1
|
Ryszkiewicz P, Schlicker E, Malinowska B. Is Inducible Nitric Oxide Synthase (iNOS) Promising as a New Target Against Pulmonary Hypertension? Antioxidants (Basel) 2025; 14:377. [PMID: 40298665 PMCID: PMC12024173 DOI: 10.3390/antiox14040377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/12/2025] [Accepted: 03/19/2025] [Indexed: 04/30/2025] Open
Abstract
Pulmonary hypertension (PH) is a progressive disease characterized by elevated blood pressure in the pulmonary arteries, associated also with inflammation and oxidative stress. Inducible nitric oxide synthase (iNOS) is one of the key mediators of inflammation and immune system activation. Although preclinical studies mostly suggest a detrimental role of iNOS overactivation in PH, there is a lack of exhaustive analyses and summaries. Therefore, this literature overview aims to fill this gap. The involvement of iNOS in the pathogenesis of the four main clinical groups of PH is discussed to assess whether targeting iNOS could be a promising way to treat PH. iNOS expression patterns in the organs primarily affected by PH are analyzed both in animals and in humans. Consequently, the effectiveness of pharmacological iNOS inhibition and/or iNOS gene deletion is discussed and compared, also with reference to the activity of constitutive NOS isoforms, particularly endothelial NOS (eNOS). Overall, our overview suggests that selective iNOS inhibitors could be considered as a novel treatment strategy for PH, as decreases in right ventricular and pulmonary artery pressure, the alleviation of ventricular hypertrophy, and improvements of pulmonary and cardiac function were observed, among others. Nevertheless, further research efforts in this area are needed.
Collapse
Affiliation(s)
- Piotr Ryszkiewicz
- Department of Experimental Physiology and Pathophysiology, Medical University of Bialystok, Mickiewicz Str. 2A, 15-222 Bialystok, Poland
| | - Eberhard Schlicker
- Department of Pharmacology and Toxicology, University of Bonn, Venusberg Campus 1, 53127 Bonn, Germany;
| | - Barbara Malinowska
- Department of Experimental Physiology and Pathophysiology, Medical University of Bialystok, Mickiewicz Str. 2A, 15-222 Bialystok, Poland
| |
Collapse
|
2
|
Du H, Shao M, Xu S, Yang Q, Xu J, Ke H, Zou L, Huang L, Cui Y, Qu F. Integrating metabolomics and network pharmacology analysis to explore mechanism of Pueraria lobata against pulmonary fibrosis: Involvement of arginine metabolism pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 332:118346. [PMID: 38782311 DOI: 10.1016/j.jep.2024.118346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/17/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pueraria lobata (Willd.) Ohwi is a typical medicinal and edible plant with a long application history in China and Southeast Asia. As a widely used traditional medicine, P. lobata exhibits the properties of anti-inflammatory, antipyretic, antioxidant, relieving cough and asthma. Particularly, the increasing evidence indicates that the P. lobata has the therapeutic effect on fibrotic-related diseases in terms of metabolic regulation. However, the mechanisms of P. lobata on pulmonary fibrosis (PF) has not been thoroughly explored. AIM OF THE STUDY This study aimed to explore the effect of arginine metabolites of P. lobata against PF model by integrating metabolomics and network pharmacology analysis. It might provide a new idea for the target finding of P. lobata anti-pulmonary fibrosis. MATERIALS AND METHODS In this study, the Sprague Dawley (SD) rats were randomly divided into five experimental groups: saline-treated control group, bleomycin-induced fibrosis group, prednisolone acetate group, P. lobata 3.2 g/kg group and P. lobata 6.4 g/kg group. The therapeutic effect of P. lobata on bleomycin-induced PF in rats was evaluated by clinical symptoms such as lung function, body weight, hematoxylin eosin staining (HE), Masson staining and hydroxyproline assay. Next, the plasma metabolomics analysis was carried out by LC-MS to explore the pathological differences between the group of control, PF and P. lobata-treated rats. Then, the network pharmacology study coupled with experimental validation was conducted to analysis the results of metabolic research. We constructed the "component-target-disease" network of P. lobata in the treatment of PF. In addition, the molecular docking method was used to verify the interaction between potential active ingredients and core targets of P. lobata. Finally, we tested NOS2 and L-OT in arginine-related metabolic pathway in plasma of the rats by enzyme-linked immunosorbent assay (ELISA). Real-time PCR was performed to observe the level of TNF-α mRNA and MMP9 mRNA. And we tested the expression of TNF-α and MMP9 by Western blot analysis. RESULTS Our findings revealed that P. lobata improved lung function and ameliorated the pathological symptoms, such as pathological damage, collagen deposition, and body weight loss in PF rats. Otherwise, the plasma metabolomics were employed to screen the differential metabolites of amino acids, lipids, flavonoids, arachidonic acid metabolites, glycoside, etc. Finally, we found that the arginine metabolism signaling mainly involved in the regulating of P. lobata on the treatment of PF rats. Furtherly, the network pharmacology predicted that the arginine metabolism pathway was contained in the top 20 pathways. Next, we integrated metabolomics and network pharmacology that identified NOS2, MMP9 and TNF-α as the P. lobata regulated hub genes by molecular docking. Importantly, it indicated a strong affinity between the puerarin and the NOS2. P. lobata attenuated TNF-α, MMP-9 and NOS2 levels, suppressed TNF-α and MMP-9 protein expression, and decreased L-OT and NOS2 content in PF rats. These results indicated that the effects of P. lobata may ameliorated PF via the arginine metabolism pathway in rats. Therefore, P. lobata may be a potential therapeutic agent to ameliorated PF. CONCLUSION In this work, we used metabolomics and network pharmacology to explore the mechanisms of P. lobata in the treatment of PF. Finally, we confirmed that P. lobata alleviated BLM-induced PF in rats by regulating arginine metabolism pathway based on reducing the L-OT and NOS2-related signal molecular. The search for the biomarkers finding of arginine metabolism pathway revealed a new strategy for P. lobata in the treatment of PF.
Collapse
Affiliation(s)
- Hong Du
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, China
| | - Meijuan Shao
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, China
| | - Shangcheng Xu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, China
| | - Qian Yang
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, China
| | - Jingping Xu
- School of Physiology, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, China
| | - Hong Ke
- School of Physiology, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, China
| | - Li Zou
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, China
| | - Liping Huang
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, China
| | - Yanru Cui
- School of Physiology, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, China.
| | - Fei Qu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, China.
| |
Collapse
|
3
|
Schwab AD, Nelson AJ, Gleason AM, Schanze OW, Wyatt TA, Shinde DD, Xiao P, Thomas VC, Guda C, Bailey KL, Kielian T, Thiele GM, Poole JA. Aconitate decarboxylase 1 mediates the acute airway inflammatory response to environmental exposures. Front Immunol 2024; 15:1432334. [PMID: 39351225 PMCID: PMC11439662 DOI: 10.3389/fimmu.2024.1432334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/22/2024] [Indexed: 10/04/2024] Open
Abstract
Background Environmental lipopolysaccharide (LPS) and microbial component-enriched organic dusts cause significant lung disease. These environmental exposures induce the recruitment and activation of distinct lung monocyte/macrophage subpopulations involved in disease pathogenesis. Aconitate decarboxylase 1 (Acod1) was one of the most upregulated genes following LPS (vs. saline) exposure of murine whole lungs with transcriptomic profiling of sorted lung monocyte/macrophage subpopulations also highlighting its significance. Given monocyte/macrophage activation can be tightly linked to metabolism, the objective of these studies was to determine the role of the immunometabolic regulator ACOD1 in environmental exposure-induced lung inflammation. Methods Wild-type (WT) mice were intratracheally (i.t.) instilled with 10 μg of LPS or saline. Whole lungs were profiled using bulk RNA sequencing or sorted to isolate monocyte/macrophage subpopulations. Sorted subpopulations were then characterized transcriptomically using a NanoString innate immunity multiplex array 48 h post-exposure. Next, WT and Acod1-/- mice were instilled with LPS, 25% organic dust extract (ODE), or saline, whereupon serum, bronchoalveolar lavage fluid (BALF), and lung tissues were collected. BALF metabolites of the tricarboxylic acid (TCA) cycle were quantified by mass spectrometry. Cytokines/chemokines and tissue remodeling mediators were quantitated by ELISA. Lung immune cells were characterized by flow cytometry. Invasive lung function testing was performed 3 h post-LPS with WT and Acod1-/- mice. Results Acod1-/- mice treated with LPS demonstrated decreased BALF levels of itaconate, TCA cycle reprogramming, decreased BALF neutrophils, increased lung CD4+ T cells, decreased BALF and lung levels of TNF-α, and decreased BALF CXCL1 compared to WT animals. In comparison, Acod1-/- mice treated with ODE demonstrated decreased serum pentraxin-2, BALF levels of itaconate, lung total cell, neutrophil, monocyte, and B-cell infiltrates with decreased BALF levels of TNF-α and IL-6 and decreased lung CXCL1 vs. WT animals. Mediators of tissue remodeling (TIMP1, MMP-8, MMP-9) were also decreased in the LPS-exposed Acod1-/- mice, with MMP-9 also reduced in ODE-exposed Acod1-/- mice. Lung function assessments demonstrated a blunted response to LPS-induced airway hyperresponsiveness in Acod1-/- animals. Conclusion Acod1 is robustly upregulated in the lungs following LPS exposure and encodes a key immunometabolic regulator. ACOD1 mediates the proinflammatory response to acute inhaled environmental LPS and organic dust exposure-induced lung inflammation.
Collapse
Affiliation(s)
- Aaron D. Schwab
- Division of Allergy & Immunology, Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Amy J. Nelson
- Division of Allergy & Immunology, Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Angela M. Gleason
- Division of Allergy & Immunology, Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Oliver W. Schanze
- Division of Allergy & Immunology, Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Todd A. Wyatt
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
- Veterans Affairs Nebraska-Western Iowa Health Care System, Research Service, Omaha, NE, United States
- Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE, United States
| | - Dhananjay D. Shinde
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Peng Xiao
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States
| | - Vinai C. Thomas
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Chittibabu Guda
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States
| | - Kristina L. Bailey
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
- Veterans Affairs Nebraska-Western Iowa Health Care System, Research Service, Omaha, NE, United States
| | - Tammy Kielian
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Geoffrey M. Thiele
- Veterans Affairs Nebraska-Western Iowa Health Care System, Research Service, Omaha, NE, United States
- Division of Rheumatology & Immunology, Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Jill A. Poole
- Division of Allergy & Immunology, Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
4
|
Yamaguchi T, Ozawa R, Minato T, Hoshizaki M, Kammura Y, Okawara K, Khalil YA, Nakamura M, Yamaura K, Fukuda M, Imai Y, Kuba K. Haploinsufficiency of Cnot3 Aggravates Acid-Induced Acute Lung Injury Likely Through Transcriptional and Post-Transcriptional Upregulation of Pro-Inflammatory Genes. J Inflamm Res 2024; 17:5415-5425. [PMID: 39161681 PMCID: PMC11332416 DOI: 10.2147/jir.s468612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/03/2024] [Indexed: 08/21/2024] Open
Abstract
Background Acute lung injury (ALI) is caused by a variety of illnesses, including aspiration pneumonia and sepsis. The CCR4-NOT complex is a large multimeric protein complex that degrades mRNA through poly(A) tail shortening, whereas it also contributes to regulation of transcription and translation. Cnot3 is a scaffold component of the CCR4-NOT complex and is essential for the integrity of the complex; loss of Cnot3 leads to depletion of whole complex. While the significance of cytokine mRNA degradation in limiting inflammation has been established, the roles of CCR4-NOT complex-mediated in ALI remain elusive. Methods The effects of Cnot3 haploinsufficiency in the pathology and cytokine expression were analyzed in the mouse lungs of acid aspiration-induced acute lung injury. The decay rate and transcription activity of cytokine mRNAs under Cnot3 heterozygous deletion were analyzed in lipopolysaccharide (LPS) -stimulated mouse embryonic fibroblasts (MEFs). Results Tamoxifen-induced heterozygous deletion of Cnot3 in adult mice (Cnot3 Hetz) did not show body weight loss or any apparent abnormality. Under acid aspiration-induced acute lung injury, Cnot3 Hetz mice exhibited increased pulmonary edema, worse lung pathologies and more severe inflammation compared with wild type mice. mRNA expression of pro-inflammatory genes Il1b and Nos2 were significantly upregulated in the lungs of Cnot3 Hetz mice. Consistently, mRNA expression of Il1b and Nos2 was upregulated in LPS-stimulated Cnot3 Hetz MEFs. Mechanistically, while heterozygous depletion of Cnot3 stabilized both Il1b and Nos2 mRNAs, the nascent pre-mRNA level of Il1b was upregulated in Cnot3 Hetz MEFs, implicating Cnot3-mediated transcriptional repression of Il1b expression in addition to destabilization of Il1b and Nos2 mRNAs. PU.1 (Spi1) was identified as a causative transcription factor to promote Il1b expression under Cnot3 haploinsufficient conditions. Conclusion CNOT3 plays a protective role in ALI by suppressing expression of pro-inflammatory genes Il1b and Nos2 through both post-transcriptional and transcriptional mechanisms, including mRNA stability control of Spi1.
Collapse
Affiliation(s)
- Tomokazu Yamaguchi
- Department of Pharmacology, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
- Department of Biochemistry and Metabolic Science, Akita University Graduate School of Medicine, Akita, Japan
| | - Ryo Ozawa
- Department of Biochemistry and Metabolic Science, Akita University Graduate School of Medicine, Akita, Japan
- Department of Dentistry and Oral Surgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Takafumi Minato
- Department of Biochemistry and Metabolic Science, Akita University Graduate School of Medicine, Akita, Japan
| | - Midori Hoshizaki
- National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Japan
| | - Yutaro Kammura
- Department of Pharmacology, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
- Department of Anesthesiology and Critical Care Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Kazuma Okawara
- Department of Pharmacology, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
- Department of Surgery and Oncology, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Yousef A Khalil
- Department of Pharmacology, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Ken Yamaura
- Department of Anesthesiology and Critical Care Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Masayuki Fukuda
- Department of Dentistry and Oral Surgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Yumiko Imai
- National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Japan
| | - Keiji Kuba
- Department of Pharmacology, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
- Department of Biochemistry and Metabolic Science, Akita University Graduate School of Medicine, Akita, Japan
| |
Collapse
|
5
|
Duan X, Liu N, Lv K, Wang J, Li M, Zhang Y, Huo X, Bao S, Shen Z, Zhang X. Synthesis and Anti-Inflammatory Activity of Ferulic Acid-Sesquiterpene Lactone Hybrids. Molecules 2024; 29:936. [PMID: 38474447 DOI: 10.3390/molecules29050936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/17/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024] Open
Abstract
Acute lung injury (ALI) is a respiratory failure disease associated with high mortality rates in patients. The primary pathological damage is attributed to the excessive release of pro-inflammatory mediators in pulmonary tissue. However, specific therapy for ALI has not been developed. In this study, a series of novel ferulic acid-parthenolide (FA-PTL) and ferulic acid-micheliolide (FA-MCL) hybrid derivatives were designed, synthesized, and evaluated for their anti-inflammatory activities in vitro. Compounds 2, 4, and 6 showed pronounced anti-inflammatory activity against LPS-induced expression of pro-inflammatory cytokines in vitro. Importantly, compound 6 displayed good water solubility, and treatment of mice with compound 6 (10 mg/kg) significantly prevented weight loss and ameliorated inflammatory cell infiltration and edema in lung tissue, as well as improving the alveolar structure. These results suggest that compound 6 (((1aR,7aS,8R,10aS,10bS,E)-8-((dimethylamino)methyl)-1a-methyl-9-oxo-1a,2,3,6,7,7a,8,9,10a,10b-decahydrooxireno[2',3':9,10]cyclodeca[1,2-b]furan-5-yl)methyl (E)-3-(4-hydroxy-3-methoxyphenyl)acrylate 2-hydroxypropane-1,2,3-tricarboxylate) might be considered as a lead compound for further evaluation as a potential anti-ALI agent.
Collapse
Affiliation(s)
- Xiyan Duan
- School of Chemistry & Chemical Engineering, Henan University of Science and Technology, Luoyang 471003, China
| | - Ning Liu
- School of Nursing, Henan University of Science and Technology, Luoyang 471003, China
| | - Ke Lv
- The State Key Laboratory of Medicinal Chemical Biology & College of Chemistry, Nankai University, Tianjin 300071, China
| | - Junqi Wang
- School of Chemistry & Chemical Engineering, Henan University of Science and Technology, Luoyang 471003, China
| | - Mingyue Li
- College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Yanwei Zhang
- Accendatech Company, Ltd., Tianjin 300384, China
| | | | - Shiqi Bao
- Accendatech Company, Ltd., Tianjin 300384, China
| | - Zhuo Shen
- Accendatech Company, Ltd., Tianjin 300384, China
| | - Xuemei Zhang
- Accendatech Company, Ltd., Tianjin 300384, China
| |
Collapse
|
6
|
Isali I, Wong TR, Wu CHW, Scarberry K, Gupta S, Erickson BA, Breyer BN. Genomic Risk Factors for Urethral Stricture: A Systematic Review and Gene Network Analysis. Urology 2024; 184:251-258. [PMID: 38160764 DOI: 10.1016/j.urology.2023.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/14/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024]
Abstract
OBJECTIVE To identify genes that may play a role in urethral stricture and summarize the results of studies that have documented variations in gene expression among individuals with urethral stricture compared to healthy individuals. METHODS A systematic search was conducted in Cochrane, Ovid, Web of Science, and PubMed, limiting the results to articles published between January 1, 2000 and January 30, 2023. Only studies comparing the difference in gene expression between individuals with urethral stricture and healthy individuals utilizing molecular techniques to measure gene expression in blood, urine, or tissue samples were included in this systematic review. Gene network and pathway analyses were performed using Cytoscape software, with input data obtained from our systematic review of differentially expressed genes in urethral stricture. RESULTS Four studies met our criteria for inclusion. The studies used molecular biology methods to quantify gene expression data from specimens. The analysis revealed gene expressions of CXCR3 and NOS2 were downregulated in urethral tissue samples, while TGFB1, UPK3A, and CTGF were upregulated in plasma, urine and urethral tissue samples, respectively, in patients with urethral stricture compared to healthy controls. The analysis demonstrated that the most significant pathways were associated with phosphoinositide 3-kinase (PI3 kinase) and transforming growth factor beta 1/suppressor of mothers against decapentaplegic (TGF-β1/SMAD) signaling pathways. CONCLUSION This systematic review identified gene expression variations in several candidate genes and identified underlying biological pathways associated with urethral stricture. These findings could inform further research and potentially shift treatment and prevention strategies for urethral stricture.
Collapse
Affiliation(s)
- Ilaha Isali
- Department of Urology, Case Western Reserve University, Cleveland, OH
| | - Thomas R Wong
- Department of Urology, Case Western Reserve University, Cleveland, OH
| | - Chen-Han Wilfred Wu
- Department of Urology, Case Western Reserve University, Cleveland, OH; Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH
| | - Kyle Scarberry
- Department of Urology, Case Western Reserve University, Cleveland, OH
| | - Shubham Gupta
- Department of Urology, Case Western Reserve University, Cleveland, OH
| | | | - Benjamin N Breyer
- Department of Urology, University of California San Francisco, San Francisco, CA; Department of Biostatistics and Epidemiology, University of California San Francisco, San Francisco, CA.
| |
Collapse
|
7
|
Gutierrez B, Aggarwal T, Erguven H, Stone MRL, Guo C, Bellomo A, Abramova E, Stevenson ER, Laskin DL, Gow AJ, Izgu EC. Direct assessment of nitrative stress in lipid environments: Applications of a designer lipid-based biosensor for peroxynitrite. iScience 2023; 26:108567. [PMID: 38144454 PMCID: PMC10746523 DOI: 10.1016/j.isci.2023.108567] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/12/2023] [Accepted: 11/21/2023] [Indexed: 12/26/2023] Open
Abstract
Lipid membranes and lipid-rich organelles are targets of peroxynitrite (ONOO-), a highly reactive species generated under nitrative stress. We report a membrane-localized phospholipid (DPPC-TC-ONOO-) that allows the detection of ONOO- in diverse lipid environments: biomimetic vesicles, mammalian cell compartments, and within the lung lining. DPPC-TC-ONOO- and POPC self-assemble to membrane vesicles that fluorogenically and selectively respond to ONOO-. DPPC-TC-ONOO-, delivered through lipid nanoparticles, allowed for ONOO- detection in the endoplasmic reticulum upon cytokine-induced nitrative stress in live mammalian cells. It also responded to ONOO- within lung tissue murine models upon acute lung injury. We observed nitrative stress around bronchioles in precision cut lung slices exposed to nitrogen mustard and in pulmonary macrophages following intratracheal bleomycin challenge. Results showed that DPPC-TC-ONOO- functions specifically toward iNOS, a key enzyme modulating nitrative stress, and offers significant advantages over its hydrophilic analog in terms of localization and signal generation.
Collapse
Affiliation(s)
- Bryan Gutierrez
- Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, NJ 08854, USA
| | - Tushar Aggarwal
- Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, NJ 08854, USA
| | - Huseyin Erguven
- Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, NJ 08854, USA
| | - M. Rhia L. Stone
- Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, NJ 08854, USA
| | - Changjiang Guo
- Ernest Mario School of Pharmacy, Department of Pharmacology & Toxicology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Alyssa Bellomo
- Ernest Mario School of Pharmacy, Department of Pharmacology & Toxicology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Elena Abramova
- Ernest Mario School of Pharmacy, Department of Pharmacology & Toxicology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Emily R. Stevenson
- Ernest Mario School of Pharmacy, Department of Pharmacology & Toxicology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Debra L. Laskin
- Ernest Mario School of Pharmacy, Department of Pharmacology & Toxicology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Andrew J. Gow
- Ernest Mario School of Pharmacy, Department of Pharmacology & Toxicology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Enver Cagri Izgu
- Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, NJ 08854, USA
- Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08901, USA
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
8
|
Fu SP, Wu XC, Yang RL, Zhao DZ, Cheng J, Qian H, Ao J, Zhang Q, Zhang T. The role and mechanisms of mesenchymal stem cells regulating macrophage plasticity in spinal cord injury. Biomed Pharmacother 2023; 168:115632. [PMID: 37806094 DOI: 10.1016/j.biopha.2023.115632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023] Open
Abstract
Spinal Cord Injury (SCI) is a devastating neurological disorder comprising primary mechanical injury and secondary inflammatory response-mediated injury for which an effective treatment is still unavailable. It is well known that secondary inflammatory responses are a significant cause of difficulties in neurological recovery. An immune imbalance between M1/M2 macrophages at the sites of injury is involved in developing and progressing the secondary inflammatory response. Recently, Mesenchymal Stem Cells (MSCs) have shown significant therapeutic potential in tissue engineering and regenerative medicine due to their potential multidirectional differentiation and immunomodulatory properties. Accumulating evidence shows that MSCs can regulate the balance of M1/M2 macrophage polarization, suppress downstream inflammatory responses, facilitate tissue repair and regeneration, and improve the prognosis of SCI. This article briefly overviews the impact of macrophages and MSCs on SCI and repair. It discusses the mechanisms by which MSCs regulate macrophage plasticity, including paracrine action, release of exosomes and apoptotic bodies, and metabolic reprogramming. Additionally, the article summarizes the relevant signaling pathways of MSCs that regulate macrophage polarization.
Collapse
Affiliation(s)
- Sheng-Ping Fu
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China; Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Xiang-Chong Wu
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Rui-Lin Yang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - De-Zhi Zhao
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Jie Cheng
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Hu Qian
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Jun Ao
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Qian Zhang
- Department of Human Anatomy, Zunyi Medical University, Zunyi, Guizhou, China.
| | - Tao Zhang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China; Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China.
| |
Collapse
|
9
|
Taylor S, Murray A, Francis M, Abramova E, Guo C, Laskin DL, Gow AJ. Regulation of macrophage activation by S-Nitrosothiols following ozone-induced lung injury. Toxicol Appl Pharmacol 2022; 457:116281. [PMID: 36244437 PMCID: PMC10250783 DOI: 10.1016/j.taap.2022.116281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/01/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022]
Abstract
Acute exposure to ozone causes oxidative stress, characterized by increases in nitric oxide (NO) and other reactive nitrogen species in the lung. NO has been shown to modify thiols generating S-nitrosothiols (SNOs); this results in altered protein function. In macrophages this can lead to changes in inflammatory activity which impact the resolution of inflammation. As SNO formation is dependent on the redox state of both the NO donor and the recipient thiol, the local microenvironment plays a key role in its regulation. This dictates not only the chemical feasibility of SNO formation but also mechanisms by which they may form. In these studies, we compared the ability of the SNO donors, ethyl nitrite (ENO), which targets both hydrophobic and hydrophilic thiols, SNO-propanamide (SNOPPM) which targets hydrophobic thiols, and S-nitroso-N-acetylcysteine. (SNAC) which targets hydrophilic thiols. to modify macrophage activation following ozone exposure. Mice were treated with air or ozone (0.8 ppm, 3 h) followed 1 h later by intranasal administration of ENO, SNOPPM or SNAC (1-500 μM) or appropriate controls. Mice were euthanized 48 h later. Each of the SNO donors reduced ozone-induced inflammation and modified the phenotype of macrophages both within the lung lining fluid and the tissue. ENO and SNOPPM were more effective than SNAC. These findings suggest that the hydrophobic SNO thiol pool targeted by SNOPPM and ENO plays a major role in regulating macrophage phenotype following ozone induced injury.
Collapse
Affiliation(s)
- Sheryse Taylor
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, 160 Frelinghuysen Road, Piscataway, NJ 08854, United States of America
| | - Alexa Murray
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, 160 Frelinghuysen Road, Piscataway, NJ 08854, United States of America
| | - Mary Francis
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, 160 Frelinghuysen Road, Piscataway, NJ 08854, United States of America
| | - Elena Abramova
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, 160 Frelinghuysen Road, Piscataway, NJ 08854, United States of America
| | - Changjiang Guo
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, 160 Frelinghuysen Road, Piscataway, NJ 08854, United States of America
| | - Debra L Laskin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, 160 Frelinghuysen Road, Piscataway, NJ 08854, United States of America
| | - Andrew J Gow
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, 160 Frelinghuysen Road, Piscataway, NJ 08854, United States of America.
| |
Collapse
|
10
|
Bleomycin-Induced Damage in Rat Lung: Protective Effect of Grape Seed and Skin Extract. Dose Response 2022; 20:15593258221131648. [PMID: 36246170 PMCID: PMC9558885 DOI: 10.1177/15593258221131648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Introduction Bleomycin is an effective chemotherapeutic agent with main side effects
including lung fibrosis which limited its clinical use. The aim of this
study is to evaluate the protective effect of grape seed and skin extract
(GSSE) against bleomycin-induced oxidative damage and inflammation in rat
lung, by assessing respiratory index (RI), oxidative and nitrosative stress
(SOD and XO activity, NO), fibrotic mediators (hydroxyproline and collagen),
apoptosis (cytochrome C and LDH), inflammation (IL-6, TNF-α and TGF-β1), and
histological disturbances. Methods Rats were pre-treated during three weeks with vehicle [ethanol 10% control]
or GSSE (4 g/kg) and then administered with a single dose of bleo (15 mg/kg
bw) at the 7th day. Results: Bleo disturbed lung function through the accumulation
of hydroxyproline and collagen, decreased SOD activity but increased XO
activity as well as GSH and NO levels. Bleo also increased the
pro-inflammatory cytokines IL-6, TNF-α, and TGF-β1, and pro-apoptotic
cytochrome C factor and induced severe histological alterations of lung
parenchyma. Interestingly GSSE pre-treatment efficiently counteracted most
of the bleo-induced lung tissue damages. Conclusion Data suggest that GSSE exerts anti-oxidant, ant-inflammatory, and
anti-fibrosis properties that could find potential application in the
protection against bleo-induced lung fibrosis.
Collapse
|
11
|
Stevenson ER, Wilkinson ML, Abramova E, Guo C, Gow AJ. Intratracheal Administration of Acyl Coenzyme A Acyltransferase-1 Inhibitor K-604 Reduces Pulmonary Inflammation Following Bleomycin-Induced Lung Injury. J Pharmacol Exp Ther 2022; 382:356-365. [PMID: 35970601 PMCID: PMC9426763 DOI: 10.1124/jpet.122.001284] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/28/2022] [Indexed: 01/19/2023] Open
Abstract
Acute lung injury (ALI) is characterized by epithelial damage, barrier dysfunction, and pulmonary edema. Macrophage activation and failure to resolve play a role in ALI; thus, macrophage phenotype modulation is a rational target for therapeutic intervention. Large, lipid-laden macrophages have been observed in various injury models, including intratracheal bleomycin (ITB), suggesting that lipid storage may play a role in ALI severity. The endoplasmic reticulum-associated enzyme acyl coenzyme A acyltransferase-1 (Acat-1/Soat1) is highly expressed in macrophages, where it catalyzes the esterification of cholesterol, leading to intracellular lipid accumulation. We hypothesize that inhibition of Acat-1 will reduce macrophage activation and improve outcomes of lung injury in ITB. K-604, a selective inhibitor of Acat-1, was used to reduce cholesterol esterification and hence lipid accumulation in response to ITB. Male and female C57BL6/J mice (n = 16-21/group) were administered control, control + K-604, ITB, or ITB + K-604 on d0, control or K-604 on d3, and were sacrificed on day 7. ITB caused significant body weight loss and an increase in cholesterol accumulation in bronchoalveolar lavage cells. These changes were mitigated by Acat-1 inhibition. K-604 also significantly reduced ITB-induced alveolar thickening. Surfactant composition was normalized as indicated by a significant decrease in phospholipid: SP-B ratio in ITB+K-604 compared with ITB. K-604 administration preserved mature alveolar macrophages, decreased activation in response to ITB, and decreased the percentage mature and pro-fibrotic interstitial macrophages. These results show that inhibition of Acat-1 in the lung is associated with reduced inflammatory response to ITB-mediated lung injury. SIGNIFICANCE STATEMENT: Acyl coenzyme A acyltransferase-1 (Acat-1) is critical to lipid droplet formation, and thus inhibition of Acat-1 presents as a pharmacological target. Intratracheal administration of K-604, an Acat-1 inhibitor, reduces intracellular cholesterol ester accumulation in lung macrophages, attenuates inflammation and macrophage activation, and normalizes mediators of surface-active function after intratracheal bleomycin administration in a rodent model. The data presented within suggest that inhibition of Acat-1 in the lung improves acute lung injury outcomes.
Collapse
Affiliation(s)
- Emily R Stevenson
- Ernest Mario School of Pharmacy, Department of Pharmacology & Toxicology, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Melissa L Wilkinson
- Ernest Mario School of Pharmacy, Department of Pharmacology & Toxicology, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Elena Abramova
- Ernest Mario School of Pharmacy, Department of Pharmacology & Toxicology, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Changjiang Guo
- Ernest Mario School of Pharmacy, Department of Pharmacology & Toxicology, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Andrew J Gow
- Ernest Mario School of Pharmacy, Department of Pharmacology & Toxicology, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| |
Collapse
|
12
|
Golden TN, Venosa A, Gow AJ. Cell Origin and iNOS Function Are Critical to Macrophage Activation Following Acute Lung Injury. Front Pharmacol 2022; 12:761496. [PMID: 35145401 PMCID: PMC8822172 DOI: 10.3389/fphar.2021.761496] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/09/2021] [Indexed: 01/19/2023] Open
Abstract
In the intratracheal bleomycin (ITB) model of acute lung injury (ALI), macrophages are recruited to the lung and participate in the inflammation and resolution that follows injury. Macrophage origin is influential in determining activation; however, the specific phenotype of recruited and resident macrophages is not known. Inducible nitric oxide synthase (iNOS) has been implicated in the pathogenesis of ALI; however, the effects of its inhibition are mixed. Here we examined how macrophage origin determines the phenotypic response to ALI. Further, we hypothesize cell specific iNOS is key to determining activation and recruitment. Using a chimeric mouse approach, we have identified recruited and resident macrophage populations. We also used the chimeric mouse approach to create either pulmonary or bone marrow NOS2-/- mice and systemically inhibited iNOS via 1400 W. We evaluated macrophage populations at the peak of inflammation (8 days) and the beginning of resolution (15 days) following ITB. These studies demonstrate tissue resident macrophages adopt a M2 phenotype specifically, but monocyte originated macrophages activate along a spectrum. Additionally, we demonstrated that monocyte originating macrophage derived iNOS is responsible for recruitment to the lung during the inflammatory phase. Further, we show that macrophage activation is dependent upon cellular origin. Finally, these studies suggest pulmonary derived iNOS is detrimental to the lung following ITB. In conclusion, macrophage origin is a key determinant in response to ALI and iNOS is central to recruitment and activation.
Collapse
Affiliation(s)
- Thea N. Golden
- Center for Research on Reproduction and Women’s Health, School of Medicine, University of Pennsylvania, Philadelphia, PA, United States,Center for Excellence in Environmental Toxicology, School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Alessandro Venosa
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, United States
| | - Andrew J Gow
- Department of Pharmacology and Toxicology, Rutgers, The State University of New Jersey, Piscataway, NJ, United States,*Correspondence: Andrew J Gow,
| |
Collapse
|
13
|
Deficiency of the novel high mobility group protein HMGXB4 protects against systemic inflammation-induced endotoxemia in mice. Proc Natl Acad Sci U S A 2021; 118:2021862118. [PMID: 33563757 DOI: 10.1073/pnas.2021862118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Sepsis is a major cause of mortality in intensive care units, which results from a severely dysregulated inflammatory response that ultimately leads to organ failure. While antibiotics can help in the early stages, effective strategies to curtail inflammation remain limited. The high mobility group (HMG) proteins are chromosomal proteins with important roles in regulating gene transcription. While HMGB1 has been shown to play a role in sepsis, the role of other family members including HMGXB4 remains unknown. We found that expression of HMGXB4 is strongly induced in response to lipopolysaccharide (LPS)-elicited inflammation in murine peritoneal macrophages. Genetic deletion of Hmgxb4 protected against LPS-induced lung injury and lethality and cecal ligation and puncture (CLP)-induced lethality in mice, and attenuated LPS-induced proinflammatory gene expression in cultured macrophages. By integrating genome-wide transcriptome profiling and a publicly available ChIP-seq dataset, we identified HMGXB4 as a transcriptional activator that regulates the expression of the proinflammatory gene, Nos2 (inducible nitric oxide synthase 2) by binding to its promoter region, leading to NOS2 induction and excessive NO production and tissue damage. Similar to Hmgxb4 ablation in mice, administration of a pharmacological inhibitor of NOS2 robustly decreased LPS-induced pulmonary vascular permeability and lethality in mice. Additionally, we identified the cell adhesion molecule, ICAM1, as a target of HMGXB4 in endothelial cells that facilitates inflammation by promoting monocyte attachment. In summary, our study reveals a critical role of HMGXB4 in exacerbating endotoxemia via transcriptional induction of Nos2 and Icam1 gene expression and thus targeting HMGXB4 may be an effective therapeutic strategy for the treatment of sepsis.
Collapse
|
14
|
Venosa A, Gow JG, Taylor S, Golden TN, Murray A, Abramova E, Malaviya R, Laskin DL, Gow AJ. Myeloid cell dynamics in bleomycin-induced pulmonary injury in mice; effects of anti-TNFα antibody. Toxicol Appl Pharmacol 2021; 417:115470. [PMID: 33647319 PMCID: PMC10157853 DOI: 10.1016/j.taap.2021.115470] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 02/18/2021] [Accepted: 02/23/2021] [Indexed: 12/19/2022]
Abstract
Bleomycin is a cancer therapeutic known to cause lung injury which progresses to fibrosis. Evidence suggests that macrophages contribute to this pathological response. Tumor necrosis factor (TNF)α is a macrophage-derived pro-inflammatory cytokine implicated in lung injury. Herein, we investigated the role of TNFα in macrophage responses to bleomycin. Treatment of mice with bleomycin (3 U/kg, i.t.) caused histopathological changes in the lung within 3 d which culminated in fibrosis at 21 d. This was accompanied by an early (3-7 d) influx of CD11b+ and iNOS+ macrophages into the lung, and Arg-1+ macrophages at 21 d. At this time, epithelial cell dysfunction, defined by increases in total phospholipids and SP-B was evident. Treatment of mice with anti-TNFα antibody (7.5 mg/kg, i.v.) beginning 15-30 min after bleomycin, and every 5 d thereafter reduced the number and size of fibrotic foci and restored epithelial cell function. Flow cytometric analysis of F4/80+ alveolar macrophages (AM) isolated by bronchoalveolar lavage and interstitial macrophages (IM) by tissue digestion identified resident (CD11b-CD11c+) and immature infiltrating (CD11b+CD11c-) AM, and mature (CD11b+CD11c+) and immature (CD11b+CD11c-) IM subsets in bleomycin treated mice. Greater numbers of mature (CD11c+) infiltrating (CD11b+) AM expressing the anti-inflammatory marker, mannose receptor (CD206) were observed at 21 d when compared to 7 d post bleomycin. Mature proinflammatory (Ly6C+) IM were greater at 7 d relative to 21 d. These cells transitioned into mature anti-inflammatory/pro-fibrotic (CD206+) IM between 7 and 21 d. Anti-TNFα antibody heightened the number of CD11b+ AM in the lung without altering their activation state. Conversely, it reduced the abundance of mature proinflammatory (Ly6C+) IM in the tissue at 7 d and immature pro-fibrotic IM at 21 d. Taken together, these data suggest that TNFα inhibition has beneficial effects in bleomycin induced injury, restoring epithelial function and reducing numbers of profibrotic IM and the extent of pulmonary fibrosis.
Collapse
Affiliation(s)
- Alessandro Venosa
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA
| | | | - Sheryse Taylor
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Thea N Golden
- Center for Research on Reproduction and Women's Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 18015, USA
| | - Alexa Murray
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Elena Abramova
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Rama Malaviya
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Debra L Laskin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Andrew J Gow
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
15
|
Gow J, Yang Y, Govindraj M, Guo C. Nitric Oxide Regulates Macrophage Fungicidal Activity via S-nitrosylation of Dectin-1. ACTA ACUST UNITED AC 2020; 6:90-98. [PMID: 32953945 PMCID: PMC7500157 DOI: 10.1089/aivt.2020.0009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Recognition of fungal surface β-glucan by pattern recognition receptor Dectin-1 is a critical process for fungal clearance in the lung. In humans, persistent fungal infection is observed in individuals with particular Dectin-1 polymorphism. We have identified that nitric oxide (NO) modifies critical cysteines in pattern recognition molecules to disassemble and alter protein function. There is a hydrophobic S-nitrosylation motif present in surfactant protein-D (SP-D) that is also present in Dectin-1. We hypothesized that Dectin-1 can be modified by nitrosative stress potentially leading to impairment of fungal clearance. Materials and Methods: Recombinant Dectin-1 was incubated with l-nitrosocysteine (L-SNOC) and S-nitrosylated Dectin-1 was detected by Biotin-switch assay. Cells of a murine macrophage line (Raw 264.7) were incubated with S-nitroso-glutathione (GSNO) and Dectin-1 shedding from the cell surface was determined by Western blot. Dectin-1 quaternary structure was determined by native gel electrophoresis. Dectin-1 function was assayed by NF-κB activity and IL-6 mRNA real-time polymerase chain reaction (PCR). Phagocytic activity was measured by fluorescence labeled zymosan beads. Results: Dectin-1 was S-nitrosylated by l-nitrosocysteine (L-SNOC) in vitro, as determined by Biotin-switch assay, resulting in structural disruption. We used Western blotting and flow cytometry to demonstrate that incubation of a murine macrophage cell line (Raw 264.7 cells) with GSNO reduced the surface Dectin-1 expression as a result of shedding to the media. The shedding of Dectin-1 is due to formation of S-nitrosothiol (SNO)-Dectin-1 and disruption of the Dectin-1 oligomeric complex. GSNO also induces Dectin-1 shedding from the cell surface. The functional significance of GSNO treatment of macrophages is shown by reduced β-glucan-mediated signaling in terms of NF-κB function and IL-6 expression. Finally, it was demonstrated that GSNO treatment reduces the capability of macrophages to phagocytose zymosan. Conclusions: These data provide mechanistic data to support the role of Dectin-1 nitrosylation as a mediator of reduced fungal clearance in the face of increased NO exposure.
Collapse
Affiliation(s)
- James Gow
- Department of Pharmacology & Toxicology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Yujie Yang
- Department of Pharmacology & Toxicology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Mohan Govindraj
- Department of Pharmacology & Toxicology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Changjiang Guo
- Department of Pharmacology & Toxicology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| |
Collapse
|
16
|
Fatty acid nitroalkenes inhibit the inflammatory response to bleomycin-mediated lung injury. Toxicol Appl Pharmacol 2020; 407:115236. [PMID: 32931793 DOI: 10.1016/j.taap.2020.115236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/03/2020] [Accepted: 09/08/2020] [Indexed: 12/29/2022]
Abstract
Fatty acid nitroalkenes are reversibly-reactive electrophiles, endogenously detectable at nM concentrations, displaying anti-inflammatory actions. Nitroalkenes like 9- or 10-nitro-octadec-9-enoic acid (e.g. nitro-oleic acid, OA-NO2) pleiotropically suppress cardiovascular inflammatory responses, with pulmonary responses less well defined. C57BL/6 J male mice were intratracheally administered bleomycin (3 U/kg, ITB), to induce pulmonary inflammation and acute injury, or saline and were treated with 50 μL OA-NO2 (50 μg) or vehicle in the same instillation and 72 h post-exposure to assess anti-inflammatory properties. Bronchoalveolar lavage (BAL) and lung tissue were collected 7d later. ITB mice lost body weight, with OA-NO2 mitigating this loss (-2.3 ± 0.94 vs -0.4 ± 0.83 g). Histology revealed ITB induced cellular infiltration, proteinaceous debris deposition, and tissue injury, all significantly reduced by OA-NO2. Flow cytometry analysis of BAL demonstrated loss of Siglec F+/F4/80+/CD45+ alveolar macrophages with ITB (89 ± 3.5 vs 30 ± 3.7%). Analysis of CD11b/CD11c expressing cells showed ITB-induced non-resident macrophage infiltration (4 ± 2.3 vs 43 ± 2.4%) was decreased by OA-NO2 (24 ± 2.4%). Additionally, OA-NO2 attenuated increases in mature, activated interstitial macrophages (23 ± 4.8 vs. 43 ± 5.4%) in lung tissue digests. Flow analysis of CD31-/CD45-/Sca-1+ mesenchymal cells revealed ITB increased CD44+ populations (1 ± 0.4 vs 4 ± 0.4MFI), significantly reduced by OA-NO2 (3 ± 0.4MFI). Single cell analysis of mesenchymal cells by western blotting showed profibrotic ZEB1 protein expression induced by ITB. Lung digest CD45+ cells revealed ITB increased HMGB1+ cells, with OA-NO2 suppressing this response. Inhibition of HMGB1 expression correlated with increased basal phospholipid production and SP-B expression in the lung lining. These findings indicate OA-NO2 inhibits ITB-induced pro-inflammatory responses by modulating resident cell function.
Collapse
|
17
|
Zingerone ameliorates oxidative stress and inflammation in bleomycin-induced pulmonary fibrosis: modulation of the expression of TGF-β1 and iNOS. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:1659-1670. [PMID: 32377772 DOI: 10.1007/s00210-020-01881-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 04/22/2020] [Indexed: 12/16/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease with limited treatment options. Zingerone found in ginger (Zingiber officinale L.) has many pharmacological effects, especially antiinflammatory and antioxidant activity. However, the effect of zingerone on pulmonary fibrosis (PF) is not fully known. The aim of this study was to investigate the effect of zingerone on bleomycin (BLM)-induced PF and its underlying mechanisms. Wistar-albino rats were given single dose of BLM (5 mg/kg, intratracheal) or vehicle (saline). In treatment groups, zingerone (50 and 100 mg/kg, p.o.) was administered orally for 14 days after BLM administration. Rats and lung tissue were weighed to determine lung index. Antioxidant, antiinflammatory effects, and hydroxyproline content of zingerone were determined by ELISA method. Pulmonary inflammation, collagen deposition, and fibrosis score were determined with Hematoxylin-Eosin (HxE) and Masson's trichrome staining. Transforming growth factor-beta 1 (TGF-β1) and inducible nitric oxide synthase (iNOS) expressions were detected immunohistochemically. BLM administration increased lipid peroxidation (MDA) and decreased superoxide dismutase (SOD) and glutathione peroxidase (GPx) activity. In addition, BLM caused increased levels of tumor necrosis factor alpha (TNF-α) and interleukin-1β (IL-1β) in bronchoalveolar lavage fluid (BALF) and accumulation of collagen bundles. Zingerone administration decreased collagen accumulation, TNF-α and IL-1β levels, MDA level, TGF-β1, and iNOS expression and increased SOD and GPx activity. Histopathological findings supported the results. These results show that zingerone (50 and 100 mg/kg) at both doses significantly contributes to healing of PF by improving inflammation, oxidative stress, and histopathological alterations and by affecting TGF-β1 and iNOS signaling pathways.
Collapse
|
18
|
Hua YL, Ma Q, Yuan ZW, Zhang XS, Yao WL, Ji P, Hu JJ, Wei YM. A novel approach based on metabolomics coupled with network pharmacology to explain the effect mechanisms of Danggui Buxue Tang in anaemia. Chin J Nat Med 2019; 17:275-290. [PMID: 31076131 DOI: 10.1016/s1875-5364(19)30031-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Indexed: 12/15/2022]
Abstract
Danggui Buxue Tang (DBT) is a famous Chinese medicinal decoction. Mechanism of DBT action is wide ranging and unclear. Exploring new ways of treatment with DBT is useful. Sprague-Dawley(SD) rats were randomly divided into 3 groups including control (NC, Saline), the DBT (at a dose of 8.10 g-1), and blood deficiency(BD) (Cyclophosphamide (APH)-andCyclophosphamide(CTX)-induced anaemia). A metabolomics approach using Liquid Chromatography-Quadrupole-Time-of-Flight/Mass Spectrometry (LC/Q-TOFMS) was developed to perform the plasma metabolic profiling analysis and differential metaboliteswerescreened according to the multivariate statistical analysiscomparing the NC and BD groups, andthe hub metabolites were outliers with high scores of the centrality indices. Anaemia disease-related protein target and compound of DBT databases were constructed. The TCMSP, ChemMapper and STITCH databases were used to predict the protein targets of DBT. Using the Cytoscape 3.2.1 to establish a phytochemical component-target protein interaction network and establish a component, protein and hub metabolite protein-protein interaction (PPI) network and merging the three PPI networks basing on BisoGenet. The gene enrichment analysis was used to analyse the relationship between proteins based on the relevant genetic similarity by ClueGO. The results shown DBT effectively treated anaemia in vivo. 11 metabolic pathways are involved in the therapeutic effect of DBT in vivo; S-adenosyl-l-methionine, glycine, l-cysteine, arachidonic acid (AA) and phosphatidylcholine(PC) were screened as hub metabolites in APH-and CTX-induced anaemia. A total of 288 targets were identified as major candidates for anaemia progression. The gene-set enrichment analysis revealed that the targets are involved in iron ion binding, haemopoiesis, reactive oxygen species production, inflammation and apoptosis. The results also showed that these targets were associated with iron ion binding, haemopoiesis, ROS production, apoptosis, inflammation and related signalling pathways. DBT can promote iron ion binding and haemopoiesis activities, restrain inflammation, production of reactive oxygen, block apoptosis, and contribute significantly to the DBT treat anaemia.
Collapse
Affiliation(s)
- Yong-Li Hua
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070,China.
| | - Qi Ma
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070,China
| | - Zi-Wen Yuan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070,China
| | - Xiao-Song Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070,China
| | - Wan-Ling Yao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070,China
| | - Peng Ji
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070,China
| | - Jun-Jie Hu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070,China
| | - Yan-Ming Wei
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070,China
| |
Collapse
|
19
|
Guo CJ, Atochina-Vasserman EN, Abramova E, Smith LC, Beers MF, Gow AJ. Surfactant protein-D modulation of pulmonary macrophage phenotype is controlled by S-nitrosylation. Am J Physiol Lung Cell Mol Physiol 2019; 317:L539-L549. [PMID: 31411060 DOI: 10.1152/ajplung.00506.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Surfactant protein-D (SP-D) is a regulator of pulmonary innate immunity whose oligomeric state can be altered through S-nitrosylation to regulate its signaling function in macrophages. Here, we examined how nitrosylation of SP-D alters the phenotypic response of macrophages to stimuli both in vivo and in vitro. Bronchoalveolar lavage (BAL) from C57BL6/J and SP-D-overexpressing (SP-D OE) mice was incubated with RAW264.7 cells ± LPS. LPS induces the expression of the inflammatory genes Il1b and Nos2, which is reduced 10-fold by SP-D OE-BAL. S-nitrosylation of the SP-D OE-BAL (SNO-SP-D OE-BAL) abrogated this inhibition. SNO-SP-D OE-BAL alone induced Il1b and Nos2 expression. PCR array analysis of macrophages incubated with SP-D OE-BAL (±LPS) shows increased expression of repair genes, Ccl20, Cxcl1, and Vcam1, that was accentuated by LPS. LPS increases inflammatory gene expression, Il1a, Nos2, Tnf, and Ptgs2, which was accentuated by SNO-SP-D OE-BAL but inhibited by SP-D OE-BAL. The transcription factor NF-κB was identified as a target for SNO-SP-D by IPA, which was confirmed by Trans-AM ELISA in vitro. In vivo, SP-D overexpression increases the burden of infection in a Pneumocystis model while increasing cellular recruitment. Expression of iNOS and the production of NO metabolites were significantly reduced in SP-D OE mice relative to C57BL6/J. Inflammatory gene expression was increased in infected C57BL6/J mice but decreased in SP-D OE. SP-D oligomeric structure was disrupted in C57BL6/J infected mice but unaltered within SP-D OE. Thus SP-D modulates macrophage phenotype and the balance of multimeric to trimeric SP-D is critical to this regulation.
Collapse
Affiliation(s)
- Chang-Jiang Guo
- Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | | | - Elena Abramova
- Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Ley Cody Smith
- Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Michael F Beers
- School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Andrew J Gow
- Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| |
Collapse
|
20
|
Zhang X, Li G, Guo Y, Song Y, Chen L, Ruan Q, Wang Y, Sun L, Hu Y, Zhou J, Ren B, Guo J. Regulation of ezrin tension by S-nitrosylation mediates non-small cell lung cancer invasion and metastasis. Theranostics 2019; 9:2555-2571. [PMID: 31131053 PMCID: PMC6525990 DOI: 10.7150/thno.32479] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/18/2019] [Indexed: 12/23/2022] Open
Abstract
Cancer invasion and metastasis depend on accurate and rapid modulation of both chemical and mechanical activities. The S-nitrosylation (SNO) of membrane cytoskeletal cross-linker protein ezrin may regulate the malignant process in a tension-dependent manner. Methods: The level of nitrosylated ezrin in non-small cell lung cancer (NSCLC) tissues and A549 cell line were evaluated by biotin-switch assay. A few cysteine mutated plasmids of ezrin were used to identify active site for SNO. Newly designed ezrin or mutated-ezrin tension probes based on Förster resonance energy transfer (FRET) theory were applied to visually observe real-time tension changes. Cytoskeleton depolymerizing and motor molecular inhibiting experiments were performed to reveal the alternation of the mechanical property of ezrin after SNO. Transwell assays and xenograft mouse model were used to assess aggressiveness of A549 cells in different groups. Fluorescent staining was also applied to examine cellular location and structures. Results: High inducible nitric oxide synthase (iNOS) levels were observed to induce ezrin-SNO, and then promote malignant behaviors of NSCLC cells both in vitro and in vivo. Cys117 was identified as the only active site for ezrin-SNO. Meanwhile, an increased level of ezrin tension was observed after iNOS-induced SNO. Enhanced ezrin tension was positively correlated with aggressiveness of NSCLC. Moreover, Microfilament (MF) forces instead of microtubule (MT) forces played dominant roles in modulating ezrin tension, especially after ezrin nitrosylation. Conclusion: This study revealed a SNO-associated mechanism underlying the mechanical tension of ezrin. Ezrin-SNO promotes NSCLC cells invasion and metastasis through facilitating mechanical transduction from the cytoskeleton to the membrane. These studies implicate the therapeutic potential by targeting ezrin in the inhibition NSCLC invasion and metastasis.
Collapse
Affiliation(s)
- Xiaolong Zhang
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, PR China
- Key Laboratory of Drug Target and Drug for Degenerative Disease, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, PR China
| | - Guangming Li
- Department of Anesthesiology, Huaian First People's Hospital, Nanjing Medical University, Huaian 223001, Jiangsu, PR China
| | - Yichen Guo
- Department of Surgery and Biomedical Engineering, University of Alabama at Birmingham (UAB), Birmingham, Alabama. 35294, USA
| | - Ying Song
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Linlin Chen
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, PR China
- Key Laboratory of Drug Target and Drug for Degenerative Disease, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, PR China
| | - Qinli Ruan
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, PR China
- Key Laboratory of Drug Target and Drug for Degenerative Disease, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, PR China
| | - Yifan Wang
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, PR China
- Key Laboratory of Drug Target and Drug for Degenerative Disease, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, PR China
| | - Lixia Sun
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, PR China
| | - Yunfeng Hu
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, PR China
- Key Laboratory of Drug Target and Drug for Degenerative Disease, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, PR China
| | - Jingwen Zhou
- The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, PR China
| | - Bin Ren
- Department of Surgery and Biomedical Engineering, University of Alabama at Birmingham (UAB), Birmingham, Alabama. 35294, USA
| | - Jun Guo
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, PR China
- Key Laboratory of Drug Target and Drug for Degenerative Disease, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, PR China
| |
Collapse
|
21
|
Kaner Z, Engelman R, Schuster R, Rider P, Greenberg D, Av-Gay Y, Benhar M, Lewis EC. S-Nitrosylation of α1-Antitrypsin Triggers Macrophages Toward Inflammatory Phenotype and Enhances Intra-Cellular Bacteria Elimination. Front Immunol 2019; 10:590. [PMID: 31001247 PMCID: PMC6454134 DOI: 10.3389/fimmu.2019.00590] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 03/05/2019] [Indexed: 01/01/2023] Open
Abstract
Background: Human α1-antitrypsin (hAAT) is a circulating anti-inflammatory serine-protease inhibitor that rises during acute phase responses. in vivo, hAAT reduces bacterial load, without directly inhibiting bacterial growth. In conditions of excess nitric-oxide (NO), hAAT undergoes S-nitrosylation (S-NO-hAAT) and gains antibacterial capacity. The impact of S-NO-hAAT on immune cells has yet to be explored. Aim: Study the effects of S-NO-hAAT on immune cells during bacterial infection. Methods: Clinical-grade hAAT was S-nitrosylated and then compared to unmodified hAAT, functionally, and structurally. Intracellular bacterial clearance by THP-1 macrophages was assessed using live Salmonella typhi. Murine peritoneal macrophages were examined, and signaling pathways were evaluated. S-NO-hAAT was also investigated after blocking free mambranal cysteine residues on cells. Results: S-NO-hAAT (27.5 uM) enhances intracellular bacteria elimination by immunocytes (up to 1-log reduction). S-NO-hAAT causes resting macrophages to exhibit a pro-inflammatory and antibacterial phenotype, including release of inflammatory cytokines and induction of inducible nitric oxide synthase (iNOS) and TLR2. These pro-inflammatory effects are dependent upon cell surface thiols and activation of MAPK pathways. Conclusions: hAAT duality appears to be context-specific, involving S-nitrosylation in a nitric oxide rich environment. Our results suggest that S-nitrosylation facilitates the antibacterial activity of hAAT by promoting its ability to activate innate immune cells. This pro-inflammatory effect may involve transferring of nitric oxide from S-NO-hAAT to a free cysteine residue on cellular targets.
Collapse
Affiliation(s)
- Ziv Kaner
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Rotem Engelman
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ronen Schuster
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Peleg Rider
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - David Greenberg
- The Pediatric Infectious Disease Unit, Soroka University Medical Center, Beer-Sheva, Israel
| | - Yossef Av-Gay
- Division of Infectious Diseases, Departments of Medicine and Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Moran Benhar
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Eli C Lewis
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
22
|
Sarcoid-Like Granulomatous Disease: Pathologic Case Series in World Trade Center Dust Exposed Rescue and Recovery Workers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16050815. [PMID: 30845693 PMCID: PMC6427752 DOI: 10.3390/ijerph16050815] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/22/2019] [Accepted: 02/26/2019] [Indexed: 02/08/2023]
Abstract
Sarcoid-like granulomatous diseases (SGD) have been previously identified in cohorts of World Trade Center (WTC) dust-exposed individuals. In the present studies, we analyzed lung and/or lymph node biopsies from patients referred to our clinic with suspected WTC dust-induced lung disease to evaluate potential pathophysiologic mechanisms. Histologic sections of lung and/or lymph node samples were analyzed for markers of injury, oxidative stress, inflammation, fibrosis, and epigenetic modifications. Out of seven patients examined, we diagnosed four with SGD and two with pulmonary fibrosis; one was diagnosed later with SGD at another medical facility. Patients with SGD were predominantly white, obese men, who were less than 50 years old and never smoked. Cytochrome b5, cytokeratin 17, heme oxygenase-1, lipocalin-2, inducible nitric oxide synthase, cyclooxygenase 2, tumor necrosis factor α, ADP-ribosylation factor-like GTPase 11, mannose receptor-1, galectin-3, transforming growth factor β, histone-3 and methylated histone-3 were identified in lung and lymph nodes at varying levels in all samples examined. Three of the biopsy samples with granulomas displayed peri-granulomatous fibrosis. These findings are important and suggest the potential of WTC dust-induced fibrotic sarcoid. It is likely that patient demographics and/or genetic factors influence the response to WTC dust injury and that these contribute to different pathological outcomes.
Collapse
|
23
|
Zaafan MA, Haridy AR, Abdelhamid AM. Amitriptyline attenuates bleomycin-induced pulmonary fibrosis: modulation of the expression of NF-κβ, iNOS, and Nrf2. Naunyn Schmiedebergs Arch Pharmacol 2018; 392:279-286. [PMID: 30474696 DOI: 10.1007/s00210-018-1586-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/12/2018] [Indexed: 12/24/2022]
Abstract
Amitriptyline is a tricyclic antidepressant that was suggested to have antifibrotic potential. The current study aimed to investigate the modulatory effects of amitriptyline on bleomycin-induced pulmonary fibrosis in rats. Rats were randomly assigned into 4 groups: normal control, bleomycin control, amitriptyline+bleomycin, and amitriptyline only treated group. Lung injury was evaluated through the histological examination and immunohistochemical detection of α-smooth muscle actin (α-SMA) in lung tissue, in addition to the biochemical assessment of pulmonary contents of hydroxyproline and transforming growth factor beta-1 (TGF-β1). In addition, the following parameters were investigated for studying the possible mechanisms of amitriptyline antifibrotic effect: inducible nitric oxide synthase (iNOS), nuclear factor-κβ (NF-κβ), tumor necrosis factor-alpha (TNF-α), serpine-1, p53, nuclear factor erythroid 2-related factor 2 (Nrf2), lipid peroxides, and reduced glutathione (GSH). Amitriptyline exhibited potent antifibrotic effect that was reflected upon the histopathological examination and through its ability to suppress all the fibrotic parameters. Amitriptyline successfully suppressed the expression of NF-κβ, Nrf2, iNOS, and p53 in lung tissues besides the inhibition of other oxidative stress and inflammatory mediators. Amitriptyline could be a promising treatment to pulmonary fibrosis. Amitriptyline not only prevents the depression and its drawbacks in patients suffering from pulmonary fibrosis but also it can suppress fibrosis through variable mechanisms mainly via inhibition of NF-κβ/TNF-α/TGF-β pathway in addition to inhibition of Nrf2 and iNOS expression.
Collapse
Affiliation(s)
- Mai A Zaafan
- Pharmacology and Toxicology Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th of October, Egypt.
| | - Ahmed R Haridy
- Pharmacology and Toxicology Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th of October, Egypt
| | - Amr M Abdelhamid
- Biochemistry Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th of October, Egypt
| |
Collapse
|
24
|
Sunil VR, Vayas KN, Cervelli JA, Ebramova EV, Gow AJ, Goedken M, Malaviya R, Laskin JD, Laskin DL. Protective Role of Surfactant Protein-D Against Lung Injury and Oxidative Stress Induced by Nitrogen Mustard. Toxicol Sci 2018; 166:108-122. [PMID: 30060251 PMCID: PMC6204765 DOI: 10.1093/toxsci/kfy188] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Nitrogen mustard (NM) is a vesicant known to cause acute pulmonary injury which progresses to fibrosis. Macrophages contribute to both of these pathologies. Surfactant protein (SP)-D is a pulmonary collectin that suppresses lung macrophage activity. Herein, we analyzed the effects of loss of SP-D on NM-induced macrophage activation and lung toxicity. Wild-type (WT) and SP-D-/- mice were treated intratracheally with PBS or NM (0.08 mg/kg). Bronchoalveolar lavage (BAL) fluid and tissue were collected 14 days later. In WT mice, NM caused an increase in total SP-D levels in BAL; multiple lower molecular weight forms of SP-D were also identified, consistent with lung injury and oxidative stress. Flow cytometric analysis of BAL cells from NM treated WT mice revealed the presence of proinflammatory and anti-inflammatory macrophages. Whereas loss of SP-D had no effect on numbers of these cells, their activation state, as measured by proinflammatory (iNOS, MMP-9), and anti-inflammatory (MR-1, Ym-1) protein expression, was amplified. Loss of SP-D also exacerbated NM-induced oxidative stress and alveolar epithelial injury, as reflected by increases in heme oxygenase-1 expression, and BAL cell and protein content. This was correlated with alterations in pulmonary mechanics. In NM-treated SP-D-/-, but not WT mice, there was evidence of edema, epithelial hypertrophy and hyperplasia, bronchiectasis, and fibrosis, as well as increases in BAL phospholipid content. These data demonstrate that activated lung macrophages play a role in NM-induced lung injury and oxidative stress. Elucidating mechanisms regulating macrophage activity may be important in developing therapeutics to treat mustard-induced lung injury.
Collapse
Affiliation(s)
- Vasanthi R Sunil
- Department of Pharmacology & Toxicology, Ernest Mario School of Pharmacy
| | - Kinal N Vayas
- Department of Pharmacology & Toxicology, Ernest Mario School of Pharmacy
| | - Jessica A Cervelli
- Department of Pharmacology & Toxicology, Ernest Mario School of Pharmacy
| | - Elena V Ebramova
- Department of Pharmacology & Toxicology, Ernest Mario School of Pharmacy
| | - Andrew J Gow
- Department of Pharmacology & Toxicology, Ernest Mario School of Pharmacy
| | - Michael Goedken
- Department of Environmental and Occupational Health, Research Pathology Services
| | - Rama Malaviya
- Department of Pharmacology & Toxicology, Ernest Mario School of Pharmacy
| | - Jeffrey D Laskin
- School of Public Health, Rutgers University, Piscataway, New Jersey 08854
| | - Debra L Laskin
- Department of Pharmacology & Toxicology, Ernest Mario School of Pharmacy
| |
Collapse
|
25
|
Neupane M, Kiser JN, Neibergs HL. Gene set enrichment analysis of SNP data in dairy and beef cattle with bovine respiratory disease. Anim Genet 2018; 49:527-538. [PMID: 30229962 DOI: 10.1111/age.12718] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2018] [Indexed: 02/01/2023]
Abstract
Bovine respiratory disease (BRD) is a complex disease that is associated with infection by bacterial and viral pathogens when cattle fail to adequately respond to stress. The objective of this study was to use gene set enrichment analysis of SNP data (GSEA-SNP) and a network analysis (ingenuity pathway analysis) to identify gene sets, genes within gene sets (leading-edge genes) and upstream regulators associated with BRD in pre-weaned dairy calves and beef feedlot cattle. BRD cases and controls were diagnosed using the McGuirk health scoring system. Holstein calves were sampled from commercial calf-raising facilities in California (1003 cases and 1011 controls) and New Mexico (376 cases and 372 controls). Commercial feedlot cattle were sampled from Colorado (500 cases and 499 controls) and Washington (504 cases and 497 controls). There were 102 and 237 unique leading-edge genes identified in the dairy calf and beef cattle populations respectively. Six leading-edge genes (ADIPOQ, HTR2A, MIF, PDE6G, PRDX3 and SNCA) were associated with BRD in both dairy and beef cattle. Network analysis identified glucose as the most influential upstream regulator in dairy cattle, whereas in beef cattle, TNF was the most influential upstream regulator. The genes, gene sets and upstream regulators associated with BRD have common functions associated with immunity, inflammation and pulmonary disease and provide insights into the mechanisms that are critical to BRD susceptibility in cattle.
Collapse
Affiliation(s)
- M Neupane
- Department Animal Sciences, Washington State University, P.O. Box 646310, Pullman, WA, 99164-6310, USA
| | - J N Kiser
- Department Animal Sciences, Washington State University, P.O. Box 646310, Pullman, WA, 99164-6310, USA
| | -
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, 77843, USA
| | - H L Neibergs
- Department Animal Sciences, Washington State University, P.O. Box 646310, Pullman, WA, 99164-6310, USA
| |
Collapse
|
26
|
Yousefi S, Sharma SK, Stojkov D, Germic N, Aeschlimann S, Ge MQ, Flayer CH, Larson ED, Redai IG, Zhang S, Koziol-White CJ, Karikó K, Simon HU, Haczku A. Oxidative damage of SP-D abolishes control of eosinophil extracellular DNA trap formation. J Leukoc Biol 2018; 104:205-214. [PMID: 29733456 DOI: 10.1002/jlb.3ab1117-455r] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 03/13/2018] [Accepted: 03/27/2018] [Indexed: 12/25/2022] Open
Abstract
The asthmatic airways are highly susceptible to inflammatory injury by air pollutants such as ozone (O3 ), characterized by enhanced activation of eosinophilic granulocytes and a failure of immune protective mechanisms. Eosinophil activation during asthma exacerbation contributes to the proinflammatory oxidative stress by high levels of nitric oxide (NO) production and extracellular DNA release. Surfactant protein-D (SP-D), an epithelial cell product of the airways, is a critical immune regulatory molecule with a multimeric structure susceptible to oxidative modifications. Using recombinant proteins and confocal imaging, we demonstrate here that SP-D directly bound to the membrane and inhibited extracellular DNA trap formation by human and murine eosinophils in a concentration and carbohydrate-dependent manner. Combined allergic airway sensitization and O3 exposure heightened eosinophilia and nos2 mRNA (iNOS) activation in the lung tissue and S-nitrosylation related de-oligomerisation of SP-D in the airways. In vitro reproduction of the iNOS action led to similar effects on SP-D. Importantly, S-nitrosylation abolished the ability of SP-D to block extracellular DNA trap formation. Thus, the homeostatic negative regulatory feedback between SP-D and eosinophils is destroyed by the NO-rich oxidative lung tissue environment in asthma exacerbations.
Collapse
Affiliation(s)
| | | | | | | | | | - Moyar Q Ge
- University of Pennsylvania, Philadelphia, Pennsylvania, USA.,University of California, Davis, California, USA
| | | | | | - Imre G Redai
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Suhong Zhang
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Cynthia J Koziol-White
- University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Rutgers University, New Brunswick, New Jersey, USA
| | - Katalin Karikó
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Angela Haczku
- University of Pennsylvania, Philadelphia, Pennsylvania, USA.,University of California, Davis, California, USA
| |
Collapse
|
27
|
|
28
|
Sorensen GL. Surfactant Protein D in Respiratory and Non-Respiratory Diseases. Front Med (Lausanne) 2018; 5:18. [PMID: 29473039 PMCID: PMC5809447 DOI: 10.3389/fmed.2018.00018] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/19/2018] [Indexed: 12/16/2022] Open
Abstract
Surfactant protein D (SP-D) is a multimeric collectin that is involved in innate immune defense and expressed in pulmonary, as well as non-pulmonary, epithelia. SP-D exerts antimicrobial effects and dampens inflammation through direct microbial interactions and modulation of host cell responses via a series of cellular receptors. However, low protein concentrations, genetic variation, biochemical modification, and proteolytic breakdown can induce decomposition of multimeric SP-D into low-molecular weight forms, which may induce pro-inflammatory SP-D signaling. Multimeric SP-D can decompose into trimeric SP-D, and this process, and total SP-D levels, are partly determined by variation within the SP-D gene, SFTPD. SP-D has been implicated in the development of respiratory diseases including respiratory distress syndrome, bronchopulmonary dysplasia, allergic asthma, and chronic obstructive pulmonary disease. Disease-induced breakdown or modifications of SP-D facilitate its systemic leakage from the lung, and circulatory SP-D is a promising biomarker for lung injury. Moreover, studies in preclinical animal models have demonstrated that local pulmonary treatment with recombinant SP-D is beneficial in these diseases. In recent years, SP-D has been shown to exert antimicrobial and anti-inflammatory effects in various non-pulmonary organs and to have effects on lipid metabolism and pro-inflammatory effects in vessel walls, which enhance the risk of atherosclerosis. A common SFTPD polymorphism is associated with atherosclerosis and diabetes, and SP-D has been associated with metabolic disorders because of its effects in the endothelium and adipocytes and its obesity-dampening properties. This review summarizes and discusses the reported genetic associations of SP-D with disease and the clinical utility of circulating SP-D for respiratory disease prognosis. Moreover, basic research on the mechanistic links between SP-D and respiratory, cardiovascular, and metabolic diseases is summarized. Perspectives on the development of SP-D therapy are addressed.
Collapse
Affiliation(s)
- Grith L Sorensen
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
29
|
Zhuang H, Han S, Lee PY, Khaybullin R, Shumyak S, Lu L, Chatha A, Afaneh A, Zhang Y, Xie C, Nacionales D, Moldawer L, Qi X, Yang LJ, Reeves WH. Pathogenesis of Diffuse Alveolar Hemorrhage in Murine Lupus. Arthritis Rheumatol 2017; 69:1280-1293. [PMID: 28217966 DOI: 10.1002/art.40077] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 02/14/2017] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Diffuse alveolar hemorrhage (DAH) in lupus patients confers >50% mortality, and the cause is unknown. We undertook this study to examine the pathogenesis of DAH in C57BL/6 mice with pristane-induced lupus, a model of human lupus-associated DAH. METHODS Clinical/pathologic and immunologic manifestations of DAH in pristane-induced lupus were compared with those of DAH in humans. Tissue distribution of pristane was examined by mass spectrometry. Cell types responsible for disease were determined by in vivo depletion using clodronate liposomes and antineutrophil monoclonal antibodies (anti-Ly-6G). The effect of complement depletion with cobra venom factor (CVF) was examined. RESULTS After intraperitoneal injection, pristane migrated to the lung, causing cell death, small vessel vasculitis, and alveolar hemorrhage similar to that seen in DAH in humans. B cell-deficient mice were resistant to induction of DAH, but susceptibility was restored by infusing IgM. C3-/- and CD18-/- mice were also resistant, and DAH was prevented in wild-type mice by CVF. Induction of DAH was independent of Toll-like receptors, inflammasomes, and inducible nitric oxide. Mortality was increased in interleukin-10 (IL-10)-deficient mice, and pristane treatment decreased IL-10 receptor expression in monocytes and STAT-3 phosphorylation in lung macrophages. In vivo neutrophil depletion was not protective, while treatment with clodronate liposomes prevented DAH, which suggests that macrophage activation is central to DAH pathogenesis. CONCLUSION The pathogenesis of DAH involves opsonization of dead cells by natural IgM and complement followed by complement receptor-mediated lung inflammation. The disease is macrophage dependent, and IL-10 is protective. Complement inhibition and/or macrophage-targeted therapies may reduce mortality in lupus-associated DAH.
Collapse
Affiliation(s)
| | | | - Pui Y Lee
- Boston Children's Hospital, Boston, Massachusetts
| | | | | | - Li Lu
- University of Florida, Gainesville
| | | | | | | | - Chao Xie
- University of Florida, Gainesville
| | | | | | - Xin Qi
- University of Florida, Gainesville
| | | | | |
Collapse
|