometer or on a treadmill, at a heart rate ≤65% of their maximal oxygen uptake, showed that aerobic exercise counteracts physical deterioration and loss of functional abilities. These findings suggest an improvement of physical performance through an increase of muscle strength, fatigue resistance, and dexterity capacities, without substantial evidence of acceleration of muscular damage progression. Therefore, individually tailored mild-to-moderate intensity aerobic exercise should be considered as part of the management of these patients. However, further research is necessary to define specific and standardized guidelines for the prescription of type, intensity, frequency, and duration of motor activities. In this review, we provided a summary of the impact of physical activity both in animal models and in patients with Becker's muscular dystrophy, with the intent to identify trends and gaps in knowledge. The potential therapeutic implications and future research directions have been also highlighted.
Collapse
Affiliation(s)
- Giuseppe Lanza
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
- Department of Neurology IC, Oasi Research Institute - IRCCS, Troina, Italy
| | - Marcello Pino
- School of Human and Social Science, University Kore of Enna, Enna, Italy
| | - Francesco Fisicaro
- Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, Catania, Italy
| | - Carla Vagli
- Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, Catania, Italy
| | - Mariagiovanna Cantone
- Department of Neurology, Sant'Elia Hospital, ASP Caltanissetta, Caltanissetta, Italy
| | - Manuela Pennisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Rita Bella
- Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, Catania, Italy
| | - Maria Bellomo
- School of Human and Social Science, University Kore of Enna, Enna, Italy
| |
Collapse
|
14
|
Muscular Dystrophy and Rehabilitation Interventions with Regenerative Treatment. CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS 2020. [DOI: 10.1007/s40141-019-00255-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
15
|
Dubinin MV, Talanov EY, Tenkov KS, Starinets VS, Mikheeva IB, Sharapov MG, Belosludtsev KN. Duchenne muscular dystrophy is associated with the inhibition of calcium uniport in mitochondria and an increased sensitivity of the organelles to the calcium-induced permeability transition. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165674. [PMID: 31926263 DOI: 10.1016/j.bbadis.2020.165674] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/02/2020] [Accepted: 01/06/2020] [Indexed: 12/13/2022]
Abstract
Duchenne muscular dystrophy (DMD) is characterized by a pronounced and progressive degradation of the structure of skeletal muscles, which decreases their strength and lowers endurance of the organism. At muscular dystrophy, mitochondria are known to undergo significant functional changes, which is manifested in a decreased efficiency of oxidative phosphorylation and impaired energy metabolism of the cell. It is believed that the DMD-induced functional changes of mitochondria are mainly associated with the dysregulation of Ca2+ homeostasis. This work examines the kinetic parameters of Ca2+ transport and the opening of the Ca2+-dependent MPT pore in the skeletal-muscle mitochondria of the dystrophin-deficient C57BL/10ScSn-mdx mice. As compared to the organelles of wild-type animals, skeletal-muscle mitochondria of mdx mice have been found to be much less efficient in respect to Ca2+ uniport, with the kinetics of Na+-dependent Ca2+ efflux not changing. The data obtained indicate that the decreased rate of Ca2+ uniport in the mitochondria of mdx mice may be associated with the increased level of the dominant negative subunit of Ca2+ uniporter (MCUb). The experiments have also shown that in mdx mice, skeletal-muscle mitochondria have low resistance to the induction of MPT, which may be related to a significantly increased expression of adenylate translocator (ANT2), a possible structural element of the MPT pore. The paper discusses how changes in the expression of calcium uniporter and putative components of the MPT pore caused by the development of DMD can affect Ca2+ homeostasis of skeletal-muscle mitochondria.
Collapse
Affiliation(s)
- Mikhail V Dubinin
- Mari State University, pl. Lenina 1, Yoshkar-Ola, Mari El 424001, Russia.
| | - Eugeny Yu Talanov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino, Moscow Region 142290, Russia
| | - Kirill S Tenkov
- Mari State University, pl. Lenina 1, Yoshkar-Ola, Mari El 424001, Russia
| | - Vlada S Starinets
- Mari State University, pl. Lenina 1, Yoshkar-Ola, Mari El 424001, Russia
| | - Irina B Mikheeva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino, Moscow Region 142290, Russia
| | - Mars G Sharapov
- Institute of Cell Biophysics, Russian Academy of Sciences, PSCBR RAS, Institutskaya 3, Pushchino, Moscow Region 142290, Russia
| | - Konstantin N Belosludtsev
- Mari State University, pl. Lenina 1, Yoshkar-Ola, Mari El 424001, Russia; Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino, Moscow Region 142290, Russia
| |
Collapse
|
16
|
Abstract
INTRODUCTION Duchenne muscular dystrophy (DMD) is a neuromuscular disease caused by a dystrophin protein deficiency. Dystrophin functions to stabilize and protect the muscle fiber during muscle contraction; thus, the absence of functional dystrophin protein leads to muscle injury. DMD patients experience progressive muscle necrosis, loss of function, and ultimately succumb to respiratory failure or cardiomyopathy. Exercise is known to improve muscle health and strength in healthy individuals as well as positively affect other systems. Because of this, exercise has been investigated as a potential therapeutic approach for DMD. METHODS This review aims to provide a concise presentation of the exercise literature with a focus on dystrophin-deficient muscle. Our intent was to identify trends and gaps in knowledge with an appreciation of exercise modality. RESULTS After compiling data from mouse and human studies, it became apparent that endurance exercises such as a swimming and voluntary wheel running have therapeutic potential in limb muscles of mice and respiratory training was beneficial in humans. However, in the comparatively few long-term investigations, the effect of low-intensity training on cardiac and respiratory muscles was contradictory. In addition, the effect of exercise on other systems is largely unknown. CONCLUSIONS To safely prescribe exercise as a therapy to DMD patients, multisystemic investigations are needed including the evaluation of respiratory and cardiac muscle.
Collapse
|
17
|
Fernandes DC, Cardoso-Nascimento JJA, Garcia BCC, Costa KB, Rocha-Vieira E, Oliveira MX, Machado ASD, Santos AP, Gaiad TP. Low intensity training improves redox status and reduces collagen fibers on dystrophic muscle. J Exerc Rehabil 2019; 15:213-223. [PMID: 31111003 PMCID: PMC6509444 DOI: 10.12965/jer.1938060.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 03/23/2019] [Indexed: 01/07/2023] Open
Abstract
Exercise therapy on skeletal muscle of muscular dystrophies has no defined parameters. The effect of low-intensity treadmill training on the oxidative stress markers and fibrosis on hindlimb muscles was investigated. Sixteen dystrophic male mdx animals were separated in trained (mdxT/n=8) and untrained (mdxNT/n=8) groups. Wild type animals (WT/n=8) were used as healthy control. The mdxT group runned at a horizontal treadmill (9 m/min, 30 min/day, 3 times/wk, 8 weeks). Gastrocnemius and tibial anterior muscles were collected for analysis of enzymatic/non-enzymatic oxidant activity, oxidative damage concentration, collagen fibers area morphometry. The mdxT group presented a lower collagen fiber area compared to mdxNT for gastrocnemius (P=0.025) and tibial anterior (P=0.000). Oxidative damage activity was higher in the mdxT group for both muscles compared to mdxNT. Catalase presented similar activity for tibial anterior (P=0.527) or gastrocnemius (P=0.323). Superoxide dismutase (P=0.003) and total antioxidant capacity (P=0.024) showed increased activity in the mdxT group at tibial anterior with no difference for gastrocnemius. Low-intensity training is considered therapeutic as it reduces collagen deposition while improving tissue redox status.
Collapse
Affiliation(s)
- Danielle Cristina Fernandes
- Department of Physical Therapy, Post Graduate Program of Rehabilitation and Functional Performance, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Jessica Junia A Cardoso-Nascimento
- Department of Physical Therapy, Post Graduate Program of Rehabilitation and Functional Performance, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Bruna Caroline C Garcia
- Post Graduate Program in Physiological Science, Brazilian Society of Physiology, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Karine Beatriz Costa
- Post Graduate Program in Physiological Science, Brazilian Society of Physiology, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Etel Rocha-Vieira
- Post Graduate Program in Physiological Science, Brazilian Society of Physiology, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Murilo Xavier Oliveira
- Department of Physical Therapy, Post Graduate Program of Rehabilitation and Functional Performance, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Alex Sander D Machado
- Post Graduate Program in Physiological Science, Brazilian Society of Physiology, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Ana Paula Santos
- Department of Physical Therapy, Post Graduate Program of Rehabilitation and Functional Performance, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Thaís Peixoto Gaiad
- Department of Physical Therapy, Post Graduate Program of Rehabilitation and Functional Performance, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| |
Collapse
|
18
|
Chienwichai P, Reamtong O, Boonyuen U, Pisitkun T, Somparn P, Tharnpoophasiam P, Worakhunpiset S, Topanurak S. Hepatic protein Carbonylation profiles induced by lipid accumulation and oxidative stress for investigating cellular response to non-alcoholic fatty liver disease in vitro. Proteome Sci 2019; 17:1. [PMID: 30962768 PMCID: PMC6438040 DOI: 10.1186/s12953-019-0149-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/11/2019] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is caused by excessive accumulation of fat within the liver, leading to further severe conditions such as non-alcoholic steatohepatitis (NASH). Progression of healthy liver to steatosis and NASH is not yet fully understood in terms of process and response. Hepatic oxidative stress is believed to be one of the factors driving steatosis to NASH. Oxidative protein modification is the major cause of protein functional impairment in which alteration of key hepatic enzymes is likely to be a crucial factor for NAFLD biology. In the present study, we aimed to discover carbonylated protein profiles involving in NAFLD biology in vitro. METHODS Hepatocyte cell line was used to induce steatosis with fatty acids (FA) in the presence and absence of menadione (oxidative stress inducer). Two-dimensional gel electrophoresis-based proteomics and dinitrophenyl hydrazine derivatization technique were used to identify carbonylated proteins. Sequentially, in order to view changes in protein carbonylation pathway, enrichment using Funrich algorithm was performed. The selected carbonylated proteins were validated with western blot and carbonylated sites were further identified by high-resolution LC-MS/MS. RESULTS Proteomic results and pathway analysis revealed that carbonylated proteins are involved in NASH pathogenesis pathways in which most of them play important roles in energy metabolisms. Particularly, carbonylation level of ATP synthase subunit α (ATP5A), a key protein in cellular respiration, was reduced after FA and FA with oxidative stress treatment, whereas its expression was not altered. Carbonylated sites on this protein were identified and it was revealed that these sites are located in nucleotide binding region. Modification of these sites may, therefore, disturb ATP5A activity. As a consequence, the lower carbonylation level on ATP5A after FA treatment solely or with oxidative stress can increase ATP production. CONCLUSIONS The reduction in carbonylated level of ATP5A might occur to generate more energy in response to pathological conditions, in our case, fat accumulation and oxidative stress in hepatocytes. This would imply the association between protein carbonylation and molecular response to development of steatosis and NASH.
Collapse
Affiliation(s)
- Peerut Chienwichai
- Faculty of Medicine and Public Health, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, 10210 Thailand
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400 Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400 Thailand
| | - Usa Boonyuen
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400 Thailand
| | - Trairak Pisitkun
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Poorichaya Somparn
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Prapin Tharnpoophasiam
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400 Thailand
| | - Suwalee Worakhunpiset
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400 Thailand
| | - Supachai Topanurak
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400 Thailand
- Center of Excellence of Antibody Research, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400 Thailand
| |
Collapse
|
19
|
Lindsay A, Larson AA, Verma M, Ervasti JM, Lowe DA. Isometric resistance training increases strength and alters histopathology of dystrophin-deficient mouse skeletal muscle. J Appl Physiol (1985) 2018; 126:363-375. [PMID: 30571283 DOI: 10.1152/japplphysiol.00948.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mutation to the dystrophin gene causes skeletal muscle weakness in patients with Duchenne muscular dystrophy (DMD) or Becker muscular dystrophy (BMD). Deliberation continues regarding implications of prescribing exercise for these patients. The purpose of this study was to determine whether isometric resistance exercise (~10 tetanic contractions/session) improves skeletal muscle strength and histopathology in the mdx mouse model of DMD. Three isometric training sessions increased in vivo isometric torque (22%) and contractility rates (54%) of anterior crural muscles of mdx mice. Mice expressing a BMD-causing missense mutated dystrophin on the mdx background showed comparable increases in torque (22%), while wild-type mice showed less change (11%). Increases in muscle function occurred within 1 h and peaked 3 days posttraining; however, the adaptation was lost after 7 days unless retrained. Six isometric training sessions over 4 wk caused increased isometric torque (28%) and contractility rates (22-28%), reduced fibrosis, as well as greater uniformity of fiber cross-sectional areas, fewer embryonic myosin heavy-chain-positive fibers, and more satellite cells in tibialis anterior muscle compared with the contralateral untrained muscle. Ex vivo functional analysis of isolated extensor digitorum longus (EDL) muscle from the trained hindlimb revealed greater absolute isometric force, lower passive stiffness, and a lower susceptibility to eccentric contraction-induced force loss compared with untrained EDL muscle. Overall, these data support the concept that exercise training in the form of isometric tetanic contractions can improve contractile function of dystrophin-deficient muscle, indicating a potential role for enhancing muscle strength in patients with DMD and BMD. NEW & NOTEWORTHY We focused on adaptive responses of dystrophin-deficient mouse skeletal muscle to isometric contraction training and report that in the absence of dystrophin (or in the presence of a mutated dystrophin), strength and muscle histopathology are improved. Results suggest that the strength gains are associated with fiber hypertrophy, reduced fibrosis, increased number of satellite cells, and blunted eccentric contraction-induced force loss in vitro. Importantly, there was no indication that the isometric exercise training was deleterious to dystrophin-deficient muscle.
Collapse
Affiliation(s)
- Angus Lindsay
- Division of Rehabilitation Science and Division of Physical Therapy, Department of Rehabilitation Medicine, University of Minnesota , Minneapolis, Minnesota.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota , Minneapolis, Minnesota
| | - Alexie A Larson
- Department of Integrative Biology and Physiology, University of Minnesota , Minneapolis, Minnesota
| | - Mayank Verma
- Department of Integrative Biology and Physiology, University of Minnesota , Minneapolis, Minnesota.,Medical Scientist Training Program, University of Minnesota Medical School , Minneapolis, Minnesota
| | - James M Ervasti
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota , Minneapolis, Minnesota
| | - Dawn A Lowe
- Division of Rehabilitation Science and Division of Physical Therapy, Department of Rehabilitation Medicine, University of Minnesota , Minneapolis, Minnesota
| |
Collapse
|
20
|
Gorini G, Gamberi T, Fiaschi T, Mannelli M, Modesti A, Magherini F. Irreversible plasma and muscle protein oxidation and physical exercise. Free Radic Res 2018; 53:126-138. [PMID: 30513020 DOI: 10.1080/10715762.2018.1542141] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The imbalance between the reactive oxygen (ROS) and nitrogen (RNS) species production and their handling by the antioxidant machinery (low molecular weight antioxidant molecules and antioxidant enzymes), also known as oxidative stress, is a condition caused by physiological and pathological processes. Moreover, oxidative stress may be due to an overproduction of free radicals during physical exercise. Excess of radical species leads to the modification of molecules, such as proteins - the most susceptible to oxidative modification - lipids and DNA. With regard to the oxidation of proteins, carbonylation is an oxidative modification that has been widely described. Several studies have detected changes in the total amount of protein carbonyls following different types of physical exercise, but only few of these identified the specific amino acidic residues targets of such oxidation. In this respect, proteomic approaches allow to identify the proteins susceptible to carbonylation and in many cases, it is also possible to identify the specific protein carbonylation sites. This review focuses on the role of protein oxidation, and specifically carbonyl formation, for plasma and skeletal muscle proteins, following different types of physical exercise performed at different intensities. Furthermore, we focused on the proteomic strategies used to identify the specific protein targets of carbonylation. Overall, our analysis suggests that regular physical activity promotes a protection against protein carbonylation, due to the activation of the antioxidant defence or of the turnover of protein carbonyls. However, we can conclude that from the comprehensive bibliography analysed, there is no clearly defined specific physiological role about this post-translational modification of proteins.
Collapse
Affiliation(s)
- Giulia Gorini
- a Department of Biomedical, Experimental and Clinical Sciences "Mario Serio" , University of Florence , Florence , Italy
| | - Tania Gamberi
- a Department of Biomedical, Experimental and Clinical Sciences "Mario Serio" , University of Florence , Florence , Italy
| | - Tania Fiaschi
- a Department of Biomedical, Experimental and Clinical Sciences "Mario Serio" , University of Florence , Florence , Italy
| | - Michele Mannelli
- a Department of Biomedical, Experimental and Clinical Sciences "Mario Serio" , University of Florence , Florence , Italy
| | - Alessandra Modesti
- a Department of Biomedical, Experimental and Clinical Sciences "Mario Serio" , University of Florence , Florence , Italy
| | - Francesca Magherini
- a Department of Biomedical, Experimental and Clinical Sciences "Mario Serio" , University of Florence , Florence , Italy
| |
Collapse
|
21
|
Ito N, Ruegg UT, Takeda S. ATP-Induced Increase in Intracellular Calcium Levels and Subsequent Activation of mTOR as Regulators of Skeletal Muscle Hypertrophy. Int J Mol Sci 2018; 19:ijms19092804. [PMID: 30231482 PMCID: PMC6163678 DOI: 10.3390/ijms19092804] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/12/2018] [Accepted: 09/13/2018] [Indexed: 12/13/2022] Open
Abstract
Intracellular signaling pathways, including the mammalian target of rapamycin (mTOR) and the mitogen-activated protein kinase (MAPK) pathway, are activated by exercise, and promote skeletal muscle hypertrophy. However, the mechanisms by which these pathways are activated by physiological stimulation are not fully understood. Here we show that extracellular ATP activates these pathways by increasing intracellular Ca2+ levels ([Ca2+]i), and promotes muscle hypertrophy. [Ca2+]i in skeletal muscle was transiently increased after exercise. Treatment with ATP induced the increase in [Ca2+]i through the P2Y₂ receptor/inositol 1,4,5-trisphosphate receptor pathway, and subsequent activation of mTOR in vitro. In addition, the ATP-induced increase in [Ca2+]i coordinately activated Erk1/2, p38 MAPK and mTOR that upregulated translation of JunB and interleukin-6. ATP also induced an increase in [Ca2+]i in isolated soleus muscle fibers, but not in extensor digitorum longus muscle fibers. Furthermore, administration of ATP led to muscle hypertrophy in an mTOR- and Ca2+-dependent manner in soleus, but not in plantaris muscle, suggesting that ATP specifically regulated [Ca2+]i in slow muscles. These findings suggest that ATP and [Ca2+]i are important mediators that convert mechanical stimulation into the activation of intracellular signaling pathways, and point to the P2Y receptor as a therapeutic target for treating muscle atrophy.
Collapse
Affiliation(s)
- Naoki Ito
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira 187-8502, Japan.
| | - Urs T Ruegg
- Pharmacology, Geneva-Lausanne School of Pharmaceutical Sciences, University of Geneva, CH 1211 Geneva, Switzerland.
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira 187-8502, Japan.
| |
Collapse
|
22
|
Díaz D, Piquer-Gil M, Recio JS, Martínez-Losa MM, Alonso JR, Weruaga E, Álvarez-Dolado M. Bone marrow transplantation improves motor activity in a mouse model of ataxia. J Tissue Eng Regen Med 2018; 12:e1950-e1961. [PMID: 29222849 DOI: 10.1002/term.2626] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 11/06/2017] [Accepted: 11/29/2017] [Indexed: 01/11/2023]
Abstract
Ataxias are locomotor disorders that can have an origin both neural and muscular, although both impairments are related. Unfortunately, ataxia has no cure, and the current therapies are aimed at motor re-education or muscular reinforcement. Nevertheless, cell therapy is becoming a promising approach to deal with incurable neural diseases, including neuromuscular ataxias. Here, we have used a model of ataxia, the Purkinje Cell Degeneration (PCD) mutant mouse, to study the effect of healthy (wild-type) bone marrow transplantation on the restoration of defective mobility. Bone marrow transplants (from both mutant and healthy donors) were performed in wild-type and PCD mice. Then, a wide battery of behavioural tests was employed to determine possible motor amelioration in mutants. Finally, cerebellum, spinal cord, and muscle were analysed to study the integration of the transplant-derived cells and the origin of the behavioural changes. Our results demonstrated that the transplant of wild-type bone marrow restores the mobility of PCD mice, increasing their capabilities of movement (52-100% of recovery), exploration (20-71% of recovery), speed (35% of recovery), and motor coordination (25% of recovery). Surprisingly, our results showed that bone marrow transplant notably improves the skeletal muscle structure, which is severely damaged in the mutants, rather than ameliorating the central nervous system. Although a multimodal effect of the transplant is not discarded, muscular improvements appear to be the basis of this motor recovery. Furthermore, the results from our study indicate that bone marrow stem cell therapy can be a safe and effective alternative for dealing with movement disorders such as ataxias.
Collapse
Affiliation(s)
- David Díaz
- Laboratory of Neuronal Plasticity and Neurorepair, Institute for Neuroscience of Castile and León (INCyL), Universidad de Salamanca, Salamanca, Spain.,Institute of Biomedical Research of Salamanca, IBSAL, Salamanca, Spain
| | - Marina Piquer-Gil
- Laboratory of Cell Therapy for Neuropathologies, Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, CSIC, Seville, Spain
| | - Javier Sánchez Recio
- Laboratory of Neuronal Plasticity and Neurorepair, Institute for Neuroscience of Castile and León (INCyL), Universidad de Salamanca, Salamanca, Spain
| | - María Magdalena Martínez-Losa
- Laboratory of Cell Therapy for Neuropathologies, Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, CSIC, Seville, Spain
| | - José Ramón Alonso
- Laboratory of Neuronal Plasticity and Neurorepair, Institute for Neuroscience of Castile and León (INCyL), Universidad de Salamanca, Salamanca, Spain.,Institute of Biomedical Research of Salamanca, IBSAL, Salamanca, Spain.,Instituto de Alta Investigación, Universidad de Tarapacá, Arica, Chile
| | - Eduardo Weruaga
- Laboratory of Neuronal Plasticity and Neurorepair, Institute for Neuroscience of Castile and León (INCyL), Universidad de Salamanca, Salamanca, Spain.,Institute of Biomedical Research of Salamanca, IBSAL, Salamanca, Spain
| | | |
Collapse
|
23
|
Abstract
Duchenne muscular dystrophy is a lethal genetic disease of muscle wasting for which there is no cure. In healthy muscle, structure and function improve dramatically with exercise. In patients with dystrophy, little is known about the effects of exercise. As contemporary therapies rapidly progress and patients become more active, there is a need to understand the effects of exercise.
Collapse
|
24
|
Gaiad TP, Oliveira MX, Lobo AR, Libório LR, Pinto PAF, Fernandes DC, Santos AP, Ambrósio CE, Machado ASD. Low-intensity training provokes adaptive extracellular matrix turnover of a muscular dystrophy model. J Exerc Rehabil 2017; 13:693-703. [PMID: 29326902 PMCID: PMC5747205 DOI: 10.12965/jer.1735094.547] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 12/05/2017] [Indexed: 11/22/2022] Open
Abstract
Recommendations of therapeutic exercise in Duchenne muscular dystrophy are still controversial. The hypothesis that a low-intensity training (LIT) protocol leads to muscle adaptations on mdx mice model was tested. Dystrophic male mice with 8 weeks old were separated in exercised (mdxE, n= 8) and sedentary (mdxC, n= 8) groups. Wild-type mice were used as control (WT, n= 8) group. Exercised group underwent a LIT protocol (9 m/min, 30 min, 3 days/wk, 60 days) on a horizontal treadmill. At day 60 all animals were analyzed regarding parameters of markers of muscle lesion and extracellular matrix turnover of muscle tissue by collagens fibers on tibial anterior muscle. Histomorphometry attested that centrally located nuclei fibers and the coefficient of variance of minimal Feret’s diameter was similar in mdxE and mdxC groups (P= 1.000) and both groups presented higher mean values than WT group (P< 0.001). Fraction area of collagen fibers of mdxE group was lower than mdxC group (P= 0,027) and similar to WT group (P= 0,751). Intramuscular area of Col3 of the mdxE group was higher than mdxC and WT groups (P<0.001). Intramuscular area of Col1 on the mdxE group was similar to the mdxC group (P= 1.000) and both groups were higher than WT group (P< 0.001). LIT protocol had not influenced muscle injuries resulting from the dystrophin-deficiency membrane fragility. Although, LIT had provoked adaptations on extracellular matrix bringing higher elastic feature to dystrophic muscle tissue.
Collapse
Affiliation(s)
- Thaís P Gaiad
- Department of Physical Therapy, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | - Murilo X Oliveira
- Department of Physical Therapy, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | - Adalfredo R Lobo
- Institute of Agriculture Scinces, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Unaí, Brazil
| | - Lívia R Libório
- Department of Physical Therapy, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | - Priscilla A F Pinto
- Department of Physical Therapy, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | - Danielle C Fernandes
- Department of Physical Therapy, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | - Ana Paula Santos
- Department of Physical Therapy, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | | | - Alex Sander D Machado
- Faculty of Medicine FAMED, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| |
Collapse
|
25
|
Proteome analysis in dystrophic mdx mouse muscle reveals a drastic alteration of key metabolic and contractile proteins after chronic exercise and the potential modulation by anti-oxidant compounds. J Proteomics 2017; 170:43-58. [PMID: 28966053 DOI: 10.1016/j.jprot.2017.09.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 09/05/2017] [Accepted: 09/15/2017] [Indexed: 11/21/2022]
Abstract
Weakness and fatigability are typical features of Duchenne muscular dystrophy patients and are aggravated in dystrophic mdx mice by chronic treadmill exercise. In the present study, we describe, the pattern of differentially abundant spots that is associated to the worsening of dystrophy phenotype induced by chronic exercise. Our proteomic analysis pointed out 34 protein spots with different abundance between sedentary and exercised mdx mice. These proteins belong mostly to glucose metabolism, energy production and sarcomere structure categories. Interestingly exercise induced an increase of typical fast twitch fiber proteins (Troponin T fast skeletal muscle, Troponin I fast skeletal muscle and Myozenin-1) combined with an increase of several glycolytic enzymes. Concerning energy transfer, Adenylate kinase, showed a marked decrease when compared with non-exercised mdx. The decline of this enzyme correlates with increased Creatin kinase enzyme, suggesting that a compensatory energy metabolism mechanism could be activated in mdx mouse skeletal muscle following exercise. In addition, we analysed muscles from exercised mdx mice treated with two natural anti-oxidant compounds, apocynin and taurine, that in our previous study, were proved to be beneficial on some pathology related parameters, and we showed that these compounds can counteract exercise-induced changes in the abundance of several proteins. SIGNIFICANCE Mdx mouse model of Duchenne muscular dystrophy shows a phenotype of the disorder milder than in human sufferers. This phenotype can be worsened by a different protocols of chronic exercise. These protocols can mimic the muscle progressive damage observed in humans, can allow studying the effects of inadequate training on dystrophic muscles and have been largely used to assess the ability of a drug to reduce the damage induced by exercise. In this study, we describe for the first time, the pattern of protein variation associated with the worsening of dystrophy phenotype induced by chronic exercise. Our proteomic analysis pointed out 34 protein spots with different amount between sedentary and exercised mdx mice. These proteins belong mostly to glucose metabolism, energy production and sarcomere structure categories and their variation indicates that mdx exercised muscle are not able to carry out the metabolic changes associated to fast-to-slow transition typically observed in aerobically trained muscle.
Collapse
|
26
|
Hyzewicz J, Tanihata J, Kuraoka M, Nitahara-Kasahara Y, Beylier T, Ruegg UT, Vater A, Takeda S. Low-Intensity Training and the C5a Complement Antagonist NOX-D21 Rescue the mdx Phenotype through Modulation of Inflammation. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:1147-1161. [PMID: 28315675 DOI: 10.1016/j.ajpath.2016.12.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 12/19/2016] [Accepted: 12/27/2016] [Indexed: 12/17/2022]
Abstract
Inflammatory events occurring in dystrophic muscles contribute to the progression of Duchenne muscular dystrophy (DMD). Low-intensity training (LIT) attenuates the phenotype of mdx mice, an animal model for DMD. Therefore, we postulated that LIT could have anti-inflammatory properties. We assessed levels of inflammatory cytokines and infiltrated immune cells in gastrocnemius muscle of mdx mice after LIT. We detected high levels of complement component C5a, chemokine ligand (CCL) 2, CD68+ monocytes/macrophages, and proinflammatory M1 macrophages in muscles of mdx mice. LIT decreased CCL2 levels, increased CD68+ cell numbers, and shifted the macrophage population to the regenerative M2 type. We investigated whether inhibition of C5a or CCL2 with L-aptamers could mimic the effects of LIT. Although no effect of CCL2 inhibition was detected, treatment with the C5a inhibitor, NOX-D21, rescued the phenotype of nonexercised mdx mice, but not of exercised ones. In both cases, the level of CD68+ cells increased and macrophage populations leaned toward the inflammatory M1 type. In muscles of nonexercised treated mice, the level of IL-1 receptor antagonist increased, damage decreased, and fibers were switched toward the glycolytic fast type; in muscles of exercised mice, fibers were switched to the oxidative slow type. These results reveal the effects of LIT on the inflammatory status of mdx mice and suggest that NOX-D21 could be an anti-inflammatory drug for DMD.
Collapse
Affiliation(s)
- Janek Hyzewicz
- Department of Molecular Therapy, National Institute of Neuroscience, National Centre of Neurology and Psychiatry, Tokyo, Japan
| | - Jun Tanihata
- Department of Molecular Therapy, National Institute of Neuroscience, National Centre of Neurology and Psychiatry, Tokyo, Japan
| | - Mutsuki Kuraoka
- Department of Molecular Therapy, National Institute of Neuroscience, National Centre of Neurology and Psychiatry, Tokyo, Japan
| | - Yuko Nitahara-Kasahara
- Department of Molecular Therapy, National Institute of Neuroscience, National Centre of Neurology and Psychiatry, Tokyo, Japan
| | - Teiva Beylier
- Department of Molecular Therapy, National Institute of Neuroscience, National Centre of Neurology and Psychiatry, Tokyo, Japan
| | - Urs T Ruegg
- Laboratory of Pharmacology, University of Geneva, Geneva, Switzerland
| | - Axel Vater
- Drug Discovery and Preclinical Development, NOXXON Pharma, Berlin, Germany
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Centre of Neurology and Psychiatry, Tokyo, Japan.
| |
Collapse
|
27
|
Petryk A, Polgreen LE, Grames M, Lowe DA, Hodges JS, Karachunski P. Feasibility and tolerability of whole-body, low-intensity vibration and its effects on muscle function and bone in patients with dystrophinopathies: a pilot study. Muscle Nerve 2017; 55:875-883. [PMID: 27718512 PMCID: PMC5385164 DOI: 10.1002/mus.25431] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 10/03/2016] [Accepted: 10/06/2016] [Indexed: 12/12/2022]
Abstract
Introduction Dystrophinopathies are X‐linked muscle degenerative disorders that result in progressive muscle weakness complicated by bone loss. This study's goal was to evaluate feasibility and tolerability of whole‐body, low‐intensity vibration (WBLIV) and its potential effects on muscle and bone in patients with Duchenne or Becker muscular dystrophy. Methods This 12‐month pilot study included 5 patients (age 5.9–21.7 years) who used a low‐intensity Marodyne LivMD plate vibrating at 30–90 Hz for 10 min/day for the first 6 months. Timed motor function tests, myometry, and peripheral quantitative computed tomography were performed at baseline and at 6 and 12 months. Results Motor function and lower extremity muscle strength remained either unchanged or improved during the intervention phase, followed by deterioration after WBLIV discontinuation. Indices of bone density and geometry remained stable in the tibia. Conclusions WBLIV was well tolerated and appeared to have a stabilizing effect on lower extremity muscle function and bone measures. Muscle Nerve55: 875–883, 2017
Collapse
Affiliation(s)
- Anna Petryk
- Division of Pediatric Endocrinology, University of Minnesota Masonic Children's Hospital, 2450 Riverside Avenue, Minneapolis, Minnesota, 55454, USA.,Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Lynda E Polgreen
- Division of Pediatric Endocrinology and Metabolism, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Molly Grames
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Dawn A Lowe
- Department of Physical Medicine and Rehabilitation, University of Minnesota, Minneapolis, Minnesota, USA
| | - James S Hodges
- Division of Biostatistics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Peter Karachunski
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA.,Department of Neurology, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
28
|
Capogrosso RF, Mantuano P, Cozzoli A, Sanarica F, Massari AM, Conte E, Fonzino A, Giustino A, Rolland JF, Quaranta A, De Bellis M, Camerino GM, Grange RW, De Luca A. Contractile efficiency of dystrophic mdx mouse muscle: in vivo and ex vivo assessment of adaptation to exercise of functional end points. J Appl Physiol (1985) 2017; 122:828-843. [PMID: 28057817 DOI: 10.1152/japplphysiol.00776.2015] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 01/03/2017] [Accepted: 01/03/2017] [Indexed: 11/22/2022] Open
Abstract
Progressive weakness is a typical feature of Duchenne muscular dystrophy (DMD) patients and is exacerbated in the benign mdx mouse model by in vivo treadmill exercise. We hypothesized a different threshold for functional adaptation of mdx muscles in response to the duration of the exercise protocol. In vivo weakness was confirmed by grip strength after 4, 8, and 12 wk of exercise in mdx mice. Torque measurements revealed that exercise-related weakness in mdx mice correlated with the duration of the protocol, while wild-type (WT) mice were stronger. Twitch and tetanic forces of isolated diaphragm and extensor digitorum longus (EDL) muscles were lower in mdx compared with WT mice. In mdx, both muscle types exhibited greater weakness after a single exercise bout, but only in EDL after a long exercise protocol. As opposite to WT muscles, mdx EDL ones did not show any exercise-induced adaptations against eccentric contraction force drop. qRT-PCR analysis confirmed the maladaptation of genes involved in metabolic and structural remodeling, while damage-related genes remained significantly upregulated and angiogenesis impaired. Phosphorylated AMP kinase level increased only in exercised WT muscle. The severe histopathology and the high levels of muscular TGF-β1 and of plasma matrix metalloproteinase-9 confirmed the persistence of muscle damage in mdx mice. Therefore, dystrophic muscles showed a partial degree of functional adaptation to chronic exercise, although not sufficient to overcome weakness nor signs of damage. The improved understanding of the complex mechanisms underlying maladaptation of dystrophic muscle paves the way to a better managment of DMD patients.NEW & NOTEWORTHY We focused on the adaptation/maladaptation of dystrophic mdx mouse muscles to a standard protocol of exercise to provide guidance in the development of more effective drug and physical therapies in Duchenne muscular dystrophy. The mdx muscles showed a modest functional adaptation to chronic exercise, but it was not sufficient to overcome the progressive in vivo weakness, nor to counter signs of muscle damage. Therefore, a complex involvement of multiple systems underlies the maladaptive response of dystrophic muscle.
Collapse
Affiliation(s)
- Roberta Francesca Capogrosso
- Section of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari "Aldo Moro," Bari, Italy.,Department of Chemical, Toxicological and Pharmacological Drug Studies, Catholic University "Our Lady of Good Counsel," Tirana, Albany
| | - Paola Mantuano
- Section of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari "Aldo Moro," Bari, Italy
| | - Anna Cozzoli
- Section of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari "Aldo Moro," Bari, Italy
| | - Francesca Sanarica
- Section of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari "Aldo Moro," Bari, Italy
| | - Ada Maria Massari
- Section of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari "Aldo Moro," Bari, Italy
| | - Elena Conte
- Section of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari "Aldo Moro," Bari, Italy
| | - Adriano Fonzino
- Section of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari "Aldo Moro," Bari, Italy
| | - Arcangela Giustino
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari "Aldo Moro," Bari, Italy
| | - Jean-Francois Rolland
- Section of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari "Aldo Moro," Bari, Italy
| | - Angelo Quaranta
- Department of Veterinary Medicine, University of Bari "Aldo Moro," Valenzano (BA), Italy
| | - Michela De Bellis
- Section of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari "Aldo Moro," Bari, Italy
| | - Giulia Maria Camerino
- Section of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari "Aldo Moro," Bari, Italy
| | - Robert W Grange
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech University, Blacksburg, Virginia; and
| | - Annamaria De Luca
- Section of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari "Aldo Moro," Bari, Italy;
| |
Collapse
|
29
|
Padrão AI, Ferreira R, Amado F, Vitorino R, Duarte JA. Uncovering the exercise-related proteome signature in skeletal muscle. Proteomics 2016; 16:816-30. [PMID: 26632760 DOI: 10.1002/pmic.201500382] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 10/13/2015] [Accepted: 11/30/2015] [Indexed: 01/01/2023]
Abstract
Exercise training has been recommended as a nonpharmacological strategy for the prevention and attenuation of skeletal muscle atrophy in distinct pathophysiological conditions. Despite the well-established phenotypic alterations, the molecular mechanisms underlying exercise-induced skeletal muscle remodeling are poorly characterized. Proteomics based on mass spectrometry have been successfully applied for the characterization of skeletal muscle proteome, representing a pivotal approach for the wide characterization of the molecular networks that lead to skeletal muscle remodeling. Nevertheless, few studies were performed to characterize the exercise-induced proteome remodeling of skeletal muscle, with only six research papers focused on the cross-talk between exercise and pathophysiological conditions. In order to add new insights on the impact of distinct exercise programs on skeletal muscle proteome, molecular network analysis was performed with bioinformatics tools. This analysis highlighted an exercise-related proteome signature characterized by the up-regulation of the capacity for ATP generation, oxygen delivery, antioxidant capacity and regulation of mitochondrial protein synthesis. Chronic endurance training up-regulates the tricarboxylic acid cycle and oxidative phosphorylation system, whereas the release of calcium ion into cytosol and amino acid metabolism are the biological processes up-regulated by a single bout of exercise. Other issues as exercise intensity, load, mode and regimen as well as muscle type also influence the exercise-induced proteome signature. The comprehensive analysis of the molecular networks modulated by exercise training in health and disease, taking in consideration all these variables, might not only support the therapeutic effect of exercise but also highlight novel targets for the development of enhanced pharmacological strategies.
Collapse
Affiliation(s)
- Ana Isabel Padrão
- QOPNA, Department of Chemistry, University of Aveiro, Aveiro, Portugal.,CIAFEL, Faculty of Sports, University of Porto, Porto, Portugal
| | - Rita Ferreira
- QOPNA, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Francisco Amado
- QOPNA, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Rui Vitorino
- Department of Medical Sciences and Institute for Biomedicine - iBiMED, University of Aveiro, Aveiro, Portugal.,Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal
| | | |
Collapse
|
30
|
Hulmi JJ, Hentilä J, DeRuisseau KC, Oliveira BM, Papaioannou KG, Autio R, Kujala UM, Ritvos O, Kainulainen H, Korkmaz A, Atalay M. Effects of muscular dystrophy, exercise and blocking activin receptor IIB ligands on the unfolded protein response and oxidative stress. Free Radic Biol Med 2016; 99:308-322. [PMID: 27554968 DOI: 10.1016/j.freeradbiomed.2016.08.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/10/2016] [Accepted: 08/12/2016] [Indexed: 12/17/2022]
Abstract
Protein homeostasis in cells, proteostasis, is maintained through several integrated processes and pathways and its dysregulation may mediate pathology in many diseases including Duchenne muscular dystrophy (DMD). Oxidative stress, heat shock proteins, endoplasmic reticulum (ER) stress and its response, i.e. unfolded protein response (UPR), play key roles in proteostasis but their involvement in the pathology of DMD are largely unknown. Moreover, exercise and activin receptor IIB blocking are two strategies that may be beneficial to DMD muscle, but studies to examine their effects on these proteostasis pathways are lacking. Therefore, these pathways were examined in the muscle of mdx mice, a model of DMD, under basal conditions and in response to seven weeks of voluntary exercise and/or activin receptor IIB ligand blocking using soluble activin receptor-Fc (sAcvR2B-Fc) administration. In conjunction with reduced muscle strength, mdx muscle displayed greater levels of UPR/ER-pathway indicators including greater protein levels of IRE1α, PERK and Atf6b mRNA. Downstream to IRE1α and PERK, spliced Xbp1 mRNA and phosphorylation of eIF2α, were also increased. Most of the cytoplasmic and ER chaperones and mitochondrial UPR markers were unchanged in mdx muscle. Oxidized glutathione was greater in mdx and was associated with increases in lysine acetylated proteome and phosphorylated sirtuin 1. Exercise increased oxidative stress when performed independently or combined with sAcvR2B-Fc administration. Although neither exercise nor sAcvR2B-Fc administration imparted a clear effect on ER stress/UPR pathways or heat shock proteins, sAcvR2B-Fc administration increased protein expression levels of GRP78/BiP, a triggering factor for ER stress/UPR activation and TxNIP, a redox-regulator of ER stress-induced inflammation. In conclusion, the ER stress and UPR are increased in mdx muscle. However, these processes are not distinctly improved by voluntary exercise or blocking activin receptor IIB ligands and thus do not appear to be optimal therapeutic choices for improving proteostasis in DMD.
Collapse
MESH Headings
- Activating Transcription Factor 6/genetics
- Activating Transcription Factor 6/metabolism
- Activin Receptors, Type II/antagonists & inhibitors
- Activin Receptors, Type II/genetics
- Activin Receptors, Type II/metabolism
- Animals
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Disease Models, Animal
- Endoplasmic Reticulum Chaperone BiP
- Endoplasmic Reticulum Stress/drug effects
- Endoribonucleases/genetics
- Endoribonucleases/metabolism
- Eukaryotic Initiation Factor-2/genetics
- Eukaryotic Initiation Factor-2/metabolism
- Gene Expression Regulation
- Heat-Shock Proteins/genetics
- Heat-Shock Proteins/metabolism
- Humans
- Immunoglobulin Fc Fragments/pharmacology
- Mice
- Mice, Inbred mdx
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Muscular Dystrophy, Duchenne/therapy
- Phosphorylation/drug effects
- Physical Conditioning, Animal
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Proteostasis/drug effects
- Proteostasis/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Signal Transduction
- Sirtuin 1/genetics
- Sirtuin 1/metabolism
- Thioredoxins/genetics
- Thioredoxins/metabolism
- Unfolded Protein Response/drug effects
- X-Box Binding Protein 1/genetics
- X-Box Binding Protein 1/metabolism
- eIF-2 Kinase/genetics
- eIF-2 Kinase/metabolism
Collapse
Affiliation(s)
- Juha J Hulmi
- University of Jyväskylä, Department of Biology of Physical Activity, Neuromuscular Research Center, P.O. Box 35, FI-40014, Finland; Department of Physiology, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, FI-00290 Helsinki, Finland.
| | - Jaakko Hentilä
- University of Jyväskylä, Department of Biology of Physical Activity, Neuromuscular Research Center, P.O. Box 35, FI-40014, Finland
| | - Keith C DeRuisseau
- Syracuse University, Department of Exercise Science, 820 Comstock Ave., 201 WB, Syracuse, NY, USA; Institute of Biomedicine, Physiology, University of Eastern Finland, Yliopistonranta 1 E, 70210 Kuopio, Finland
| | - Bernardo M Oliveira
- University of Jyväskylä, Department of Biology of Physical Activity, Neuromuscular Research Center, P.O. Box 35, FI-40014, Finland
| | - Konstantinos G Papaioannou
- University of Jyväskylä, Department of Biology of Physical Activity, Neuromuscular Research Center, P.O. Box 35, FI-40014, Finland
| | - Reija Autio
- School of Health Sciences, University of Tampere, Medisiinarinkatu 3, FI-33014, Finland
| | - Urho M Kujala
- Department of Health Sciences, University of Jyväskylä, Rautpohjankatu 8, P.O. Box 35, FI-40014, Finland
| | - Olli Ritvos
- Department of Physiology, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, FI-00290 Helsinki, Finland
| | - Heikki Kainulainen
- University of Jyväskylä, Department of Biology of Physical Activity, Neuromuscular Research Center, P.O. Box 35, FI-40014, Finland
| | - Ayhan Korkmaz
- Institute of Biomedicine, Physiology, University of Eastern Finland, Yliopistonranta 1 E, 70210 Kuopio, Finland
| | - Mustafa Atalay
- Institute of Biomedicine, Physiology, University of Eastern Finland, Yliopistonranta 1 E, 70210 Kuopio, Finland
| |
Collapse
|
31
|
Hyzewicz J, Ruegg UT, Takeda S. Comparison of Experimental Protocols of Physical Exercise for mdx Mice and Duchenne Muscular Dystrophy Patients. J Neuromuscul Dis 2015; 2:325-342. [PMID: 27858750 PMCID: PMC5240598 DOI: 10.3233/jnd-150106] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Duchenne Muscular Dystrophy (DMD) is caused by mutations in the gene coding for dystrophin and leads to muscle degeneration, wheelchair dependence and death by cardiac or respiratory failure. Physical exercise has been proposed as a palliative therapy for DMD to maintain muscle strength and prevent contractures for as long as possible. However, its practice remains controversial because the benefits of training may be counteracted by muscle overuse and damage. The effects of physical exercise have been investigated in muscles of dystrophin-deficient mdx mice and in patients with DMD. However, a lack of uniformity among protocols limits comparability between studies and translatability of results from animals to humans. In the present review, we summarize and discuss published protocols used to investigate the effects of physical exercise on mdx mice and DMD patients, with the objectives of improving comparability between studies and identifying future research directions.
Collapse
Affiliation(s)
- Janek Hyzewicz
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | | | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| |
Collapse
|
32
|
Larsen FJ, Schiffer TA, Ørtenblad N, Zinner C, Morales‐Alamo D, Willis SJ, Calbet JA, Holmberg H, Boushel R. High‐intensity sprint training inhibits mitochondrial respiration through aconitase inactivation. FASEB J 2015; 30:417-27. [DOI: 10.1096/fj.15-276857] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 09/14/2015] [Indexed: 01/09/2023]
Affiliation(s)
- Filip J. Larsen
- Department of Physiology and PharmacologyKarolinska InstituteStockholmSweden
- Swedish School of Sport and Health SciencesStockholmSweden
| | - Tomas A. Schiffer
- Department of Physiology and PharmacologyKarolinska InstituteStockholmSweden
| | - Niels Ørtenblad
- Institute of Sports Science and Clinical BiomechanicsMuscle Research ClusterUniversity of Southern DenmarkOdenseDenmark
| | - Christoph Zinner
- Swedish Winter Sports Research Centre, Department of Health SciencesMid Sweden UniversityÖstersundSweden
- Department of Sport ScienceJulius Maximilians UniversityWürzburgGermany
| | - David Morales‐Alamo
- Research Institute of Biomedical and Health Sciences (IUIBS)Las Palmas de Gran CanariaCanary IslandsSpain
| | - Sarah J. Willis
- Swedish Winter Sports Research Centre, Department of Health SciencesMid Sweden UniversityÖstersundSweden
| | - Jose A. Calbet
- Research Institute of Biomedical and Health Sciences (IUIBS)Las Palmas de Gran CanariaCanary IslandsSpain
| | - Hans‐Christer Holmberg
- Swedish Winter Sports Research Centre, Department of Health SciencesMid Sweden UniversityÖstersundSweden
| | - Robert Boushel
- Swedish School of Sport and Health SciencesStockholmSweden
- School of Kinesiology, University of British ColumbiaVancouverBritish ColumbiaCanada
| |
Collapse
|