1
|
Wu J, Yin W, Huang Z, Zhang Y, Jia J, Cheng H, Kang F, Huang K, Sun T, Tian J, Xu X, Zhang Y. Design, Synthesis, and Biological Evaluation of Organic Nitrite (NO 2-) Donors as Potential Anticerebral Ischemia Agents. J Med Chem 2021; 64:10919-10933. [PMID: 34292749 DOI: 10.1021/acs.jmedchem.1c00282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The treatment of ischemic stroke (IS) remains a big challenge in clinics, and it is urgently needed to develop novel, safe, and effective medicines against IS. Here, we report the design, synthesis, and biological evaluation of organic NO2- donors as potential agents for the treatment of IS. The representative compound 4a was able to slowly generate low concentrations of NO2- by reaction with a thiol-containing nucleophile, and the NO2- was selectively converted into NO under ischemic/hypoxia conditions to protect primary rat neurons from oxygen-glucose deprivation and recovery (OGD/R)-induced cytotoxicity by enhancing the Nrf2 signaling and activating the NO/cGMP/PKG pathway. Treatment with 4a at 2 h before or after ischemia mitigated the ischemia/reperfusion-induced brain injury in middle cerebral artery occlusion (MCAO) rats by producing NO and enhancing Nrf2 signaling. Furthermore, 4a significantly promoted endothelial cell proliferation and angiogenesis within the ischemic penumbra. Our findings suggest that this type of NO2- donors, like 4a, may be valuable to fight IS and other ischemic diseases.
Collapse
Affiliation(s)
- Jianbing Wu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Wei Yin
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Zhangjian Huang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Yinqiu Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Jian Jia
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Huimin Cheng
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Fenghua Kang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Kai Huang
- The Department of Cardiology, Institute of Cardiovascular Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Tao Sun
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Jide Tian
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California 90095, United States
| | - Xiaojun Xu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Yihua Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, P.R. China
| |
Collapse
|
2
|
Dietary Sodium Nitrate Activates Antioxidant and Mitochondrial Dynamics Genes after Moderate Intensity Acute Exercise in Metabolic Syndrome Patients. J Clin Med 2021; 10:jcm10122618. [PMID: 34198661 PMCID: PMC8232343 DOI: 10.3390/jcm10122618] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 01/14/2023] Open
Abstract
Exercise can induce a pro-inflammatory response in aged subjects with metabolic disorders and nitrate supplementation has shown anti-inflammatory effects. We evaluated the influence of dietary nitrate on the response of the antioxidant and mitochondrial dynamics genes to acute exercise in peripheral blood mononuclear cells (PBMCs), as well as the antioxidant and the inflammatory response of PBMCs against immune stimulation. Metabolic syndrome patients participated in a crossover study in which they consumed a beverage containing 16 mM sodium nitrate or a placebo with the same composition without nitrate before performing a submaximal test at 60–70% of their maximal heart rate for 30 min. The intake of nitrate increased the nitrate plus nitrite plasma levels about 8-fold and induced the upregulation of catalase, superoxide dismutase, glutathione peroxidase, mitofusin 2 and PGC1α in PBMCs after exercise. The gene expression of catalase and TNFα was enhanced by phorbol myristate acetate (PMA) only in the placebo group, while the glutathione peroxidase expression was enhanced by PMA only after nitrate intake. The intake of nitrate by metabolic syndrome patients induces an antioxidant and mitochondrial response to exercise at the same time that it attenuates the pro-inflammatory response to immune stimulation.
Collapse
|
3
|
Yang H, Jiang F, Zhang L, Wang L, Luo Y, Li N, Guo Y, Wang Q, Zou J. Multifunctional l-arginine-based magnetic nanoparticles for multiple-synergistic tumor therapy. Biomater Sci 2021; 9:2230-2243. [PMID: 33507174 DOI: 10.1039/d0bm01932a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tumor therapy is facing the big challenge of insufficient treatment. Here, we report high-intensity focused ultrasound (HIFU)-responsive magnetic nanoparticles based on superparamagnetic iron oxide (SPIO, Fe3O4 NPs) as the shell and l-arginine (LA) as the core entrapped by poly-lactide-co-glycolide (PLGA) nanoparticles (Fe3O4@PLGA/LA NPs) for synergistic breast cancer therapy. These NPs can significantly enhance therapeutic performance due to their enhanced accumulation and prolonged retention at the tumor site under magnetic guidance. The Fe3O4@PLGA/LA NPs exhibited synergistic therapeutic effects by the rational combination of HIFU-based tumor ablation and nitric oxide (NO) assisted antitumor gas therapy. Both Fe3O4 NPs and LA could be released rapidly under HIFU irradiation, where Fe3O4 NPs can promote HIFU-based tumor ablation by changing the acoustic properties of the tumor tissues and LA can spontaneously react with hydrogen peroxide (H2O2) in the tumor microenvironment to generate NO for gas therapy. Moreover, Fe3O4 NPs can react with H2O2 to produce highly reactive oxygen-containing species (ROS) to accelerate the oxidation of LA and the release of NO. This novel strategy showed synergistic tumor growth suppression as compared with individual HIFU therapy or gas therapy. This can be attributed to the rational design of multifunctional NPs with magnetic targeting and multi-modality imaging properties.
Collapse
Affiliation(s)
- Haiyan Yang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Zhang G, Han H, Zhuge Z, Dong F, Jiang S, Wang W, Guimarães DD, Schiffer TA, Lai EY, Ribeiro Antonino Carvalho LR, Lucena RB, Braga VA, Weitzberg E, Lundberg JO, Carlstrom M. Renovascular effects of inorganic nitrate following ischemia-reperfusion of the kidney. Redox Biol 2020; 39:101836. [PMID: 33360353 PMCID: PMC7772560 DOI: 10.1016/j.redox.2020.101836] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/29/2020] [Accepted: 12/14/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Renal ischemia-reperfusion (IR) injury is a common cause of acute kidney injury (AKI), which is associated with oxidative stress and reduced nitric oxide (NO) bioactivity and increased risk of developing chronic kidney disease (CKD) and cardiovascular disease (CVD). New strategies that restore redox balance may have therapeutic implications during AKI and associated complications. AIM To investigate the therapeutic value of boosting the nitrate-nitrite-NO pathway during development of IR-induced renal and cardiovascular dysfunction. METHODS Male C57BL/6 J mice were given sodium nitrate (10 mg/kg, i. p) or vehicle 2 h prior to warm ischemia of the left kidney (45 min) followed by sodium nitrate supplementation in the drinking water (1 mmol/kg/day) for the following 2 weeks. Blood pressure and glomerular filtration rate were measured and blood and kidneys were collected and used for biochemical and histological analyses as well as renal vessel reactivity studies. Glomerular endothelial cells exposed to hypoxia-reoxygenation, with or without angiotensin II, were used for mechanistic studies. RESULTS IR was associated with reduced renal function and slightly elevated blood pressure, in combination with renal injuries, inflammation, endothelial dysfunction, increased Ang II levels and Ang II-mediated vasoreactivity, which were all ameliorated by nitrate. Moreover, treatment with nitrate (in vivo) and nitrite (in vitro) restored NO bioactivity and reduced mitochondrial oxidative stress and injuries. CONCLUSIONS Acute treatment with inorganic nitrate prior to renal ischemia may serve as a novel therapeutic approach to prevent AKI and CKD and associated risk of developing cardiovascular dysfunction.
Collapse
Affiliation(s)
- Gensheng Zhang
- Dept. of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Dept. of Neurobiology, Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Huirong Han
- Dept. of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Dept. of Anesthesiology, Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, Weifang Medical University, Weifang, China
| | - Zhengbing Zhuge
- Dept. of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Fang Dong
- Dept. of Physiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Shan Jiang
- Dept. of Physiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenwen Wang
- Dept. of Pathology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Drielle D Guimarães
- Dept. of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Tomas A Schiffer
- Dept. of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - En Yin Lai
- Dept. of Physiology, Zhejiang University School of Medicine, Hangzhou, China
| | | | | | - Valdir A Braga
- Dept. of Biotechnology - Federal University of Paraiba, Joao Pessoa, PB, Brazil
| | - Eddie Weitzberg
- Dept. of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Jon O Lundberg
- Dept. of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Mattias Carlstrom
- Dept. of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
5
|
Yang Y, Li S, Qu Y, Wang X, An W, Li Z, Han Z, Qin L. Nitrate partially inhibits lipopolysaccharide-induced inflammation by maintaining mitochondrial function. J Int Med Res 2020; 48:300060520902605. [PMID: 32043404 PMCID: PMC7111041 DOI: 10.1177/0300060520902605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Objective Nitrate has been reported to protect cells via the nitrate-nitrite-nitric oxide (NO) pathway. Most studies tend to use nitrite to investigate the mechanisms of this pathway. However, the latest studies have confirmed that mammals can directly degrade nitrate via xanthine oxidoreductase (XOR). The hypothesis is that nitrate could play a protective role in inflammatory responses independent of bacterial nitrate reductases. Methods Mouse RAW264.7 macrophages were pre-incubated with sodium nitrate (10, 100, and 500 µM) for 2 hours, and then treated with lipopolysaccharide (LPS) for 2 hours to induce inflammation. The Quantikine Immunoassay was used to measure interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) concentrations in the supernatant. The fluorescence intensity ratio of red/green from JC-1 was used to assay mitochondrial membrane potential. The fluorescence intensity of MitoSOX Red was used to indicate the generation of mitochondrial reactive oxygen species. Results Nitrate partially reduced IL-6 and TNF-α secretion via reducing NF-κB signaling in LPS-induced macrophages. Nitrate also reduced the generation of mitochondrial reactive oxygen species by regulating mitochondrial function. These effects depended on XOR-derived NO but were independent of inducible nitric oxide synthase-derived NO. Conclusion Nitrate regulates mitochondrial function via XOR-derived NO to partially inhibit LPS-induced inflammation.
Collapse
Affiliation(s)
- Yang Yang
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Shaoqing Li
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Yi Qu
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Xue Wang
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Wei An
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Zhilin Li
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Zhengxue Han
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Lizheng Qin
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Pieretti JC, Junho CVC, Carneiro-Ramos MS, Seabra AB. H 2S- and NO-releasing gasotransmitter platform: A crosstalk signaling pathway in the treatment of acute kidney injury. Pharmacol Res 2020; 161:105121. [PMID: 32798649 PMCID: PMC7426260 DOI: 10.1016/j.phrs.2020.105121] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 12/15/2022]
Abstract
Acute kidney injury (AKI) is a syndrome affecting most patients hospitalized due to kidney disease; it accounts for 15 % of patients hospitalized in intensive care units worldwide. AKI is mainly caused by ischemia and reperfusion (IR) injury, which temporarily obstructs the blood flow, increases inflammation processes and induces oxidative stress. AKI treatments available nowadays present notable disadvantages, mostly for patients with other comorbidities. Thus, it is important to investigate different approaches to help minimizing side effects such as the ones observed in patients subjected to the aforementioned treatments. Therefore, the aim of the current review is to highlight the potential of two endogenous gasotransmitters - hydrogen sulfide (H2S) and nitric oxide (NO) - and their crosstalk in AKI treatment. Both H2S and NO are endogenous signalling molecules involved in several physiological and pathophysiological processes, such as the ones taking place in the renal system. Overall, these molecules act by decreasing inflammation, controlling reactive oxygen species (ROS) concentrations, activating/inactivating pro-inflammatory cytokines, as well as promoting vasodilation and decreasing apoptosis, hypertrophy and autophagy. Since these gasotransmitters are found in gaseous state at environmental conditions, they can be directly applied by inhalation, or in combination with H2S and NO donors, which are compounds capable of releasing these molecules at biological conditions, thus enabling higher stability and slow release of NO and H2S. Moreover, the combination between these donor compounds and nanomaterials has the potential to enable targeted treatments, reduce side effects and increase the potential of H2S and NO. Finally, it is essential highlighting challenges to, and perspectives in, pharmacological applications of H2S and NO to treat AKI, mainly in combination with nanoparticulated delivery platforms.
Collapse
Affiliation(s)
- Joana Claudio Pieretti
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, SP, Brazil
| | | | | | - Amedea Barozzi Seabra
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, SP, Brazil.
| |
Collapse
|
7
|
Arnold JT, Lloyd AB, Bailey SJ, Fujimoto T, Matsutake R, Takayanagi M, Nishiyasu T, Fujii N. The nitric oxide dependence of cutaneous microvascular function to independent and combined hypoxic cold exposure. J Appl Physiol (1985) 2020; 129:947-956. [DOI: 10.1152/japplphysiol.00487.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
When separated from local cooling, whole body cooling elicited cutaneous reflex vasoconstriction via mechanisms independent of nitric oxide removal. Hypoxia elicited cutaneous vasodilatation via mechanisms mediated primarily by nitric oxide synthase, rather than xanthine oxidase-mediated nitrite reduction. Cold-induced vasoconstriction was blunted by the opposing effect of hypoxic vasodilatation, whereas the underpinning mechanisms did not interrelate in the absence of local cooling. Full vasoconstriction was restored with nitric oxide synthase inhibition.
Collapse
Affiliation(s)
- Josh T. Arnold
- Environmental Ergonomics Research Centre, Loughborough University, Loughborough, United Kingdom
| | - Alex B. Lloyd
- Environmental Ergonomics Research Centre, Loughborough University, Loughborough, United Kingdom
| | - Stephen J. Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Tomomi Fujimoto
- Department of Health and Sports, Niigata University of Health and Welfare, Niigata, Japan
- Institute for Human Movement and Medical Science, Niigata University of Health and Welfare, Niigata, Japan
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| | - Ryoko Matsutake
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| | | | - Takeshi Nishiyasu
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| | - Naoto Fujii
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
8
|
Liu Y, Croft KD, Hodgson JM, Mori T, Ward NC. Mechanisms of the protective effects of nitrate and nitrite in cardiovascular and metabolic diseases. Nitric Oxide 2020; 96:35-43. [PMID: 31954804 DOI: 10.1016/j.niox.2020.01.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/18/2019] [Accepted: 01/13/2020] [Indexed: 12/28/2022]
Abstract
Within the body, NO is produced by nitric oxide synthases via converting l-arginine to citrulline. Additionally, NO is also produced via the NOS-independent nitrate-nitrite-NO pathway. Unlike the classical pathway, the nitrate-nitrite-NO pathway is oxygen independent and viewed as a back-up function to ensure NO generation during ischaemia/hypoxia. Dietary nitrate and nitrite have emerged as substrates for endogenous NO generation and other bioactive nitrogen oxides with promising protective effects on cardiovascular and metabolic function. In brief, inorganic nitrate and nitrite can decrease blood pressure, protect against ischaemia-reperfusion injury, enhance endothelial function, inhibit platelet aggregation, modulate mitochondrial function and improve features of the metabolic syndrome. However, many questions regarding the specific mechanisms of these protective effects on cardiovascular and metabolic diseases remain unclear. In this review, we focus on nitrate/nitrite bioactivation, as well as the potential mechanisms for nitrate/nitrite-mediated effects on cardiovascular and metabolic diseases. Understanding how dietary nitrate and nitrite induce beneficial effect on cardiovascular and metabolic diseases could open up novel therapeutic opportunities in clinical practice.
Collapse
Affiliation(s)
- Yang Liu
- School of Biomedical Sciences, University of Western Australia, Perth, Australia
| | - Kevin D Croft
- School of Biomedical Sciences, University of Western Australia, Perth, Australia
| | - Jonathan M Hodgson
- School of Biomedical Sciences, University of Western Australia, Perth, Australia; School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| | - Trevor Mori
- Medical School, University of Western Australia, Perth, Australia
| | - Natalie C Ward
- Medical School, University of Western Australia, Perth, Australia; School of Public Health and Curtin Health Innovation Research Institute, Curtin University, Perth, Australia.
| |
Collapse
|
9
|
NADPH oxidase is a primary target for antioxidant effects by inorganic nitrite in lipopolysaccharide-induced oxidative stress in mice and in macrophage cells. Nitric Oxide 2019; 89:46-53. [PMID: 31063820 DOI: 10.1016/j.niox.2019.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 03/23/2019] [Accepted: 05/02/2019] [Indexed: 12/24/2022]
Abstract
Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and oxidative stress is usually considered as an important factor to the pathogenesis of various diseases. Inorganic nitrite, previously viewed as a harmful substance in our diet or inert metabolites of endogenous NO, is recently identified as an important biological NO reservoir in vasculature and tissues. Stimulation of a nitrite-NO pathway shows organ-protective effects on oxidative stress and inflammation, but the mechanisms or target are not clear. In this study, the hypothesis that inorganic nitrite attenuated lipopolysaccharide (LPS)-induced oxidative stress in mice and in macrophage cells by modulating NADPH oxidase activity and NO bioavailability were investigated. We showed that nitrite treatment, in sharp contrast with the worsening effect of NO synthases inhibition, significantly attenuated aortic oxidative stress, endothelial dysfunction and mortality in LPS-induced shock in mice. Mechanistically, protective effects of nitrite were abolished by NO scavenger and xanthine oxidase inhibitor, and inhibition of NADPH oxidase with apocynin attenuated LPS-induced oxidative stress similar to that of nitrite. In the presence of nitrite, no further effect of apocynin was observed, suggesting NADPH oxidase as a possible target. In LPS-activated macrophage cells, nitrite reduced NADPH oxidase activity and oxidative stress and these effects of nitrite were also abolished by NO scavenger and xanthine oxidase inhibitor, where xanthine oxidase-mediated reduction of nitrite attenuated NADPH oxidase activity in activated macrophages via a NO-dependent mechanism. In conclusion, these novel findings position NADPH oxidase in the inflammatory vasculature as a prime target for the antioxidant effects of inorganic nitrite, and open a new direction to modulate the inflammatory response.
Collapse
|
10
|
Nemes B, Pető K, Németh N, Mester A, Magyar Z, Ghanem S, Sógor V, Tánczos B, Deák Á, Kállay M, Bidiga L, Frecska E. N,N-dimethyltryptamine Prevents Renal Ischemia-Reperfusion Injury in a Rat Model. Transplant Proc 2019; 51:1268-1275. [PMID: 31101212 DOI: 10.1016/j.transproceed.2019.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Ischemia reperfusion (I/R) injury remains one of the most challenging fields of organ transplantation. It is highly associated with the use of expanded criteria donors that might conclude to delayed graft function or early or late graft failure. OBJECTIVE To investigate the metabolic, microcirculatory parameters, and histologic changes under the effect of N,N-dimethyltryptamine (DMT) in a renal I/R model in rats. METHOD In 26 anesthetized rats both kidneys were exposed. In the control group (n = 6) no other intervention happened. In 20 other animals, the right renal vessels were ligated, and after 60 minutes the right kidney was removed. The left renal vessels were clamped for 60 minutes then released, followed by 120 minutes of reperfusion. In the I/R group (n = 10), there was no additive treatment, while in I/R + DMT group (n = 10) DMT was administered 15 minutes before ischemia. Blood samples were taken, laser Doppler measurement was performed, and both kidneys were evaluated histologically. RESULTS Microcirculation (blood flux units [BFU]) diminished in all groups, but remarkably so in the I/R + DMT group. This group compensated better after the 30th minute of reperfusion. The control and I/R + DMT groups had similar BFUs after 120 minutes of reperfusion, but in the I/R group BFU was higher. Tubular necrosis developed in the I/R and I/R + DMT groups too; it was moderated under DMT effect, and severe without. Histologic injuries were less in I/R + DMT Group compared to non-treated animals. CONCLUSION Histologic changes characteristic to I/R injuries were reversible and microcirculation recovered at the end of 120 minutes reperfusion under the administration of DMT. DMT can be used for renoprotection in kidney transplantation.
Collapse
Affiliation(s)
- Balázs Nemes
- Department of Organ Transplantation, Institute of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| | - Katalin Pető
- Department of Operative Techniques and Surgical Research, Institute of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Norbert Németh
- Department of Operative Techniques and Surgical Research, Institute of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Anita Mester
- Department of Operative Techniques and Surgical Research, Institute of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zsuzsanna Magyar
- Department of Operative Techniques and Surgical Research, Institute of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Souleiman Ghanem
- Department of Operative Techniques and Surgical Research, Institute of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Viktória Sógor
- Department of Operative Techniques and Surgical Research, Institute of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Bence Tánczos
- Department of Operative Techniques and Surgical Research, Institute of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ádám Deák
- Department of Operative Techniques and Surgical Research, Institute of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Márk Kállay
- Department of Organ Transplantation, Institute of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - László Bidiga
- Department of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ede Frecska
- Department of Psychiatry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
11
|
Carlstrom M, Montenegro MF. Therapeutic value of stimulating the nitrate-nitrite-nitric oxide pathway to attenuate oxidative stress and restore nitric oxide bioavailability in cardiorenal disease. J Intern Med 2019; 285:2-18. [PMID: 30039620 DOI: 10.1111/joim.12818] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cardiovascular disorders including hypertension and associated renal disease are major health problems affecting more than 1.5 billion people worldwide. Apart from nonmodifiable factors such as ageing, family history and gender, both sedentary lifestyle and unhealthy dietary habits are considered as major risk factors. The disorders are interrelated suggesting common pathological pathways. Mechanistically, oxidative stress and compromised function of the nitric oxide synthase (NOS) system leading to endothelial dysfunction and reduction in nitric oxide (NO) bioavailability have been widely implicated and associated with development and progression of disease. New strategies that correct this redox imbalance and increase NO bioactivity may have major clinical implications. The inorganic anions, nitrate and nitrite, are endogenously formed by oxidization of NOS-derived NO, but there are also high amounts of nitrate in our daily diet. In this regard, accumulated evidence over the past two decades demonstrates that these anions can be recycled back to NO and other bioactive nitrogen oxides, thus offering an attractive alternative strategy for therapeutic exploitation. In this review, we describe how dietary stimulation of the nitrate-nitrite-NO pathway affects cardiovascular and renal functions in health and disease via modulation of oxidative stress and NO bioavailability. Clinical studies addressing potential effects on the renal system are still limited, but blood pressure-lowering effects of nitrate supplementation have been demonstrated in healthy and hypertensive subjects as well as in patients with chronic kidney disease. However, larger clinical studies are warranted to reveal whether chronic nitrate treatment can slow-down the progression of cardiorenal disease and associated complications.
Collapse
Affiliation(s)
- M Carlstrom
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - M F Montenegro
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
12
|
Maia LB, Moura JJG. Putting xanthine oxidoreductase and aldehyde oxidase on the NO metabolism map: Nitrite reduction by molybdoenzymes. Redox Biol 2018; 19:274-289. [PMID: 30196191 PMCID: PMC6129670 DOI: 10.1016/j.redox.2018.08.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 08/23/2018] [Accepted: 08/28/2018] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide radical (NO) is a signaling molecule involved in several physiological and pathological processes and a new nitrate-nitrite-NO pathway has emerged as a physiological alternative to the "classic" pathway of NO formation from L-arginine. Since the late 1990s, it has become clear that nitrite can be reduced back to NO under hypoxic/anoxic conditions and exert a significant cytoprotective action in vivo under challenging conditions. To reduce nitrite to NO, mammalian cells can use different metalloproteins that are present in cells to perform other functions, including several heme proteins and molybdoenzymes, comprising what we denominated as the "non-dedicated nitrite reductases". Herein, we will review the current knowledge on two of those "non-dedicated nitrite reductases", the molybdoenzymes xanthine oxidoreductase and aldehyde oxidase, discussing the in vitro and in vivo studies to provide the current picture of the role of these enzymes on the NO metabolism in humans.
Collapse
Affiliation(s)
- Luisa B Maia
- LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| | - José J G Moura
- LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
13
|
Tropea T, Wareing M, Greenwood SL, Feelisch M, Sibley CP, Cottrell EC. Nitrite mediated vasorelaxation in human chorionic plate vessels is enhanced by hypoxia and dependent on the NO-sGC-cGMP pathway. Nitric Oxide 2018; 80:82-88. [PMID: 30179715 PMCID: PMC6199414 DOI: 10.1016/j.niox.2018.08.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/05/2018] [Accepted: 08/30/2018] [Indexed: 11/25/2022]
Abstract
Adequate perfusion of the placental vasculature is essential to meet the metabolic demands of fetal growth and development. Lacking neural control, local tissue metabolites, circulating and physical factors contribute significantly to blood flow regulation. Nitric oxide (NO) is a key regulator of fetoplacental vascular tone. Nitrite, previously considered an inert end-product of NO oxidation, has been shown to provide an important source of NO. Reduction of nitrite to NO may be particularly relevant in tissue when the oxygen-dependent NO synthase (NOS) activity is compromised, e.g. in hypoxia. The contribution of this pathway in the placenta is currently unknown. We hypothesised that nitrite vasodilates human placental blood vessels, with enhanced efficacy under hypoxia. Placentas were collected from uncomplicated pregnancies and the vasorelaxant effect of nitrite (10-6-5x10-3 M) was assessed using wire myography on isolated pre-constricted chorionic plate arteries (CPAs) and veins (CPVs) under normoxic (pO2 ∼5%) and hypoxic (pO2 ∼1%) conditions. The dependency on the NO-sGC-cGMP pathway and known nitrite reductase (NiR) activities was also investigated. Nitrite caused concentration-dependent vasorelaxation in both arteries and veins, and this effect was enhanced by hypoxia, significantly in CPVs (P < 0.01) and with a trend in CPAs (P = 0.054). Pre-incubation with NO scavengers (cPTIO and oxyhemoglobin) attenuated (P < 0.01 and P < 0.0001, respectively), and the sGC inhibitor ODQ completely abolished nitrite-mediated vasorelaxation, confirming the involvement of NO and sGC. Inhibition of potential NiR enzymes xanthine oxidoreductase, mitochondrial aldehyde dehydrogenase and mitochondrial bc1 complex did not attenuate vasorelaxation. This data suggests that nitrite may provide an important reservoir of NO bioactivity within the placenta to enhance blood flow when fetoplacental oxygenation is impaired, as occurring in pregnancy diseases such as pre-eclampsia and fetal growth restriction.
Collapse
Affiliation(s)
- Teresa Tropea
- Division of Developmental Biology & Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, Maternal & Fetal Health Research Centre, University of Manchester, United Kingdom.
| | - Mark Wareing
- Division of Developmental Biology & Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, Maternal & Fetal Health Research Centre, University of Manchester, United Kingdom
| | - Susan L Greenwood
- Division of Developmental Biology & Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, Maternal & Fetal Health Research Centre, University of Manchester, United Kingdom
| | - Martin Feelisch
- Clinical and Experimental Sciences, Faculty of Medicine, Southampton General Hospital and Institute for Life Sciences, University of Southampton, United Kingdom
| | - Colin P Sibley
- Division of Developmental Biology & Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, Maternal & Fetal Health Research Centre, University of Manchester, United Kingdom
| | - Elizabeth C Cottrell
- Division of Developmental Biology & Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, Maternal & Fetal Health Research Centre, University of Manchester, United Kingdom
| |
Collapse
|
14
|
Braun D, Zollbrecht C, Dietze S, Schubert R, Golz S, Summer H, Persson PB, Carlström M, Ludwig M, Patzak A. Hypoxia/Reoxygenation of Rat Renal Arteries Impairs Vasorelaxation via Modulation of Endothelium-Independent sGC/cGMP/PKG Signaling. Front Physiol 2018; 9:480. [PMID: 29773995 PMCID: PMC5943512 DOI: 10.3389/fphys.2018.00480] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/16/2018] [Indexed: 11/13/2022] Open
Abstract
Ischemia/reperfusion injury holds a key position in many pathological conditions such as acute kidney injury and in the transition to chronic stages of renal damage. We hypothesized that besides a reported disproportional activation of vasoconstrictor response, hypoxia/reoxygenation (H/R) adversely affects endothelial dilatory systems and impairs relaxation in renal arteries. Rat renal interlobar arteries were studied under isometric conditions. Hypoxia was induced by application of 95% N2, 5% CO2 for 60 min to the bath solution, followed by a 10 min period of reoxygenation (95% O2, 5% CO2). The effect of H/R on relaxation was assessed using various inhibitors of endothelial dilatory systems. mRNA expression of phosphodiesterase 5 (PDE5), NADPH oxidases (NOX), and nitric oxide synthase (NOS) isoforms were determined using qRT-PCR; cGMP was assayed with direct cGMP ELISA. Acetylcholine induced relaxation was impaired after H/R. Inhibition of the NOS isoforms with L-NAME, and cyclooxygenases (COXs) by indomethacin did not abolish the H/R effect. Moreover, blocking the calcium activated potassium channels KCa3.1 and KCa2.1, the main mediators of the endothelium-derived hyperpolarizing factor, with TRAM34 and UCL1684, respectively, showed similar effects in H/R and control. Arterial stiffness did not differ comparing H/R with controls, indicating no impact of H/R on passive vessel properties. Moreover, superoxide was not responsible for the observed H/R effect. Remarkably, H/R attenuated the endothelium-independent relaxation by sodium nitroprusside, suggesting endothelium-independent mechanisms of H/R action. Investigating the signaling downstream of NO revealed significantly decreased cGMP and impaired relaxation during PDE5 inhibition with sildenafil after H/R. Inhibition of PKG, the target of cGMP, did not normalize SNP-induced relaxation following H/R. However, the soluble guanylyl cyclase (sGC) inhibitor ODQ abolished the H/R effect on relaxation. The mRNA expressions of the endothelial and the inducible NOS were reduced. NOX and PDE5 mRNA were similarly expressed in H/R and control. Our results provide new evidence that impaired renal artery relaxation after H/R is due to a dysregulation of sGC leading to decreased cGMP levels. The presented mechanism might contribute to an insufficient renal reperfusion after ischemia and should be considered in its pathophysiology.
Collapse
Affiliation(s)
- Diana Braun
- Renal Vessel Physiology Group, Institute of Vegetative Physiology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Institute of Vegetative Physiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christa Zollbrecht
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Stefanie Dietze
- Renal Vessel Physiology Group, Institute of Vegetative Physiology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Institute of Vegetative Physiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Rudolf Schubert
- Centre for Biomedicine and Medical Technology Mannheim, Research Division Cardiovascular Physiology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | | | - Pontus B Persson
- Renal Vessel Physiology Group, Institute of Vegetative Physiology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Institute of Vegetative Physiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Mattias Carlström
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Marion Ludwig
- Renal Vessel Physiology Group, Institute of Vegetative Physiology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Institute of Vegetative Physiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Patzak
- Renal Vessel Physiology Group, Institute of Vegetative Physiology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Institute of Vegetative Physiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
15
|
Forgan LG, Sofele M, McNeill BA, Cameron MS, Donald JA. Vasoactivity of nitrite in the iliac artery of the toad Rhinella marina. Am J Physiol Regul Integr Comp Physiol 2018; 314:R242-R251. [PMID: 29046317 DOI: 10.1152/ajpregu.00315.2016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nitrite ([Formula: see text]) causes vasodilation in mammals due to the formation of (nitric oxide) NO by endogenous [Formula: see text] reduction in the vascular wall. In this study, we determined if a similar mechanism operates in amphibians. Dual-wire myography of the iliac artery from Rhinella marina showed that applied [Formula: see text] caused a concentration-dependent vasodilation in normoxia (21% O2; EC50: 438 µM). Hypoxia (0.63% O2) significantly increased the maximal dilation to [Formula: see text] by 5% ( P = 0.0398). The addition of oxyhemoglobin significantly increased the EC50 ( P = 0.0144; EC50: 2,236 µM) but did not affect the maximal vasodilation. In contrast, partially deoxygenated hemoglobin (90% desaturation) did not affect the EC50 ( P = 0.1189) but significantly ( P = 0.0012) increased the maximal dilation to [Formula: see text] by 11%. The soluble guanylyl cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) completely abolished the response to [Formula: see text] ( P < 0.0001), and of the nitric oxide synthase inhibitors, only N5-(1-imino-3-butenyl)-l-ornithine (vinyl-l-NIO; P = 0.0028) significantly reduced the [Formula: see text] vasodilation. The xanthine oxidoreductase inhibitor allopurinol ( P = 0.927), the nitric oxide-scavenger 2-(4-carboxyphenyl)-4,5-dihydro-4,4,5,5-tetramethyl-1H-imidazolyl-1-oxy-3-oxide (C-PTIO; P = 0.478), and disruption of the endothelium ( P = 0.094) did not affect the [Formula: see text] vasodilation. Incubation of iliac arteries with 1 mM [Formula: see text] did not a cause a change in the cGMP concentration (P = 0.407). Plasma [Formula: see text] was found to be 0.86 ± 0.20 µmol/l, while nitrate ([Formula: see text]) was 19.55 ± 2.55 µmol/l. Both cygb and ngb mRNAs were expressed in the iliac artery, and it is possible that these globins facilitate [Formula: see text] reduction in hypoxia. In addition, [Formula: see text] intracellular disproportionation processes could be important in the generation of NO from [Formula: see text].
Collapse
Affiliation(s)
- Leonard G Forgan
- School of Life and Environmental Sciences, Deakin University , Geelong , Australia
| | - Melenaite Sofele
- School of Life and Environmental Sciences, Deakin University , Geelong , Australia
| | | | - Melissa S Cameron
- School of Life and Environmental Sciences, Deakin University , Geelong , Australia
| | - John A Donald
- School of Life and Environmental Sciences, Deakin University , Geelong , Australia
| |
Collapse
|
16
|
Thomas DD, Corey C, Hickok J, Wang Y, Shiva S. Differential mitochondrial dinitrosyliron complex formation by nitrite and nitric oxide. Redox Biol 2017; 15:277-283. [PMID: 29304478 PMCID: PMC5975210 DOI: 10.1016/j.redox.2017.12.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 12/14/2017] [Accepted: 12/17/2017] [Indexed: 01/09/2023] Open
Abstract
Nitrite represents an endocrine reserve of bioavailable nitric oxide (NO) that mediates a number of physiological responses including conferral of cytoprotection after ischemia/reperfusion (I/R). It has long been known that nitrite can react with non-heme iron to form dinitrosyliron complexes (DNIC). However, it remains unclear how quickly nitrite-dependent DNIC form in vivo, whether formation kinetics differ from that of NO-dependent DNIC, and whether DNIC play a role in the cytoprotective effects of nitrite. Here we demonstrate that chronic but not acute nitrite supplementation increases DNIC concentration in the liver and kidney of mice. Although DNIC have been purported to have antioxidant properties, we show that the accumulation of DNIC in vivo is not associated with nitrite-dependent cytoprotection after hepatic I/R. Further, our data in an isolated mitochondrial model of anoxia/reoxygenation show that while NO and nitrite demonstrate similar S-nitrosothiol formation kinetics, DNIC formation is significantly greater with NO and associated with mitochondrial dysfunction as well as inhibition of aconitase activity. These data are the first to directly compare mitochondrial DNIC formation by NO and nitrite. This study suggests that nitrite-dependent DNIC formation is a physiological consequence of dietary nitrite. The data presented herein implicate mitochondrial DNIC formation as a potential mechanism underlying the differential cytoprotective effects of nitrite and NO after I/R, and suggest that DNIC formation is potentially responsible for the cytotoxic effects observed at high NO concentrations. Dietary nitrite results in DNIC formation in many tissues, most notably the liver. Nitrite-dependent DNIC accumulate within the mitochondrion. NO generates greater DNIC formation in the mitochondrion than nitrite. At high concentrations of NO DNIC formation is associated with mitochondrial injury.
Collapse
Affiliation(s)
- Douglas D Thomas
- Department of Medicinal Chemistry & Pharmacognosy, University of Illinois at Chicago, 833 South Wood St., Chicago IL 60612, USA.
| | - Catherine Corey
- Vascular Medicine Institute, University of Pittsburgh School of Medicine, BST1240E, 200 Lothrop St, Pittsburgh, PA 15261, USA
| | - Jason Hickok
- Department of Medicinal Chemistry & Pharmacognosy, University of Illinois at Chicago, 833 South Wood St., Chicago IL 60612, USA
| | - Yinna Wang
- Vascular Medicine Institute, University of Pittsburgh School of Medicine, BST1240E, 200 Lothrop St, Pittsburgh, PA 15261, USA
| | - Sruti Shiva
- Vascular Medicine Institute, University of Pittsburgh School of Medicine, BST1240E, 200 Lothrop St, Pittsburgh, PA 15261, USA; Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Center for Metabolism & Mitochondrial Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| |
Collapse
|
17
|
Low dose nitrite improves reoxygenation following renal ischemia in rats. Sci Rep 2017; 7:14597. [PMID: 29097777 PMCID: PMC5668317 DOI: 10.1038/s41598-017-15058-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 10/16/2017] [Indexed: 11/09/2022] Open
Abstract
In hypoxic and acidic tissue environments, nitrite is metabolised to nitric oxide, thus, bringing about novel therapeutic options in myocardial infarction, peripheral artery disease, stroke, and hypertension. Following renal ischemia, reperfusion of the kidney remains incomplete and tissue oxygenation is reduced for several minutes to hours. Thus, in renal ischemia-reperfusion injury, providing nitrite may have outstanding therapeutic value. Here we demonstrate nitrite's distinct potential to rapidly restore tissue oxygenation in the renal cortex and medulla after 45 minutes of complete unilateral kidney ischemia in the rat. Notably, tissue oxygenation was completely restored, while tissue perfusion did not fully reach pre-ischemia levels within 60 minutes of reperfusion. Nitrite was infused intravenously in a dose, which can be translated to the human. Specifically, methaemoglobin did not exceed 3%, which is biologically negligible. Hypotension was not observed. Providing nitrite well before ischemia and maintaining nitrite infusion throughout the reperfusion period prevented the increase in serum creatinine by ischemia reperfusion injury. In conclusion, low-dose nitrite restores renal tissue oxygenation in renal ischemia reperfusion injury and enhances regional kidney post-ischemic perfusion. As nitrite provides nitric oxide predominantly in hypoxic tissues, it may prove a specific measure to reduce renal ischemia reperfusion injury.
Collapse
|
18
|
Yang T, Zhang XM, Tarnawski L, Peleli M, Zhuge Z, Terrando N, Harris RA, Olofsson PS, Larsson E, Persson AEG, Lundberg JO, Weitzberg E, Carlstrom M. Dietary nitrate attenuates renal ischemia-reperfusion injuries by modulation of immune responses and reduction of oxidative stress. Redox Biol 2017. [PMID: 28623824 PMCID: PMC5473548 DOI: 10.1016/j.redox.2017.06.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Ischemia-reperfusion (IR) injury involves complex pathological processes in which reduction of nitric oxide (NO) bioavailability is suggested as a key factor. Inorganic nitrate can form NO in vivo via NO synthase-independent pathways and may thus provide beneficial effects during IR. Herein we evaluated the effects of dietary nitrate supplementation in a renal IR model. Male mice (C57BL/6J) were fed nitrate-supplemented chow (1.0mmol/kg/day) or standard chow for two weeks prior to 30min ischemia and during the reperfusion period. Unilateral renal IR caused profound tubular and glomerular damage in the ischemic kidney. Renal function, assessed by plasma creatinine levels, glomerular filtration rate and renal plasma flow, was also impaired after IR. All these pathologies were significantly improved by nitrate. Mechanistically, nitrate treatment reduced renal superoxide generation, pro-inflammatory cytokines (IL-1β, IL-6 and IL-12 p70) and macrophage infiltration in the kidney. Moreover, nitrate reduced mRNA expression of pro-inflammatory cytokines and chemo attractors, while increasing anti-inflammatory cytokines in the injured kidney. In another cohort of mice, two weeks of nitrate supplementation lowered superoxide generation and IL-6 expression in bone marrow-derived macrophages. Our study demonstrates protective effect of dietary nitrate in renal IR injury that may be mediated via modulation of oxidative stress and inflammatory responses. These novel findings suggest that nitrate supplementation deserve further exploration as a potential treatment in patients at high risk of renal IR injury.
Collapse
Affiliation(s)
- Ting Yang
- Dept. of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Dept. of Medicine, Div. of Nephrology (T.Y.), Dept. of Anesthesiology (N.T.), Duke University Medical Center, Durham, NC, USA.
| | - Xing-Mei Zhang
- Dept. of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Laura Tarnawski
- Dept. of Medicine, Center for Molecular Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Maria Peleli
- Dept. of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Zhengbing Zhuge
- Dept. of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Niccolo Terrando
- Dept. of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Dept. of Medicine, Div. of Nephrology (T.Y.), Dept. of Anesthesiology (N.T.), Duke University Medical Center, Durham, NC, USA
| | - Robert A Harris
- Dept. of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Peder S Olofsson
- Dept. of Medicine, Center for Molecular Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Erik Larsson
- Dept. of Immunology, Genetics and Pathology, Uppsala University, Sweden
| | - A Erik G Persson
- Dept. of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Dept. of Medical Cell Biology, Uppsala University, Sweden
| | - Jon O Lundberg
- Dept. of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Eddie Weitzberg
- Dept. of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Mattias Carlstrom
- Dept. of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
19
|
Zhuge Z, Paulo LL, Jahandideh A, Brandão MCR, Athayde-Filho PF, Lundberg JO, Braga VA, Carlström M, Montenegro MF. Synthesis and characterization of a novel organic nitrate NDHP: Role of xanthine oxidoreductase-mediated nitric oxide formation. Redox Biol 2017; 13:163-169. [PMID: 28578274 PMCID: PMC5458096 DOI: 10.1016/j.redox.2017.05.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/15/2017] [Accepted: 05/23/2017] [Indexed: 12/25/2022] Open
Abstract
In this report, we describe the synthesis and characterization of 1,3-bis(hexyloxy)propan-2-yl nitrate (NDHP), a novel organic mono nitrate. Using purified xanthine oxidoreductase (XOR), chemiluminescence and electron paramagnetic resonance (EPR) spectroscopy, we found that XOR catalyzes nitric oxide (NO) generation from NDHP under anaerobic conditions, and that thiols are not involved or required in this process. Further mechanistic studies revealed that NDHP could be reduced to NO at both the FAD and the molybdenum sites of XOR, but that the FAD site required an unoccupied molybdenum site. Conversely, the molybdenum site was able to reduce NDHP independently of an active FAD site. Moreover, using isolated vessels in a myograph, we demonstrate that NDHP dilates pre-constricted mesenteric arteries from rats and mice. These effects were diminished when XOR was blocked using the selective inhibitor febuxostat. Finally, we demonstrate that NDHP, in contrast to glyceryl trinitrate (GTN), is not subject to development of tolerance in isolated mesenteric arteries.
Collapse
Affiliation(s)
- Zhengbing Zhuge
- Dept. of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Luciano L Paulo
- Biotechnology Center, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Arghavan Jahandideh
- Dept. of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Maria C R Brandão
- Department of Chemistry, Federal University of Paraíba, João Pessoa, PB, Brazil
| | | | - Jon O Lundberg
- Dept. of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Valdir A Braga
- Biotechnology Center, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Mattias Carlström
- Dept. of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
20
|
Koch CD, Gladwin MT, Freeman BA, Lundberg JO, Weitzberg E, Morris A. Enterosalivary nitrate metabolism and the microbiome: Intersection of microbial metabolism, nitric oxide and diet in cardiac and pulmonary vascular health. Free Radic Biol Med 2017; 105:48-67. [PMID: 27989792 PMCID: PMC5401802 DOI: 10.1016/j.freeradbiomed.2016.12.015] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/18/2016] [Accepted: 12/12/2016] [Indexed: 02/07/2023]
Abstract
Recent insights into the bioactivation and signaling actions of inorganic, dietary nitrate and nitrite now suggest a critical role for the microbiome in the development of cardiac and pulmonary vascular diseases. Once thought to be the inert, end-products of endothelial-derived nitric oxide (NO) heme-oxidation, nitrate and nitrite are now considered major sources of exogenous NO that exhibit enhanced vasoactive signaling activity under conditions of hypoxia and stress. The bioavailability of nitrate and nitrite depend on the enzymatic reduction of nitrate to nitrite by a unique set of bacterial nitrate reductase enzymes possessed by specific bacterial populations in the mammalian mouth and gut. The pathogenesis of pulmonary hypertension (PH), obesity, hypertension and CVD are linked to defects in NO signaling, suggesting a role for commensal oral bacteria to shape the development of PH through the formation of nitrite, NO and other bioactive nitrogen oxides. Oral supplementation with inorganic nitrate or nitrate-containing foods exert pleiotropic, beneficial vascular effects in the setting of inflammation, endothelial dysfunction, ischemia-reperfusion injury and in pre-clinical models of PH, while traditional high-nitrate dietary patterns are associated with beneficial outcomes in hypertension, obesity and CVD. These observations highlight the potential of the microbiome in the development of novel nitrate- and nitrite-based therapeutics for PH, CVD and their risk factors.
Collapse
Affiliation(s)
- Carl D Koch
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA.
| | - Mark T Gladwin
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA; Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh PA 15261, USA
| | - Bruce A Freeman
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh PA 15261, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jon O Lundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, S-17177 Stockholm, Sweden
| | - Eddie Weitzberg
- Department of Physiology and Pharmacology, Karolinska Institutet, S-17177 Stockholm, Sweden
| | - Alison Morris
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA; Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh PA 15261, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Physiology and Pharmacology, Karolinska Institutet, S-17177 Stockholm, Sweden
| |
Collapse
|
21
|
Montenegro MF, Sundqvist ML, Nihlén C, Hezel M, Carlström M, Weitzberg E, Lundberg JO. Profound differences between humans and rodents in the ability to concentrate salivary nitrate: Implications for translational research. Redox Biol 2016; 10:206-210. [PMID: 27810735 PMCID: PMC5094378 DOI: 10.1016/j.redox.2016.10.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 10/19/2016] [Accepted: 10/22/2016] [Indexed: 12/21/2022] Open
Abstract
In humans dietary circulating nitrate accumulates rapidly in saliva through active transport in the salivary glands. By this mechanism resulting salivary nitrate concentrations are 10–20 times higher than in plasma. In the oral cavity nitrate is reduced by commensal bacteria to nitrite, which is subsequently swallowed and further metabolized to nitric oxide (NO) and other bioactive nitrogen oxides in blood and tissues. This entero-salivary circulation of nitrate is central in the various NO-like effects observed after ingestion of inorganic nitrate. The very same system has also been the focus of toxicologists studying potential carcinogenic effects of nitrite-dependent nitrosamine formation. Whether active transport of nitrate and accumulation in saliva occurs also in rodents is not entirely clear. Here we measured salivary and plasma levels of nitrate and nitrite in humans, rats and mice after administration of a standardized dose of nitrate. After oral (humans) or intraperitoneal (rodents) sodium nitrate administration (0.1 mmol/kg), plasma nitrate levels increased markedly reaching ~300 µM in all three species. In humans ingestion of nitrate was followed by a rapid increase in salivary nitrate to >6000 µM, ie 20 times higher than those found in plasma. In contrast, in rats and mice salivary nitrate concentrations never exceeded the levels in plasma. Nitrite levels in saliva and plasma followed a similar pattern, ie marked increases in humans but modest elevations in rodents. In mice there was also no accumulation of nitrate in the salivary glands as measured directly in whole glands obtained after acute administration of nitrate. This study suggests that in contrast to humans, rats and mice do not actively concentrate circulating nitrate in saliva. These apparent species differences should be taken into consideration when studying the nitrate-nitrite-nitric oxide pathway in rodents, when calculating doses, exploring physiological, therapeutic and toxicological effects and comparing with human data. In humans, dietary nitrate is effectively concentrated in saliva through active transport in the salivary glands. In humans salivary nitrate levels are10–20 times higher than in plasma. In contrast to humans, rats and mice do not actively concentrate nitrate in saliva. These species differences have implcations for translational research.
Collapse
Affiliation(s)
| | - Michaela L Sundqvist
- Dept. of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Function Area Clinical Nutrition, Karolinska University Hospital, Stockholm, Sweden
| | - Carina Nihlén
- Dept. of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Michael Hezel
- Dept. of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Mattias Carlström
- Dept. of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Eddie Weitzberg
- Dept. of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Jon O Lundberg
- Dept. of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
22
|
Peleli M, Zollbrecht C, Montenegro MF, Hezel M, Zhong J, Persson EG, Holmdahl R, Weitzberg E, Lundberg JO, Carlström M. Enhanced XOR activity in eNOS-deficient mice: Effects on the nitrate-nitrite-NO pathway and ROS homeostasis. Free Radic Biol Med 2016; 99:472-484. [PMID: 27609225 DOI: 10.1016/j.freeradbiomed.2016.09.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 08/16/2016] [Accepted: 09/02/2016] [Indexed: 01/19/2023]
Abstract
Xanthine oxidoreductase (XOR) is generally known as the final enzyme in purine metabolism and as a source of reactive oxygen species (ROS). In addition, this enzyme has been suggested to mediate nitric oxide (NO) formation via reduction of inorganic nitrate and nitrite. This NO synthase (NOS)-independent pathway for NO generation is of particular importance during certain conditions when NO bioavailability is diminished due to reduced activity of endothelial NOS (eNOS) or increased oxidative stress, including aging and cardiovascular disease. The exact interplay between NOS- and XOR-derived NO generation is not fully elucidated yet. The aim of the present study was to investigate if eNOS deficiency is associated with changes in XOR expression and activity and the possible impact on nitrite, NO and ROS homeostasis. Plasma levels of nitrate and nitrite were similar between eNOS deficient (eNOS-/-) and wildtype (wt) mice. XOR activity was upregulated in eNOS-/- compared with wt, but not in nNOS-/-, iNOS-/- or wt mice treated with the non-selective NOS inhibitor L-NAME. Following an acute dose of nitrate, plasma nitrite increased more in eNOS-/- compared with wt, and this augmented response was abolished by the selective XOR inhibitor febuxostat. Livers from eNOS-/- displayed higher nitrite reducing capacity compared with wt, and this effect was attenuated by febuxostat. Dietary supplementation with nitrate increased XOR expression and activity, but concomitantly reduced superoxide generation. The latter effect was also seen in vitro after nitrite administration. Treatment with febuxostat elevated blood pressure in eNOS-/-, but not in wt mice. A high dose of dietary nitrate reduced blood pressure in naïve eNOS-/- mice, and again this effect was abolished by febuxostat. In conclusion, eNOS deficiency is associated with an upregulation of XOR facilitating the nitrate-nitrite-NO pathway and decreasing the generation of ROS. This interplay between XOR and eNOS is proposed to play a significant role in NO homeostasis and blood pressure regulation.
Collapse
Affiliation(s)
- Maria Peleli
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Christa Zollbrecht
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Marcelo F Montenegro
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Michael Hezel
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Jianghong Zhong
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Erik G Persson
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Rikard Holmdahl
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Eddie Weitzberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Jon O Lundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| | - Mattias Carlström
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
23
|
Signaling pathways involved in HSP32 induction by hyperbaric oxygen in rat spinal neurons. Redox Biol 2016; 10:108-118. [PMID: 27721085 PMCID: PMC5054266 DOI: 10.1016/j.redox.2016.09.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 09/03/2016] [Accepted: 09/16/2016] [Indexed: 11/20/2022] Open
Abstract
Spinal cord injury (SCI) is a debilitating disease, effective prevention measures are in desperate need. Our previous work found that hyperbaric oxygen (HBO) preconditioning significantly protected rats from SCI after stimulated diving, and in vitro study further testified that HBO protected primary cultured rat spinal neurons from oxidative insult and oxygen glucose deprivation injury via heat shock protein (HSP) 32 induction. In this study, underlying molecular mechanisms were further investigated. The results showed that a single exposure to HBO significantly increased intracellular levels of reactive oxygen species (ROS) and nitric oxide (NO) and activated MEK1/2, ERK1/2, p38 MAPK, CREB, Bach1 and Nrf2. The induction of HSP32 by HBO was significantly reversed by pretreatment neurons with ROS scavenger N-Acetyl-L-cysteine, p38 MAPK inhibitor or Nrf2 gene knockdown, enhanced by MEK1/2 inhibitors or gene knockdown but not by ERK1/2 inhibitor. CREB knockdown did not change the expression of HSP32 induced by HBO. N-Acetyl-L-cysteine significantly inhibited the activation of MEK1/2, ERK1/2, p38 MAPK, and Nrf2. Activation of Nrf2 was significantly inhibited by p38 MAPK inhibitor and the nuclear export of Bach1 was significantly enhanced by MEK1/2 inhibitor. The results demonstrated that HBO induces HSP32 expression through a ROS/p38 MAPK/Nrf2 pathway and the MEK1/2/Bach1 pathway contributes to negative regulation in the process. More importantly, as we know, this is the first study to delineate that ERK1/2 is not the only physiological substrates of MEK1/2. HBO induces HSP32 through ROS/p38 MAPK/Nrf2 pathway in rat spinal neurons. ROS but not RNS participates in HBO induced HSP32 expression. MEK1/2/Bach1 contributes to negative regulation in HBO induced HSP32 expression. MEK1/2 acts through pathways other than ERK1/2.
Collapse
|
24
|
Porpino SKP, Zollbrecht C, Peleli M, Montenegro MF, Brandão MCR, Athayde-Filho PF, França-Silva MS, Larsson E, Lundberg JO, Weitzberg E, Persson EG, Braga VA, Carlström M. Nitric oxide generation by the organic nitrate NDBP attenuates oxidative stress and angiotensin II-mediated hypertension. Br J Pharmacol 2016; 173:2290-302. [PMID: 27160064 DOI: 10.1111/bph.13511] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 03/11/2016] [Accepted: 05/02/2016] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND AND PURPOSE NO deficiency and oxidative stress are crucially involved in the development or progression of cardiovascular disease, including hypertension and stroke. We have previously demonstrated that acute treatment with the newly discovered organic nitrate, 2-nitrate-1,3-dibuthoxypropan (NDBP), is associated with NO-like effects in the vasculature. This study aimed to further characterize the mechanism(s) and to elucidate the therapeutic potential in a model of hypertension and oxidative stress. EXPERIMENTAL APPROACH A combination of ex vivo, in vitro and in vivo approaches was used to assess the effects of NDBP on vascular reactivity, NO release, NADPH oxidase activity and in a model of hypertension. KEY RESULTS Ex vivo vascular studies demonstrated NDBP-mediated vasorelaxation in mesenteric resistance arteries, which was devoid of tolerance. In vitro studies using liver and kidney homogenates revealed dose-dependent and sustained NO generation by NDBP, which was attenuated by the xanthine oxidase inhibitor febuxostat. In addition, NDBP reduced NADPH oxidase activity in the liver and prevented angiotensin II-induced activation of NADPH oxidase in the kidney. In vivo studies showed that NDBP halted the progression of hypertension in mice with chronic angiotensin II infusion. This was associated with attenuated cardiac hypertrophy, and reduced NADPH oxidase-derived oxidative stress and fibrosis in the kidney and heart. CONCLUSION AND IMPLICATIONS The novel organic nitrate NDBP halts the progression of angiotensin II-mediated hypertension. Mechanistically, our findings suggest that NDBP treatment is associated with sustained NO release and attenuated activity of NADPH oxidase, which to some extent requires functional xanthine oxidase.
Collapse
Affiliation(s)
- Suênia K P Porpino
- Dept. of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Dept. of Medical Cell Biology, Uppsala University, Uppsala, Sweden.,Biotechnology Center, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Christa Zollbrecht
- Dept. of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Maria Peleli
- Dept. of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | - Maria C R Brandão
- Biotechnology Center, Federal University of Paraíba, João Pessoa, PB, Brazil
| | | | | | - Erik Larsson
- Dept. of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Jon O Lundberg
- Dept. of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Eddie Weitzberg
- Dept. of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Erik G Persson
- Dept. of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Valdir A Braga
- Biotechnology Center, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Mattias Carlström
- Dept. of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
25
|
Carlström M, Cananau C, Checa A, Wide K, Sartz L, Svensson A, Wheelock CE, Westphal S, Békássy Z, Bárány P, Lundberg JO, Hansson S, Weitzberg E, Krmar RT. Peritoneal dialysis impairs nitric oxide homeostasis and may predispose infants with low systolic blood pressure to cerebral ischemia. Nitric Oxide 2016; 58:1-9. [PMID: 27234508 DOI: 10.1016/j.niox.2016.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/05/2016] [Accepted: 05/14/2016] [Indexed: 11/16/2022]
Abstract
BACKGROUND & PURPOSE Infants on chronic peritoneal dialysis (PD) have an increased risk of developing neurological morbidities; however, the underlying biological mechanisms are poorly understood. In this clinical study, we investigated whether PD-mediated impairment of nitric oxide (NO) bioavailability and signaling, in patients with persistently low systolic blood pressure (SBP), can explain the occurrence of cerebral ischemia. METHODS & RESULTS Repeated blood pressure measurements, serial neuroimaging studies, and investigations of systemic nitrate and nitrite levels, as well as NO signaling, were performed in ten pediatric patients on PD. We consistently observed the loss of both inorganic nitrate (-17 ± 3%, P < 0.05) and nitrite (-34 ± 4%, P < 0.05) during PD, which may result in impairment of the nitrate-nitrite-NO pathway. Indeed, PD was associated with significant reduction of cyclic guanosine monophosphate levels (-59.4 ± 15%, P < 0.05). This reduction in NO signaling was partly prevented by using a commercially available PD solution supplemented with l-arginine. Although PD compromised nitrate-nitrite-NO signaling in all cases, only infants with persistently low SBP developed ischemic cerebral complications. CONCLUSIONS Our data suggests that PD impairs NO homeostasis and predisposes infants with persistently low SBP to cerebral ischemia. These findings improve current understanding of the pathogenesis of infantile cerebral ischemia induced by PD and may lead to the new treatment strategies to reduce neurological morbidities.
Collapse
Affiliation(s)
- Mattias Carlström
- Dept. of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| | - Carmen Cananau
- Dept. Radiology, Karolinska University Hospital, Huddinge, Sweden
| | - Antonio Checa
- Dept. of Medical Biochemistry and Biophysics, Div. of Physiological Chemistry 2, Karolinska Institutet, Stockholm, Sweden
| | - Katarina Wide
- Dept. of Clinical Science, Intervention and Technology, Div. of Pediatrics, Karolinska University Hospital, Huddinge, Sweden
| | - Lisa Sartz
- Dept. of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Anders Svensson
- Dept. Radiology, Karolinska University Hospital, Huddinge, Sweden
| | - Craig E Wheelock
- Dept. of Medical Biochemistry and Biophysics, Div. of Physiological Chemistry 2, Karolinska Institutet, Stockholm, Sweden
| | - Susanne Westphal
- Dept. of Pediatrics, The Queen Silvia Children's Hospital, Göteborg, Sweden
| | - Zivile Békássy
- Dept. of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Peter Bárány
- Dept. of Renal Medicine, Karolinska University Hospital, Stockholm, Huddinge, Sweden
| | - Jon O Lundberg
- Dept. of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Sverker Hansson
- Dept. of Pediatrics, The Queen Silvia Children's Hospital, Göteborg, Sweden
| | - Eddie Weitzberg
- Dept. of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Rafael T Krmar
- Dept. of Clinical Science, Intervention and Technology, Div. of Pediatrics, Karolinska University Hospital, Huddinge, Sweden.
| |
Collapse
|
26
|
Omar SA, Webb AJ, Lundberg JO, Weitzberg E. Therapeutic effects of inorganic nitrate and nitrite in cardiovascular and metabolic diseases. J Intern Med 2016; 279:315-36. [PMID: 26522443 DOI: 10.1111/joim.12441] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nitric oxide (NO) is generated endogenously by NO synthases to regulate a number of physiological processes including cardiovascular and metabolic functions. A decrease in the production and bioavailability of NO is a hallmark of many major chronic diseases including hypertension, ischaemia-reperfusion injury, atherosclerosis and diabetes. This NO deficiency is mainly caused by dysfunctional NO synthases and increased scavenging of NO by the formation of reactive oxygen species. Inorganic nitrate and nitrite are emerging as substrates for in vivo NO synthase-independent formation of NO bioactivity. These anions are oxidation products of endogenous NO generation and are also present in the diet, with green leafy vegetables having a high nitrate content. The effects of nitrate and nitrite are diverse and include vasodilatation, improved endothelial function, enhanced mitochondrial efficiency and reduced generation of reactive oxygen species. Administration of nitrate or nitrite in animal models of cardiovascular disease shows promising results, and clinical trials are currently ongoing to investigate the therapeutic potential of nitrate and nitrite in hypertension, pulmonary hypertension, peripheral artery disease and myocardial infarction. In addition, the nutritional aspects of the nitrate-nitrite-NO pathway are interesting as diets suggested to protect against cardiovascular disease, such as the Mediterranean diet, are especially high in nitrate. Here, we discuss the potential therapeutic opportunities for nitrate and nitrite in prevention and treatment of cardiovascular and metabolic diseases.
Collapse
Affiliation(s)
- S A Omar
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - A J Webb
- Cardiovascular Division, Department of Clinical Pharmacology, King's College London British Heart Foundation Centre, London, UK
| | - J O Lundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - E Weitzberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|