1
|
Guo Z, Xiang Z, Su W, Lv B, Zhao Q, Zhang W, Ren R, Peng W, Su C, Wu Y, Pan J. Metabolic regulation of amino acids provides an important basis for individualized nutritional therapy for patients with gastric cancer during the perioperative period. World J Surg Oncol 2025; 23:89. [PMID: 40087750 PMCID: PMC11907831 DOI: 10.1186/s12957-025-03729-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 02/26/2025] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND Gastric cancer is a prevalent malignancy worldwide, with early detection and treatment being vital to improving patient outcomes. Amino acids (AAs), as essential regulators in cancer cell metabolism, are implicated in the progression and response to treatment. METHODS This study aimed to investigate the dynamics of plasma AA levels in gastric cancer patients preoperatively, postoperatively, and following nutritional intervention, comparing them to healthy controls. We analyzed 22 AAs in plasma samples from 66 gastric cancer patients and 55 healthy individuals. RESULTS The results show that significant preoperative elevation of AAs, such as threonine (Thr), serine (Ser), proline (Pro), lysine (Lys), arginine (Arg), citrulline (Cit), glutamine (Gln), glycine(Gly), and alanine (Ala), with reductions in taurine (Tau), phenylalanine (Phe) and hydroxylysine (Hylys). Post-surgery, levels of many AAs decreased markedly, but were partially restored following nutritional intervention, with some exceeding preoperative values. Nevertheless, specific AAs, including methionine (Met) and Gln, remained lower than in healthy controls, suggesting potential benefit from targeted supplementation. Correlations between AA changes and postoperative recovery indicators were observed; notably, increased postoperative Thr, Ser, Tau, tyrosine (Tyr), glutamic acid (Glu), and Hylys levels were associated with quicker gastrointestinal recovery. Additionally, several AAs, such as Pro, Lys, Tyr, Met, Cit, and Glu, were linked to reduced inflammation, as reflected by C-reactive protein (CRP) and white blood cell (WBC) levels, suggesting roles in the postoperative immune response. Pathway enrichment analysis highlighted metabolic pathways involving Gly, Ser, Phe, Tyr, Lys, and Met as critical in the recovery process. CONCLUSIONS These findings underscore the potential of AA profiles as biomarkers for postoperative recovery and suggest nutritional interventions targeting specific AAs may improve outcomes.
Collapse
Affiliation(s)
- Zhening Guo
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China
| | - Zheng Xiang
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China
| | - Wenzhao Su
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China
| | - Bo Lv
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China
| | - Qinhong Zhao
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China
| | - Wen Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China
| | - Rui Ren
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China
| | - Wei Peng
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China
| | - Cunjin Su
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China
| | - Yongyou Wu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China.
| | - Jie Pan
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China.
| |
Collapse
|
2
|
Wu B, Cheng Y, Li L, Du Z, Liu Q, Tan X, Li X, Zhao G, Li E. Role of the sulfur-containing amino acid-ROS axis in cancer chemotherapeutic drug resistance. Drug Resist Updat 2025; 81:101238. [PMID: 40107045 DOI: 10.1016/j.drup.2025.101238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/10/2025] [Accepted: 03/10/2025] [Indexed: 03/22/2025]
Abstract
Chemotherapeutic drug resistance remains a major barrier to effective cancer treatment. Drug resistance could be driven in part by adaptive redox remodeling of cancer cells. Paradoxically, drug-resistant malignancies exhibit elevated reactive oxygen species (ROS), as well as amplified antioxidant defenses, which enable cancer cell survival under therapeutic stress. Central to this adaptation is glutathione (GSH), the predominant cellular antioxidant, whose synthesis relies on sulfur-containing amino acids (SAAs) - methionine and cysteine. This review delineates the metabolic interplay between methionine and cysteine in the transsulfuration pathway, highlighting their roles as precursors in GSH biosynthesis. We systematically summarize the key enzymes that drive GSH production and their contributions to resistance against platinum-based drugs and other chemotherapeutics. In addition to GSH synthesis, we summarize the roles of GSH antioxidant systems, including glutathione peroxidases (GPXs), peroxiredoxins (PRDXs), and thioredoxins (TRXs), which are critical in chemotherapeutic drug resistance through ROS scavenging. Recent advances reveal that targeting these enzymes, by pharmacologically inhibiting transsulfuration enzymes or disrupting GSH-dependent antioxidant cascades, can sensitize resistant cancer cells to ROS-mediated therapies. These findings not only clarify the mechanistic links between SAA metabolism and redox adaptation but also provide practical approaches to overcome chemotherapeutic drug resistance. By analyzing metabolic and redox vulnerabilities, this review highlights the therapeutic potential to restore chemosensitivity, offering new options in precision oncology medicine.
Collapse
Affiliation(s)
- Bingli Wu
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong Province 515041, China; Chaoshan Branch of State Key Laboratory for Esophageal Cancer Prevention and Treatment, Cancer Research Center, Shantou University Medical College, Shantou, Guangdong 515041, China.
| | - Yinwei Cheng
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong Province 515041, China; Chaoshan Branch of State Key Laboratory for Esophageal Cancer Prevention and Treatment, Cancer Research Center, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Liyan Li
- Department of Critical Care Medicine, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong Province 518000, China
| | - Zepeng Du
- Department of Central Laboratory, Shantou Central Hospital, Shantou, Guangdong 515041, China
| | - Qianlou Liu
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong Province 515041, China; Chaoshan Branch of State Key Laboratory for Esophageal Cancer Prevention and Treatment, Cancer Research Center, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Xinyue Tan
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong Province 515041, China; Chaoshan Branch of State Key Laboratory for Esophageal Cancer Prevention and Treatment, Cancer Research Center, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Xin Li
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong Province 515041, China; Chaoshan Branch of State Key Laboratory for Esophageal Cancer Prevention and Treatment, Cancer Research Center, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Guozhi Zhao
- Department of Urology Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Enmin Li
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong Province 515041, China; Chaoshan Branch of State Key Laboratory for Esophageal Cancer Prevention and Treatment, Cancer Research Center, Shantou University Medical College, Shantou, Guangdong 515041, China.
| |
Collapse
|
3
|
Aranda-Rivera AK, Cruz-Gregorio A, Amador-Martínez I, Medina-Campos ON, Garcia-Garcia M, Bernabe-Yepes B, León-Contreras JC, Hernández-Pando R, Aparicio-Trejo OE, Sánchez-Lozada LG, Tapia E, Pedraza-Chaverri J. Sulforaphane protects from kidney damage during the release of unilateral ureteral obstruction (RUUO) by activating nuclear factor erythroid 2-related factor 2 (Nrf2): Role of antioxidant, anti-inflammatory, and antiapoptotic mechanisms. Free Radic Biol Med 2024; 212:49-64. [PMID: 38141891 DOI: 10.1016/j.freeradbiomed.2023.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 12/25/2023]
Abstract
Releasing unilateral ureteral obstruction (RUUO) is the gold standard for decreasing renal damage induced during unilateral ureteral obstruction (UUO); however, the complete recovery after RUUO depends on factors such as the time and severity of obstruction and kidney contralateral compensatory mechanisms. Interestingly, previous studies have shown that kidney damage markers such as oxidative stress, inflammation, and apoptosis are present and even increase after removal obstruction. To date, previous therapeutic strategies have been used to potentiate the recovery of renal function after RUUO; however, the mechanisms involving renal damage reduction are poorly described and sometimes focus on the recovery of renal functionality. Furthermore, using natural antioxidants has not been completely studied in the RUUO model. In this study, we selected sulforaphane (SFN) because it activates the nuclear factor erythroid 2-related factor 2 (Nrf2), a transcription factor that induces an antioxidant response, decreasing oxidative stress and inflammation, preventing apoptosis. Thus, we pre-administrated SFN on the second day after UUO until day five, where we released the obstruction on the three days after UUO. Then, we assessed oxidative stress, inflammation, and apoptosis markers. Interestingly, we found that SFN administration in the RUUO model activated Nrf2, inducing its translocation to the nucleus to activate its target proteins. Thus, the Nrf2 activation upregulated glutathione (GSH) content and the antioxidant enzymes catalase, glutathione peroxidase (GPx), and glutathione reductase (GR), which reduced the oxidative stress markers. Moreover, the improvement of antioxidant response by SFN restored S-glutathionylation in the mitochondrial fraction. Activated Nrf2 also reduced inflammation by lessening the nucleotide-binding domain-like receptor family pyrin domain containing 3 and interleukin 1β (IL-1β) production. Reducing oxidative stress and inflammation prevented apoptosis by avoiding caspase 3 cleavage and increasing B-cell lymphoma 2 (Bcl2) levels. Taken together, the obtained results in our study showed that the upregulation of Nrf2 by SFN decreases oxidative stress, preventing inflammation and apoptosis cell death during the release of UUO.
Collapse
Affiliation(s)
- Ana Karina Aranda-Rivera
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico; Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, 04510, Mexico.
| | - Alfredo Cruz-Gregorio
- Departamento de Fisiología, Instituto Nacional de Cardiología "Ignacio Chavez", Mexico City, 14080, Mexico
| | - Isabel Amador-Martínez
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico; Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, 04510, Mexico
| | - Omar Noel Medina-Campos
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Misael Garcia-Garcia
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiologia "Ignacio Chávez", Mexico City, 14080, Mexico
| | - Bismarck Bernabe-Yepes
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiologia "Ignacio Chávez", Mexico City, 14080, Mexico
| | - Juan Carlos León-Contreras
- Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, 14080, Mexico
| | - Rogelio Hernández-Pando
- Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, 14080, Mexico
| | - Omar Emiliano Aparicio-Trejo
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiologia "Ignacio Chávez", Mexico City, 14080, Mexico
| | - Laura Gabriela Sánchez-Lozada
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiologia "Ignacio Chávez", Mexico City, 14080, Mexico
| | - Edilia Tapia
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiologia "Ignacio Chávez", Mexico City, 14080, Mexico
| | - José Pedraza-Chaverri
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico.
| |
Collapse
|
4
|
Kaimal R, Dube A, Souwaileh AA, Wu JJ, Anandan S. A copper metal-organic framework-based electrochemical sensor for identification of glutathione in pharmaceutical samples. Analyst 2024; 149:947-957. [PMID: 38197180 DOI: 10.1039/d3an01714a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
The construction of a new electrochemical sensing platform based on a copper metal-organic framework (Cu-MOF) heterostructure is described in this paper. Drop-casting Cu-MOF suspension onto the electrode surface primed the sensor for glutathione detection. The composition and morphology of the Cu-MOF heterostructure were investigated using scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), X-ray diffraction spectroscopy (XRD), Fourier transform infrared spectroscopy (FT-IR), and UV-visible spectroscopy. The Cu-MOF heterostructure can identify glutathione (GSH) with an enhanced sensitivity of 0.0437 μA μM-1 at the detection limit (LOD; 0.1 ± 0.005 μM) and a large dynamic range of 0.1-20 μM. Boosting the conductivity and surface area enhances electron transport and promotes redox processes. The constructed sensors were also adequately selective against interference from other contaminants in a similar potential window. Furthermore, the Cu-MOF heterostructure has outstanding selectivity, long-term stability, and repeatability, and the given sensors have demonstrated their capacity to detect GSH with high accuracy (recovery range = 98.2-100.8%) in pharmaceutical samples.
Collapse
Affiliation(s)
- Reshma Kaimal
- Nanomaterials & Solar Energy Conversion Lab, Department of Chemistry, National Institute of Technology, Tiruchirappalli-620015, India.
| | - Aashutosh Dube
- Nanomaterials & Solar Energy Conversion Lab, Department of Chemistry, National Institute of Technology, Tiruchirappalli-620015, India.
| | - Abdullah Al Souwaileh
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Jerry J Wu
- Department of Environmental Engineering & Science, Feng Chia University, Taichung-407, Taiwan
| | - Sambandam Anandan
- Nanomaterials & Solar Energy Conversion Lab, Department of Chemistry, National Institute of Technology, Tiruchirappalli-620015, India.
| |
Collapse
|
5
|
Székely A, Gulyás Z, Balogh E, Payet R, Dalmay T, Kocsy G, Kalapos B. Identification of ascorbate- and salicylate-responsive miRNAs and verification of the spectral control of miR395 in Arabidopsis. PHYSIOLOGIA PLANTARUM 2023; 175:e14070. [PMID: 38148221 DOI: 10.1111/ppl.14070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 12/28/2023]
Abstract
We assumed that miRNAs might regulate the physiological and biochemical processes in plants through their effects on the redox system and phytohormones. To check this hypothesis, the transcriptome profile of wild-type Arabidopsis and lines with decreased ascorbate (Asc), glutathione (GSH), or salicylate (Sal) levels were compared. GSH deficiency did not influence the miRNA expression, whereas lower levels of Asc and Sal reduced the accumulation of 9 and 44 miRNAs, respectively, but only four miRNAs were upregulated. Bioinformatics analysis revealed that their over-represented target genes are associated with the synthesis of nitrogen-containing and aromatic compounds, nucleic acids, and sulphate assimilation. Among them, the sulphate reduction-related miR395 - ATP-sulfurylase couple was selected to check the assumed modulating role of the light spectrum. A greater induction of the Asc- and Sal-responsive miR395 was observed under sulphur starvation in far-red light compared to white and blue light in wild-type and GSH-deficient Arabidopsis lines. Sal deficiency inhibited the induction of miR395 by sulphur starvation in blue light, whereas Asc deficiency greatly reduced it independently of the spectrum. Interestingly, sulphur starvation decreased only the level of ATP sulfurylase 4 among the miR395 target genes in far-red light. The expression level of ATP sulfurylase 3 was higher in far-red light than in blue light in wild-type and Asc-deficient lines. The results indicate the coordinated control of miRNAs by the redox and hormonal system since 11 miRNAs were affected by both Asc and Sal deficiency. This process can be modulated by light spectrum, as shown for miR395.
Collapse
Affiliation(s)
- András Székely
- Agricultural Institute, Centre for Agricultural Research, HUN-REN, Martonvásár, Hungary
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Zsolt Gulyás
- Agricultural Institute, Centre for Agricultural Research, HUN-REN, Martonvásár, Hungary
| | - Eszter Balogh
- Agricultural Institute, Centre for Agricultural Research, HUN-REN, Martonvásár, Hungary
| | - Rocky Payet
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Tamás Dalmay
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Gábor Kocsy
- Agricultural Institute, Centre for Agricultural Research, HUN-REN, Martonvásár, Hungary
| | - Balázs Kalapos
- Agricultural Institute, Centre for Agricultural Research, HUN-REN, Martonvásár, Hungary
| |
Collapse
|
6
|
Kozlov D, Rodimova S, Kuznetsova D. The Role of MicroRNAs in Liver Functioning: from Biogenesis to Therapeutic Approaches (Review). Sovrem Tekhnologii Med 2023; 15:54-79. [PMID: 39967915 PMCID: PMC11832066 DOI: 10.17691/stm2023.15.5.06] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Indexed: 01/03/2025] Open
Abstract
Molecular diagnostics based on small non-coding RNA molecules (in particular microRNA) is a new direction in modern biomedicine and is considered a promising method for identification of a wide range of pathologies at an early stage, clinical phenotype assessment, as well as monitoring the course of the disease, evaluation of therapy efficacy and the risk of the disease recurrence. Currently, the role of microRNAs as the most important epigenetic regulator in cancer development has been proven within the studies of normal and pathogenic processes. However, currently, there are insignificant studies devoted to studying the role of microRNAs in functioning of other organs and tissues, as well as to development of possible therapeutic approaches based on microRNAs. A huge number of metabolic processes in the liver are controlled by microRNAs, which creates enormous potential for the use of microRNAs as a diagnostic marker and makes it a target for therapeutic intervention in metabolic, oncological, and even viral diseases of this organ. This review examines various aspects of biological functions of microRNAs in different types of liver cells. Both canonical and non-canonical pathways of biogenesis, epigenetic regulation mediated by microRNAs, as well as the microRNAs role in intercellular communication and the course of viral diseases are shown. The potential of microRNAs as a diagnostic marker for various liver pathologies is described, as well as therapeutic approaches and medicines based on microRNAs, which are approved for clinical use and currently being developed.
Collapse
Affiliation(s)
- D.S. Kozlov
- Laboratory Assistant, Scientific Laboratory of Molecular Biotechnologies, I Research Institute of Experimental Oncology and Biomedical Technologies; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia; Student, Institute of Biology and Biomedicine; National Research Lobachevsky State University of Nizhny Novgorod, 23 Prospekt Gagarina, Nizhny Novgorod, 603022, Russia
| | - S.A. Rodimova
- Junior Researcher, Laboratory of Regenerative Medicine; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia; Junior Researcher, Scientific Laboratory of Molecular Biotechnologies, Research Institute of Experimental Oncology and Biomedical Technologies; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - D.S. Kuznetsova
- PhD, Head of the Scientific Laboratory of Molecular Biotechnologies, Research Institute of Experimental Oncology and Biomedical Technologies; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia; Head of the Research Laboratory for Molecular Genetic Researches, Institute of Clinical Medicine; National Research Lobachevsky State University of Nizhny Novgorod, 23 Prospekt Gagarina, Nizhny Novgorod, 603022, Russia
| |
Collapse
|
7
|
Ibrahim S, Yang C, Yue C, Song X, Deng Y, Li Q, Lü W. Whole Transcriptome Analysis Reveals the Global Molecular Responses of mRNAs, lncRNAs, miRNAs, circRNAs, and Their ceRNA Networks to Salinity Stress in Hong Kong Oysters, Crassostrea hongkongensis. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:624-641. [PMID: 37493868 DOI: 10.1007/s10126-023-10234-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 07/20/2023] [Indexed: 07/27/2023]
Abstract
The Hong Kong oyster, Crassostrea hongkongensis, is an estuarine bivalve with remarkable commercial value in South China, and the increase of salinity in estuaries during the dry season has posed a major threat to the oyster farming. To explore the global transcriptional response to salinity stress, a whole-transcriptome analysis was performed with the gills of oysters in 6‰, 18‰, and 30‰ filtered seawater. Overall, 2243, 194, 371, and 167 differentially expressed mRNAs (DEmRNAs), differentially expressed long non-coding RNAs (DElncRNAs), differentially expressed circular RNAs (DEcircRNAs), and differentially expressed microRNAs (DEmiRNAs) were identified, respectively. Based on GO enrichment and KEGG pathway analysis, these important DEmRNAs, DElncRNAs, DEcircRNAs, and DEmiRNAs were predicted to be mainly involved in amino acids metabolism, microtubule movement, and immune defense. This demonstrated the complexity of dynamic transcriptomic profiles of C. hongkongensis in response to salinity fluctuation. The regulatory relationships of DEmiRNAs-DEmRNAs, DElncRNAs-DEmiRNAs, and DEcircRNAs-DEmiRNAs were also predicted, and finally, a circRNA-associated competing endogenous RNA (ceRNA) network was constructed, consisting of six DEcircRNAs, eight DEmiRNAs, and five DEmRNAs. The key roles of taurine and hypotaurine metabolism and phenylalanine metabolism were highlighted in this ceRNA network, which was consistent with the major contribution of free amino acids to intracellular osmolality and cell volume regulation. Collectively, this study provides comprehensive data, contributing to the exploration of coding and non-coding RNAs in C. hongkongensis salinity response. The results would benefit the understanding of the response mechanism of bivalves against salinity fluctuation, and provide clues for genetic improvement of C. hongkongensis with hyper-salinity tolerance.
Collapse
Affiliation(s)
- Salifu Ibrahim
- Guangdong Marine Invertebrates Science and Technology Innovation Center, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Chuangye Yang
- Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
- Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Chenyang Yue
- Guangdong Marine Invertebrates Science and Technology Innovation Center, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China.
| | - Xinyu Song
- Guangdong Marine Invertebrates Science and Technology Innovation Center, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yuewen Deng
- Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
- Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Wengang Lü
- Guangdong Marine Invertebrates Science and Technology Innovation Center, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| |
Collapse
|
8
|
Gulyás Z, Székely A, Kulman K, Kocsy G. Light-Dependent Regulatory Interactions between the Redox System and miRNAs and Their Biochemical and Physiological Effects in Plants. Int J Mol Sci 2023; 24:8323. [PMID: 37176028 PMCID: PMC10179207 DOI: 10.3390/ijms24098323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/03/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Light intensity and spectrum play a major role in the regulation of the growth, development, and stress response of plants. Changes in the light conditions affect the formation of reactive oxygen species, the activity of the antioxidants, and, consequently, the redox environment in the plant tissues. Many metabolic processes, thus the biogenesis and function of miRNAs, are redox-responsive. The miRNAs, in turn, can modulate various components of the redox system, and this process is also associated with the alteration in the intensity and spectrum of the light. In this review, we would like to summarise the possible regulatory mechanisms by which the alterations in the light conditions can influence miRNAs in a redox-dependent manner. Daily and seasonal fluctuations in the intensity and spectral composition of the light can affect the expression of miRNAs, which can fine-tune the various physiological and biochemical processes due to their effect on their target genes. The interactions between the redox system and miRNAs may be modulated by light conditions, and the proposed function of this regulatory network and its effect on the various biochemical and physiological processes will be introduced in plants.
Collapse
Affiliation(s)
- Zsolt Gulyás
- Agricultural Institute, Centre for Agricultural Research ELKH, Department of Biological Resources, 2462 Martonvásár, Hungary
| | - András Székely
- Agricultural Institute, Centre for Agricultural Research ELKH, Department of Biological Resources, 2462 Martonvásár, Hungary
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Kitti Kulman
- Agricultural Institute, Centre for Agricultural Research ELKH, Department of Biological Resources, 2462 Martonvásár, Hungary
| | - Gábor Kocsy
- Agricultural Institute, Centre for Agricultural Research ELKH, Department of Biological Resources, 2462 Martonvásár, Hungary
| |
Collapse
|
9
|
Wang Z, Liang M, Li H, Liu B, Yang L. L-Methionine inhibits 4-hydroxy-2-nonenal accumulation and suppresses inflammation in growing rats. Nutr Res Pract 2022; 16:729-744. [PMID: 36467767 PMCID: PMC9702547 DOI: 10.4162/nrp.2022.16.6.729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/16/2022] [Accepted: 05/03/2022] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND/OBJECTIVES 4-Hydroxy-2-nonenal (HNE) is a biomarker for oxidative stress to induce inflammation. Methionine is an essential sulfur-containing amino acid with antioxidative activity. On the other hand, the evidence on whether and how methionine can depress HNE-derived inflammation is lacking. In particular, the link between the regulation of the nuclear factor-κB (NF-κB) signaling pathway and methionine intake is unclear. This study examined the link between depression from HNE accumulation and the anti-inflammatory function of L-methionine in rats. MATERIALS/METHODS Male Wistar rats (3-week-old, weighing 70-80 g) were administered different levels of L-methionine orally at 215.0, 268.8, 322.5, and 430.0 mg/kg body weight for two weeks. The control group was fed commercial pellets. The hepatic HNE contents and the protein expression and mRNA levels of the inflammatory mediators were measured. The interleukin-10 (IL-10) and glutathione S-transferase (GST) levels were also estimated. RESULTS Compared to the control group, hepatic HNE levels were reduced significantly in all groups fed L-methionine, which were attributed to the stimulation of GST by L-methionine. With decreasing HNE levels, L-methionine inhibited the activation of NF-κB by up-regulating inhibitory κBα and depressing phosphoinositide 3 kinase/protein kinase B. The mRNA levels of the inflammatory mediators (cyclooxygenase-2, interleukin-1β, interleukin-6, inducible nitric oxide synthase, tumor necrotic factor alpha) were decreased significantly by L-methionine. In contrast, the protein expression of these inflammatory mediators was effectively down regulated by L-methionine. The anti-inflammatory action of L-methionine was also reflected by the up-regulation of IL-10. CONCLUSIONS This study revealed a link between the inhibition of HNE accumulation and the depression of inflammation in growing rats, which was attributed to L-methionine availability. The anti-inflammatory mechanism exerted by L-methionine was to inhibit NF-κB activation and to up-regulate GST.
Collapse
Affiliation(s)
- Zhengxuan Wang
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Mingcai Liang
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Hui Li
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Bingxiao Liu
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Lin Yang
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
10
|
Shi T, Meng L, Jiang X, Cao H, Yu L. Proteome analysis reveals the molecular basis of honeybee brain and midgut response to sulfoxaflor. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 186:105168. [PMID: 35973773 DOI: 10.1016/j.pestbp.2022.105168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/05/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Sulfoxaflor is a widely used pesticide in agriculture. However, the molecular effects of sublethal sulfoxaflor on honeybees (Apis mellifera L.) remain elusive. Here, the effects of a sublethal dose of sulfoxaflor (0.05 μg/bee) on the brain and midgut proteome response of the honeybee were investigated. Exposure to sublethal sulfoxaflor doses did not cause significant honeybee death, but it induced significant alterations in the brain and midgut proteomes. After sulfoxaflor challenge, 135 and 28 proteins were differentially regulated in the brain and midgut, respectively. The up-regulated proteins were mainly implicated in energy metabolism, neurotransmitter transport and drug metabolism processes, and included in particular enzymes of the citrate cycle and cellular respiration process, such as ATP citrate synthase, malate dehydrogenase, cytochrome b-c1 complex subunits, and NADH dehydrogenase. These findings suggest that honeybees enhance energy metabolism in the midgut and brain to resist sulfoxaflor challenge. Notably, treatment with sulfoxaflor resulted in a 6.8 times increase in expression levels of the major royal jelly protein 1 (MRJP1) in the brain, and knockdown of MRJP1 mRNA expression using RNA interference significantly decreased the survival rate, indicating that MRJP1 may play an important role in sulfoxaflor tolerance. Our data reveals that sulfoxaflor influences multiple processes related to both metabolism and the nervous system, and provides novel insights into the molecular basis of the honeybee brain and midgut response to sublethal dose of sulfoxaflor.
Collapse
Affiliation(s)
- Tengfei Shi
- School of Plant Protection, Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China; Apiculture Research Institute, Anhui Agricultural University, Hefei 230036, China.
| | - Lifeng Meng
- Institute of Apicultural Research, Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Science, Beijing 100093, China
| | - Xingchuan Jiang
- School of Plant Protection, Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China
| | - Haiqun Cao
- School of Plant Protection, Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China
| | - Linsheng Yu
- School of Plant Protection, Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China; Apiculture Research Institute, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
11
|
Li L, Fu M, Yang D, Tu Y, Yan J. Sensitive detection of glutathione through inhibiting quenching of copper nanoclusters fluorescence. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120563. [PMID: 34749113 DOI: 10.1016/j.saa.2021.120563] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/14/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
A method for a sensitive fluorescence detection of glutathione was established. Glutathione-stabilized copper nanoclusters (CuNCs) were synthesized via a facile process. These CuNCs showed blue fluorescence with a peak around 450 nm. In the presence of p-benzoquinone (PBQ), the electron transfer from the copper nanoclusters to PBQ quenched the fluorescence of the CuNCs. Glutathione (GSH), as a reducing agent, formed a complex with PBQ. This formation inhibited the quenching from PBQ, and a restored fluorescence was obtained. This interaction provided a fluorescence enhancement for the measurement of GSH. Under the optimal condition, linear responses were obtained toward GSH in the ranges of 0.06-6.0 μM, with a limit of detection at 20 nM. This developed assay was easy in operation with high sensitivity and selectivity. The applicability was approved with successful glutathione measurements in real samples.
Collapse
Affiliation(s)
- Lan Li
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Industrial Park, Suzhou 215123, China
| | - Meiling Fu
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Industrial Park, Suzhou 215123, China
| | - Deyuan Yang
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Industrial Park, Suzhou 215123, China
| | - Yifeng Tu
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Industrial Park, Suzhou 215123, China
| | - Jilin Yan
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Industrial Park, Suzhou 215123, China.
| |
Collapse
|
12
|
Liu S, Wang J, Shi YE, Zhai Y, Lv YK, Zhang P, Wang Z. Glutathione modulated fluorescence quenching of sulfur quantum dots by Cu 2O nanoparticles for sensitive assay. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 265:120365. [PMID: 34509893 DOI: 10.1016/j.saa.2021.120365] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 08/27/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
Sulfur quantum dots (S-dots) show great potential for applications in various field, due to their favorable biocompatibility, high stability, and antibacterial properties. However, the use of S-dots in chemical sensing is limited by the lack of functional groups on the surface. In this work, a fluorescence glutathione (GSH) assay is developed based on the GSH modulated quenching effect of Cu2O nanoparticles (NP) on S-dots. The fluorescence of S-dots is effectively quenched after forming complex with Cu2O NP through a static quenching effect (SQE). Introducing of GSH can trigger the decomposition of Cu2O NP into GSH-Cu(I) complex, which leads to the weaken of SQE and the partial recover of the fluorescence. The intensity of recovered fluorescence shows a positive correlation with the concentration of GSH in the concentration range of 20 to 500 μM. The fluorescence GSH assay shows excellent selectivity and robustness towards various interferences and high concentration salt, which endow the successful detection of GSH in human blood sample. The presented results provide a new door for the design of fluorescence assays, which also provides a platform for the applications in nanomedicine and environmental science.
Collapse
Affiliation(s)
- Shuo Liu
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China
| | - Jianwen Wang
- College of Modern Science and Technology, Hebei Agricultural University, Baoding 071002, China
| | - Yu-E Shi
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China.
| | - Yongqing Zhai
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China
| | - Yun-Kai Lv
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China
| | - Peng Zhang
- Shenzhen Luohu people's hospital, No. 47 Youyi Rd, Luohu, Shenzhen, China.
| | - Zhenguang Wang
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China.
| |
Collapse
|
13
|
Managing GSH elevation and hypoxia to overcome resistance of cancer therapies using functionalized nanocarriers. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Zia A, Farkhondeh T, Sahebdel F, Pourbagher-Shahri AM, Samarghandian S. Key miRNAs in Modulating Aging and Longevity: A Focus on Signaling Pathways and Cellular Targets. Curr Mol Pharmacol 2021; 15:736-762. [PMID: 34533452 DOI: 10.2174/1874467214666210917141541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 05/02/2021] [Accepted: 05/24/2021] [Indexed: 11/22/2022]
Abstract
Aging is a multifactorial procedure accompanied by gradual deterioration of most biological procedures of cells. MicroRNAs (miRNAs) are a class of short non-coding RNAs that post-transcriptionally regulate the expression of mRNAs through sequence-specific binding, and contributing to many crucial aspects of cell biology. Several miRNAs are expressed differently in various organisms through aging. The function of miRNAs in modulating aging procedures has been disclosed recently with the detection of miRNAs that modulate longevity in the invertebrate model organisms, through the IIS pathway. In these model organisms, several miRNAs have been detected to both negatively and positively regulate lifespan via commonly aging pathways. miRNAs modulate age-related procedures and disorders in different mammalian tissues by measuring their tissue-specific expression in older and younger counterparts, including heart, skin, bone, brain, and muscle tissues. Moreover, several miRNAs have been contributed to modulating senescence in different human cells, and the roles of these miRNAs in modulating cellular senescence have allowed illustrating some mechanisms of aging. The review discusses the available data on miRNAs through the aging process and we highlight the roles of miRNAs as aging biomarkers and regulators of longevity in cellular senescence, tissue aging, and organism lifespan.
Collapse
Affiliation(s)
- Aliabbas Zia
- Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Faezeh Sahebdel
- Department of Rehabilitation Medicine, University of Minnesota Medical School, Minneapolis, MN, United States
| | | | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
15
|
Methionine metabolism in chronic liver diseases: an update on molecular mechanism and therapeutic implication. Signal Transduct Target Ther 2020; 5:280. [PMID: 33273451 PMCID: PMC7714782 DOI: 10.1038/s41392-020-00349-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/30/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023] Open
Abstract
As one of the bicyclic metabolic pathways of one-carbon metabolism, methionine metabolism is the pivot linking the folate cycle to the transsulfuration pathway. In addition to being a precursor for glutathione synthesis, and the principal methyl donor for nucleic acid, phospholipid, histone, biogenic amine, and protein methylation, methionine metabolites can participate in polyamine synthesis. Methionine metabolism disorder can aggravate the damage in the pathological state of a disease. In the occurrence and development of chronic liver diseases (CLDs), changes in various components involved in methionine metabolism can affect the pathological state through various mechanisms. A methionine-deficient diet is commonly used for building CLD models. The conversion of key enzymes of methionine metabolism methionine adenosyltransferase (MAT) 1 A and MAT2A/MAT2B is closely related to fibrosis and hepatocellular carcinoma. In vivo and in vitro experiments have shown that by intervening related enzymes or downstream metabolites to interfere with methionine metabolism, the liver injuries could be reduced. Recently, methionine supplementation has gradually attracted the attention of many clinical researchers. Most researchers agree that adequate methionine supplementation can help reduce liver damage. Retrospective analysis of recently conducted relevant studies is of profound significance. This paper reviews the latest achievements related to methionine metabolism and CLD, from molecular mechanisms to clinical research, and provides some insights into the future direction of basic and clinical research.
Collapse
|
16
|
Chen X, Wang X, Cao G, Wu Y, Luo H, Ji Z, Shen C, Huo D, Hou C. Colorimetric and fluorescent dual-identification of glutathione based on its inhibition on the 3D ball-flower shaped Cu-hemin-MOF’s peroxidase-like activity. Mikrochim Acta 2020; 187:601. [DOI: 10.1007/s00604-020-04565-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 09/21/2020] [Indexed: 12/19/2022]
|
17
|
|
18
|
Affiliation(s)
- David M Patrick
- From the Divisions of Cardiology (D.M.P.), Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Clinical Pharmacology (D.M.P., D.G.H.), Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - David G Harrison
- From the Divisions of Cardiology (D.M.P.), Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
19
|
Wang Z, Cai L, Li H, Liang M, Zhang Y, Wu Q, Yang L. Rice protein stimulates endogenous antioxidant response attributed to methionine availability in growing rats. J Food Biochem 2020; 44:e13180. [PMID: 32163604 DOI: 10.1111/jfbc.13180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/31/2020] [Accepted: 02/21/2020] [Indexed: 12/11/2022]
Abstract
Methionine sulfoxide reductase (Msr) and glutathione (GSH) are two endogenous antioxidant systems for depressing oxidative stress. The aim of this study is to investigate the role of methionine in involving the stimulation of endogenous antioxidant capacity of rice protein (RP). Seven-week-old male Wistar rats (body weight 180-200 g) were fed with commercial pellets (as control), methionine, and RP for 2 weeks. Compared with control, GSH synthesis and expressions of MsrA, MsrB2, and MsrB3 were stimulated by methionine and RP. After 2 weeks of feeding, Nrf2 was activated by RP and methionine, whereas the expressions of Keap1 and Cul3 were depressed. The ARE-driven antioxidant expressions (GCLC, GCLM, GS, HO-1, NQO1, CAT, SOD, GR, GST, GPx) were upregulated by methionine and RP. Results suggest that the endogenous antioxidant response induced by RP is primarily attributed to the methionine availability, in which the stimulation of Msr and GSH antioxidant system via Nrf2-ARE pathway. PRACTICAL APPLICATIONS: Rice protein is a major plant protein, which is rich in sulfur-containing amino acids and widely consumed in the world. This paper emphasizes that the amino acid plays a key role in inducing the antioxidant activity of rice protein. The present study provides an insight that the methionine availability of rice protein will be a useful target for health promoting by activating endogenous antioxidant response against ROS-induced oxidative damage.
Collapse
Affiliation(s)
- Zhengxuan Wang
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Liang Cai
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Hui Li
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Mingcai Liang
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Yan Zhang
- School of Life Science and Biotechnology, Harbin Institute of Technology, Harbin, China
| | - Qiong Wu
- School of Life Science and Biotechnology, Harbin Institute of Technology, Harbin, China
| | - Lin Yang
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
20
|
Li H, Liang M, Wang Z, Zhang Y, Wu Q, Yang L. Rice Protein Exerts Endogenous Antioxidant Capacity via Methionine Sulfoxide Reductase and the Nrf2 Antioxidant System Independent of Age. J Med Food 2020; 23:565-574. [PMID: 32069428 DOI: 10.1089/jmf.2019.4504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The major aim of this study was to investigate the effect of rice protein (RP) on the activation of endogenous antioxidant defense in growing and adult rats. After 2 weeks, RP activated nuclear factor erythroid 2 (NF-E2)-related factor 2 (Nrf2) by suppressing Kelch-like ECH-associated protein 1 (Keap1) and Cullin 3 (Cul3) in growing and adult rats. Compared with casein, the upregulation of antioxidant responsive element (ARE)-driven antioxidant expression levels (glutamate cysteine ligase catalytic subunit, glutamate cysteine ligase modulatory subunit, glutathione synthase, glutathione reductase, glutathione S-transferase, glutathione peroxidase, catalase, superoxide dismutase, heme oxygenase 1, NAD(P)H:quinone oxidoreductase 1) were found in RP groups. Also, RP upregulated methionine sulfoxide reductase (MsrA, MsrB2, and MsrB3) expression levels in growing and adult rats. As a result, RP enhanced endogenous antioxidative capacities to reduce hepatic accumulations of malondialdehyde, protein carbonyl, and reactive oxygen species. This study demonstrates that RP exerts the endogenous antioxidant capacity in growing and adult rats, which is due to stimulating Msr antioxidant expression and activating Nrf2-ARE pathway. Results suggest that the antioxidant activity induced by RP is independent of age.
Collapse
Affiliation(s)
- Hui Li
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Mingcai Liang
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Zhengxuan Wang
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Yan Zhang
- School of Life Science and Biotechnology, Harbin Institute of Technology, Harbin, China
| | - Qiong Wu
- School of Life Science and Biotechnology, Harbin Institute of Technology, Harbin, China
| | - Lin Yang
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
21
|
Zhang M, Chen D, Zhang F, Zhang G, Wang Y, Zhang Q, He W, Wang H, Chen P. Serum exosomal hsa-miR-135b-5p serves as a potential diagnostic biomarker in steroid-induced osteonecrosis of femoral head. Am J Transl Res 2020; 12:2136-2154. [PMID: 32509207 PMCID: PMC7269975 DOI: pmid/32509207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/27/2020] [Indexed: 02/05/2023]
Abstract
Accumulating studies have demonstrated serum exosomal microRNAs (miRNAs) represent novel biomarkers for various diseases. In this study, we aimed to explore the feasibility of using serum exosomal miRNAs as novel serological biomarkers for steroid-induced osteonecrosis of femoral head (SONFH). We identified the characters of exosomes which were obtained from fresh serum of 5 systemic lupus erythematosus (SLE) patients without SONFH, 5 SLE patients with SONFH (SLE-SONFH) and 5 healthy ones. Comprehensive exosomal miRNA sequencing was performed to profile the differentially expressed miRNAs in the three groups. We then validated the expression levels of selected miRNAs by qRT-PCR. Furthermore, KEGG pathway, GO annotation, protein-protein interaction (PPI) network, module analysis and miRNAs-mRNAs interaction network were built to analyze the potential targets and mechanism. Sequencing data conveyed that hsa-miR-135b-5p, hsa-miR-150-5p, hsa-miR-509-3-5p, hsa-miR-514a-3p and hsa-miR-708-5p were significantly differentially expressed in the three groups. The results of qRT-PCR for the first time confirmed that the expression of hsa-miR-135b-5p was strikingly up-regulated in SLE-SONFH group which were consistent with miRNA sequencing results. In addition, bioinformatics analysis indicated that the enriched functions and pathways of the most differentially expressed miRNAs including Wnt, MAPK as well as Hippo signaling pathway. The top five hub genes (FGF2, PTEN, HACE1, VAMP2, and CBL) were part of module of the PPI network, which consisted of 713 nodes and 2191 edges. In conclusion, this study provides a novel and fundamental serum exosomal miRNAs profile of SONFH and hsa-miR-135b-5p may be identified as a unique diagnostic biomarker for SONFH.
Collapse
Affiliation(s)
- Meng Zhang
- The First School of Clinical Medicine, Guangzhou University of Chinese MedicineGuangzhou 510405, China
- Lingnan Medical Research Center, Guangzhou University of Chinese MedicineGuangzhou 510405, China
| | - Delong Chen
- Department of Orthopaedic Surgery, Clifford Hospital, Jinan UniversityGuangzhou 510006, China
| | - Fan Zhang
- Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical CollegeShantou 515041, China
| | - Gangyu Zhang
- The First School of Clinical Medicine, Guangzhou University of Chinese MedicineGuangzhou 510405, China
- Lingnan Medical Research Center, Guangzhou University of Chinese MedicineGuangzhou 510405, China
| | - Yueqi Wang
- Guangzhou Orthopaedic HospitalGuangzhou 510045, China
| | - Qingwen Zhang
- Hip Center, Guangzhou University of Chinese MedicineGuangzhou 510405, China
- Orthopedics Department, The First Affiliated Hospital, Guangzhou University of Chinese MedicineGuangzhou 510405, China
| | - Wei He
- Hip Center, Guangzhou University of Chinese MedicineGuangzhou 510405, China
- Orthopedics Department, The First Affiliated Hospital, Guangzhou University of Chinese MedicineGuangzhou 510405, China
| | - Haibin Wang
- Hip Center, Guangzhou University of Chinese MedicineGuangzhou 510405, China
- Orthopedics Department, The First Affiliated Hospital, Guangzhou University of Chinese MedicineGuangzhou 510405, China
| | - Peng Chen
- Hip Center, Guangzhou University of Chinese MedicineGuangzhou 510405, China
- Orthopedics Department, The First Affiliated Hospital, Guangzhou University of Chinese MedicineGuangzhou 510405, China
| |
Collapse
|
22
|
Marengo B, Pulliero A, Izzotti A, Domenicotti C. miRNA Regulation of Glutathione Homeostasis in Cancer Initiation, Progression and Therapy Resistance. Microrna 2020; 9:187-197. [PMID: 31849293 PMCID: PMC7366003 DOI: 10.2174/2211536609666191218103220] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/04/2019] [Accepted: 11/13/2019] [Indexed: 12/16/2022]
Abstract
Glutathione (GSH) is the most abundant antioxidant that contributes to regulating the cellular production of Reactive Oxygen Species (ROS) which, maintained at physiological levels, can exert a function of second messengers in living organisms. In fact, it has been demonstrated that moderate amounts of ROS can activate the signaling pathways involved in cell growth and proliferation, while high levels of ROS induce DNA damage leading to cancer development. Therefore, GSH is a crucial player in the maintenance of redox homeostasis and its metabolism has a role in tumor initiation, progression, and therapy resistance. Our recent studies demonstrated that neuroblastoma cells resistant to etoposide, a common chemotherapeutic drug, show a partial monoallelic deletion of the locus coding for miRNA 15a and 16-1 leading to a loss of these miRNAs and the activation of GSH-dependent responses. Therefore, the aim of this review is to highlight the role of specific miRNAs in the modulation of intracellular GSH levels in order to take into consideration the use of modulators of miRNA expression as a useful strategy to better sensitize tumors to current therapies.
Collapse
Affiliation(s)
- Barbara Marengo
- Address correspondence to this author at the Department of Experimental Medicine, University of Genoa, Genoa, Italy; Tel: +39 010 3538831; Fax: +39 010 3538836; E-mail:
| | | | | | | |
Collapse
|
23
|
Akentieva NP, Sanina NA, Gizatullin AR, Shkondina NI, Prikhodchenko TR, Shram SI, Zhelev N, Aldoshin SM. Cytoprotective Effects of Dinitrosyl Iron Complexes on Viability of Human Fibroblasts and Cardiomyocytes. Front Pharmacol 2019; 10:1277. [PMID: 31780929 PMCID: PMC6859909 DOI: 10.3389/fphar.2019.01277] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/07/2019] [Indexed: 12/29/2022] Open
Abstract
Nitric oxide (NO) is an important signaling molecule that plays a key role in maintaining vascular homeostasis. Dinitrosyl iron complexes (DNICs) generating NO are widely used to treat cardiovascular diseases. However, the involvement of DNICs in the metabolic processes of the cell, their protective properties in doxorubicin-induced toxicity remain to be clarified. Here, we found that novel class of mononuclear DNICs with functional sulfur-containing ligands enhanced the cell viability of human lung fibroblasts and rat cardiomyocytes. Moreover, DNICs demonstrated remarkable protection against doxorubicin-induced toxicity in fibroblasts and in rat cardiomyocytes (H9c2 cells). Data revealed that the DNICs compounds modulate the mitochondria function by decreasing the mitochondrial membrane potential (ΔΨm). Results of flow cytometry showed that DNICs were not affected the proliferation, growth of fibroblasts. In addition, this study showed that DNICs did not affect glutathione levels and the formation of reactive oxygen species in cells. Moreover, results indicated that DNICs maintained the ATP equilibrium in cells. Taken together, these findings show that DNICs have protective properties in vitro. It was further suggested that DNICs may be uncouplers of oxidative phosphorylation in mitochondria and protective mechanism is mainly provided by the leakage of excess charge through the mitochondrial membrane. It is assumed that the DNICs have the therapeutic potential for treating cardiovascular diseases and for decreasing of chemotherapy-induced cardiotoxicity in cancer survivors.
Collapse
Affiliation(s)
- Natalia Pavlovna Akentieva
- Laboratory Biochemical and Cellular Studies, Department of Kinetics of Chemical and Biological Processes, Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
- Laboratory of Toxicology and Experimental Chemotherapy, Moscow State Regional University, Moscow, Russia
- Faculty of Medicine, Karabük University, Karabük, Turkey
| | - Natalia Alekseevna Sanina
- Laboratory of Structural Chemistry, Department of Structure of Matter, Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
- Faculty of fundamental physical and chemical engineering, Lomonosov Moscow State University, Moscow, Russia
| | - Artur Rasimovich Gizatullin
- Laboratory Biochemical and Cellular Studies, Department of Kinetics of Chemical and Biological Processes, Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
| | - Natalia Ivanovna Shkondina
- Laboratory Biochemical and Cellular Studies, Department of Kinetics of Chemical and Biological Processes, Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
| | - Tatyana Romanovna Prikhodchenko
- Laboratory Biochemical and Cellular Studies, Department of Kinetics of Chemical and Biological Processes, Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
| | - Stanislav Ivanovich Shram
- Neuropharmacology Sector, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Nikolai Zhelev
- School of Medicine, University of Dundee, Dundee, United Kingdom
- Medical University Plovdiv, Plovdiv, Bulgaria
| | - Sergei Michailovich Aldoshin
- Laboratory of Structural Chemistry, Department of Structure of Matter, Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
- Faculty of fundamental physical and chemical engineering, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
24
|
Wang Z, Liang M, Li H, Cai L, He H, Wu Q, Yang L. l-Methionine activates Nrf2-ARE pathway to induce endogenous antioxidant activity for depressing ROS-derived oxidative stress in growing rats. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:4849-4862. [PMID: 31001831 DOI: 10.1002/jsfa.9757] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Methionine is an essential sulfur-containing amino acid. To elucidate the influence of l-methionine on activation of the nuclear factor erythroid 2-related factor 2-antioxidant responsive element (Nrf2-ARE) antioxidant pathway to stimulate the endogenous antioxidant activity for depressing reactive oxygen species (ROS)-derived oxidative stress, male Wistar rats were orally administered l-methionine daily for 14 days. RESULTS With the intake of l-methionine, Nrf2 was activated by l-methionine through depressing Keap1 and Cul3, resulting in upregulation of ARE-driven antioxidant expression (glutamate cysteine ligase catalytic subunit, glutamate cysteine ligase modulatory subunit, glutathione synthase (GS), catalase (CAT), superoxide dismutase (SOD), heme oxygenase 1, NAD(P)H:quinone oxidoreductase 1, glutathione reductase (GR), glutathione S-transferase (GST), glutathione peroxidase (GPx)) with increasing l-methionine availability. Upon activation of Nrf2, glutathione synthesis was increased through upregulated expression of methionine adenosyltransferase, S-adenosylhomocysteine hydrolase, cystathionine β-synthase, cystathionine γ-lyse, glutamate cysteine ligase (GCL) and GS, while hepatic expressions of methionine sulfoxide reductases (MsrA, MsrB2, MsrB3) and hepatic enzyme activities (CAT, SOD, GCL, GR, GST, GPx) were uniformly stimulated with increasing consumption of l-methionine. As a result, hepatic content of ROS and MDA were effectively reduced by l-methionine intake. CONCLUSION The present study demonstrates that methionine availability plays a critical role in activation of the Nrf2-ARE pathway to induce an endogenous antioxidant response for depressing ROS-derived oxidative stress, which is primarily attributed to the stimulation of methionine sulfoxide reductase expression and glutathione synthesis. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhengxuan Wang
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Mingcai Liang
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Hui Li
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Liang Cai
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Hongjuan He
- School of Life Science and Biotechnology, Harbin Institute of Technology, Harbin, China
| | - Qiong Wu
- School of Life Science and Biotechnology, Harbin Institute of Technology, Harbin, China
| | - Lin Yang
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
25
|
Hanko M, Švorc Ľ, Planková A, Mikuš P. Overview and recent advances in electrochemical sensing of glutathione - A review. Anal Chim Acta 2019; 1062:1-27. [PMID: 30947984 DOI: 10.1016/j.aca.2019.02.052] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/20/2019] [Accepted: 02/22/2019] [Indexed: 12/13/2022]
Abstract
The present paper is aimed at providing an overview of the recent advances in the electrochemical sensing of glutathione (GSH), an important electrochemically and biologically active molecule, for the period 2012-2018. Herein, the analytical performances of newly developed electrochemical methods, procedures and protocols for GSH sensing are comprehensively and critically discussed with respect to the type of method, electrodes used (new electrode modifications, advanced materials and formats), sample matrices, and basic validation parameters obtained (limit of detection, linear dynamic range, precision, selectivity/evaluation of interferences). This paper considers electrochemical methods used alone as well as the hyphenated methods with electrochemical detection (ECD), such as HPLC-ECD or CE-ECD. The practical applicability of the platforms developed for GSH detection and quantification is mostly focused on pharmaceutical and biomedical analysis. The most significant electrochemical approaches for GSH detection in multicomponent analyte samples and multicomponent matrices and for real-time in vivo GSH analysis are highlighted. The great variability in the electrochemical techniques, electrode approaches, and obtainable performance parameters, discussed in this review, brought new insights not only on current GSH and glutathione disulfide (GSSG) determinations, but, along with this, on the advances in electrochemical analysis from a more general point of view.
Collapse
Affiliation(s)
- Michal Hanko
- Comenius University in Bratislava, Faculty of Pharmacy, Department of Pharmaceutical Analysis and Nuclear Pharmacy, Odbojárov 10, SK-832 32, Bratislava, Slovak Republic
| | - Ľubomír Švorc
- Slovak University of Technology in Bratislava, Faculty of Chemical and Food Technology, Institute of Analytical Chemistry, Radlinského 9, SK-812 37, Bratislava, Slovak Republic
| | - Alexandra Planková
- Comenius University in Bratislava, Faculty of Pharmacy, Department of Pharmaceutical Analysis and Nuclear Pharmacy, Odbojárov 10, SK-832 32, Bratislava, Slovak Republic
| | - Peter Mikuš
- Comenius University in Bratislava, Faculty of Pharmacy, Department of Pharmaceutical Analysis and Nuclear Pharmacy, Odbojárov 10, SK-832 32, Bratislava, Slovak Republic; Comenius University in Bratislava, Faculty of Pharmacy, Toxicological and Antidoping Center, Odbojárov 10, SK-832 32, Bratislava, Slovak Republic.
| |
Collapse
|
26
|
Zhang M, Liu Y, Liu M, Liu B, Li N, Dong X, Hong Z, Chai Y. UHPLC-QTOF/MS-based metabolomics investigation for the protective mechanism of Danshen in Alzheimer's disease cell model induced by Aβ 1-42. Metabolomics 2019; 15:13. [PMID: 30830431 DOI: 10.1007/s11306-019-1473-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/09/2019] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Alzheimer's disease (AD) is a chronic neurodegenerative disorder with neither definitive pathogenesis nor effective therapy so far. Danshen, the dried root and rhizome of Salvia miltiorrhiza Bunge, is used extensively in Alzheimer's disease treatment to ameliorate the symptoms, but the underlying mechanism remains to be clarified. OBJECTIVES To investigate potential biomarkers for AD and elucidate the protective mechanism of Danshen on AD cell model. METHODS An ultra high performance liquid chromatography-quadrupole time of flight mass spectrometry (UHPLC-QTOF/MS)-based approach combined with partial least squares discriminant analysis (PLS-DA) has been developed to discriminate the metabolic modifications between human brain microvascular endothelial cell (hBMEC) and AD cell model induced by amyloid-β protein (Aβ1-42). To further elucidate the pathophysiology of AD, related metabolic pathways have been studied. RESULTS Thirty-three distinct potential biomarkers were screened out and considered as potential biomarkers corresponding to AD, which were mostly improved and partially restored back to normalcy in Danshen pre-protection group. It was found that AD was closely related to disturbed arginine and proline metabolism, glutathione metabolism, alanine aspartate and glutamate metabolism, histidine metabolism, pantothenate and CoA biosynthesis, phenylalanine tyrosine and tryptophan biosynthesis, citrate cycle and glycerophospholipid metabolism, and the protective mechanism of Danshen in AD cell model may be related to partially regulating the perturbed pathways. CONCLUSIONS These outcomes provide valuable evidences for therapeutic mechanism investigation of Danshen in AD treatment, and such an approach could be transferred to unravel the mechanism of other traditional Chinese medicine (TCM) and diseases.
Collapse
Affiliation(s)
- Mingyong Zhang
- School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Shanghai, 200433, China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, 200433, China
| | - Yue Liu
- School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Shanghai, 200433, China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, 200433, China
| | - Min Liu
- Department of Pharmacy, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Biying Liu
- School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Shanghai, 200433, China
| | - Na Li
- School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Shanghai, 200433, China
| | - Xin Dong
- School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Shanghai, 200433, China
| | - Zhanying Hong
- School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Shanghai, 200433, China.
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, 200433, China.
| | - Yifeng Chai
- School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Shanghai, 200433, China
| |
Collapse
|
27
|
Liu H, Huang H, Li R, Bi W, Feng L, E L, Hu M, Wen W. Mitophagy protects SH-SY5Y neuroblastoma cells against the TNFα-induced inflammatory injury: Involvement of microRNA-145 and Bnip3. Biomed Pharmacother 2019; 109:957-968. [DOI: 10.1016/j.biopha.2018.10.123] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 10/16/2018] [Accepted: 10/20/2018] [Indexed: 01/19/2023] Open
|
28
|
Shi T, Burton S, Wang Y, Xu S, Zhang W, Yu L. Metabolomic analysis of honey bee, Apis mellifera L. response to thiacloprid. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2018; 152:17-23. [PMID: 30497706 DOI: 10.1016/j.pestbp.2018.08.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/21/2018] [Accepted: 08/08/2018] [Indexed: 06/09/2023]
Abstract
The cyano-substituted neonicotinoid insecticide, thiacloprid, is nowadays widely used in agriculture for controlling insect pests. However, it also simultaneously has adverse effects on the health of important pollinators, such as honey bees. Previous studies have reported that sublethal doses of neonicotinoids impaired immunocompetence, learning and memory performance, and homing behaviour in honey bees. In the present study, using LC-MS-based combined with GC-MS-based metabolomic approaches, we profiled the metabolic changes that occur in the head of honey bee after subchronic exposure to 2 mg/L thiacloprid over 3 days. The estimated total dose of thiacloprid fed to each bee was 0.12 μg. The results showed that there were 115 metabolites significantly affected in thiacloprid-treated bees compared to control. The metabolites with high level of abundance enriched to wide range pathways associated with oxidative stress and detoxification suggest that the honey bees have activated their detoxification system to resistant toxicity of thiacloprid. While, the reduction of serotonin suggest thiacloprid may hinder the brain activity implicated in learning and behaviour development. Our study expand the understanding of the molecular basis of the complex interactions between neonicotinoids and honey bees.
Collapse
Affiliation(s)
- Tengfei Shi
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Sawyer Burton
- School of Life Science, Anhui Agricultural University, Hefei 230036, China
| | - Yufei Wang
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Shengyun Xu
- School of Life Science, Anhui Agricultural University, Hefei 230036, China
| | - Wenxin Zhang
- School of Life Science, Anhui Agricultural University, Hefei 230036, China
| | - Linsheng Yu
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; School of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
29
|
Li F, Cui L, Yu D, Hao H, Liu Y, Zhao X, Pang Y, Zhu H, Du W. Exogenous glutathione improves intracellular glutathione synthesis via the γ‐glutamyl cycle in bovine zygotes and cleavage embryos. J Cell Physiol 2018; 234:7384-7394. [DOI: 10.1002/jcp.27497] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/07/2018] [Indexed: 01/14/2023]
Affiliation(s)
- Feng Li
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences Beijing China
| | - Lixin Cui
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences Beijing China
| | - Dawei Yu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences Beijing China
| | - Haisheng Hao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences Beijing China
| | - Yan Liu
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences Beijing China
| | - Xueming Zhao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences Beijing China
| | - Yunwei Pang
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences Beijing China
| | - Huabin Zhu
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences Beijing China
| | - Weihua Du
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences Beijing China
| |
Collapse
|
30
|
Tan BL, Norhaizan ME, Liew WPP, Sulaiman Rahman H. Antioxidant and Oxidative Stress: A Mutual Interplay in Age-Related Diseases. Front Pharmacol 2018; 9:1162. [PMID: 30405405 PMCID: PMC6204759 DOI: 10.3389/fphar.2018.01162] [Citation(s) in RCA: 585] [Impact Index Per Article: 83.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/24/2018] [Indexed: 12/14/2022] Open
Abstract
Aging is the progressive loss of organ and tissue function over time. Growing older is positively linked to cognitive and biological degeneration such as physical frailty, psychological impairment, and cognitive decline. Oxidative stress is considered as an imbalance between pro- and antioxidant species, which results in molecular and cellular damage. Oxidative stress plays a crucial role in the development of age-related diseases. Emerging research evidence has suggested that antioxidant can control the autoxidation by interrupting the propagation of free radicals or by inhibiting the formation of free radicals and subsequently reduce oxidative stress, improve immune function, and increase healthy longevity. Indeed, oxidation damage is highly dependent on the inherited or acquired defects in enzymes involved in the redox-mediated signaling pathways. Therefore, the role of molecules with antioxidant activity that promote healthy aging and counteract oxidative stress is worth to discuss further. Of particular interest in this article, we highlighted the molecular mechanisms of antioxidants involved in the prevention of age-related diseases. Taken together, a better understanding of the role of antioxidants involved in redox modulation of inflammation would provide a useful approach for potential interventions, and subsequently promoting healthy longevity.
Collapse
Affiliation(s)
- Bee Ling Tan
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Mohd Esa Norhaizan
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
- Research Centre of Excellent, Nutrition and Non-Communicable Diseases (NNCD), Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Winnie-Pui-Pui Liew
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | | |
Collapse
|
31
|
Yu H, Li Y, Xu Z, Wang D, Shi S, Deng H, Zeng B, Zheng Z, Sun L, Deng X, Zhong X. Identification of potential biomarkers in cholestasis and the therapeutic effect of melatonin by metabolomics, multivariate data and pathway analyses. Int J Mol Med 2018; 42:2515-2526. [PMID: 30226547 PMCID: PMC6192756 DOI: 10.3892/ijmm.2018.3859] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 09/04/2018] [Indexed: 01/16/2023] Open
Abstract
The present study investigated the anti‑cholestatic effect of melatonin (MT) against α‑naphthyl isothiocyanate (ANIT)‑induced liver injury in rats and screened for potential biomarkers of cholestasis. Rats were administered ANIT by intraperitoneal injection and then sacrificed 36 h later. Serum biochemical parameters were measured and liver tissue samples were subjected to histological analysis. Active components in the serum were identified by gas chromatography‑mass spectrometry, while biomarkers and biochemical pathways were identified by multivariate data analysis. The results revealed that the serum levels of alanine aminotransferase, aspartate aminotransferase, total bilirubin, direct bilirubin, γ‑glutamyl transpeptidase, and alkaline phosphatase were reduced in rats with ANIT‑induced cholestasis that were treated with MT. The histological observations indicated that MT had a protective effect against ANIT‑induced hepatic tissue damage. Metabolomics analysis revealed that this effect was likely to be associated with the regulation of compounds related to MT synthesis and catabolism, and amino acid metabolism, including 5‑aminopentanoate, 5‑methoxytryptamine, L‑tryptophan, threonine, glutathione, L‑methionine, and indolelactate. In addition, principal component analysis demonstrated that the levels of these metabolites differed significantly between the MT and control groups, providing further evidence that they may be responsible for the effects induced by MT. These results provide an insight into the mechanisms underlying cholestasis development and highlight potential biomarkers for disease diagnosis.
Collapse
Affiliation(s)
- Han Yu
- Synopsis of Golden Chamber, Chinese Medicine College, Beijing University of Chinese Medicine, Chaoyang, Beijing 100029, P.R. China
| | - Yunzhou Li
- Synopsis of Golden Chamber, Chinese Medicine College, Beijing University of Chinese Medicine, Chaoyang, Beijing 100029, P.R. China
| | - Zongying Xu
- Synopsis of Golden Chamber, Chinese Medicine College, Beijing University of Chinese Medicine, Chaoyang, Beijing 100029, P.R. China
| | - Dingnan Wang
- Synopsis of Golden Chamber, Chinese Medicine College, Beijing University of Chinese Medicine, Chaoyang, Beijing 100029, P.R. China
| | - Shaohua Shi
- Synopsis of Golden Chamber, Chinese Medicine College, Beijing University of Chinese Medicine, Chaoyang, Beijing 100029, P.R. China
| | - Huifang Deng
- Synopsis of Golden Chamber, Chinese Medicine College, Beijing University of Chinese Medicine, Chaoyang, Beijing 100029, P.R. China
| | - Baihui Zeng
- Synopsis of Golden Chamber, Chinese Medicine College, Beijing University of Chinese Medicine, Chaoyang, Beijing 100029, P.R. China
| | - Zhili Zheng
- Pharmacology Departments, Chinese Medicine College, Beijing University of Chinese Medicine, Chaoyang, Beijing 100029, P.R. China
| | - Lili Sun
- Synopsis of Golden Chamber, Chinese Medicine College, Beijing University of Chinese Medicine, Chaoyang, Beijing 100029, P.R. China
| | - Xiulan Deng
- Pharmacology Departments, Chinese Medicine College, Beijing University of Chinese Medicine, Chaoyang, Beijing 100029, P.R. China
| | - Xianggen Zhong
- Synopsis of Golden Chamber, Chinese Medicine College, Beijing University of Chinese Medicine, Chaoyang, Beijing 100029, P.R. China
| |
Collapse
|
32
|
Wang G, Fang X, Han M, Wang X, Huang Q. MicroRNA-493-5p promotes apoptosis and suppresses proliferation and invasion in liver cancer cells by targeting VAMP2. Int J Mol Med 2018; 41:1740-1748. [PMID: 29328362 DOI: 10.3892/ijmm.2018.3358] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 12/15/2017] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to explore the role of miR‑493-5p in liver cancer tissues and cell lines, and its effect on cell behavioral characteristics. The expression of miR-493-5p was detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) in liver cancer tissues and cell lines (hepatic cell line HL-7702 and the liver cancer cell lines HCCC-9810, HuH-7 and HepG2). In addition, the mechanism by which miR-493-5p mediates its effects was analyzed via the transfection of miR-493-5p mimic and negative control miRNA into HepG2 cells. The viability, proliferation, apoptosis and invasion of the cells were analyzed using MTT assay, flow cytometry and Transwell chamber experiments. Furthermore, the effect of miR-493-5p on the expression of vesicle associated membrane protein 2 (VAMP2) was assayed using a dual-luciferase reporter system, and VAMP2 protein levels were determined by western blot analysis. In addition, following the cotransfection of HepG2 cells with pcDNA3.1‑VAMP2 plasmid and miR‑493-5p mimic, the role of miR-493-5p as a regulator of VAMP2 was evaluated using MTT assay, flow cytometry and Transwell chamber experiments. RT-qPCR analysis indicated that the expression of miR-493-5p in liver cancer tissues and cell lines was decreased significantly compared with that in adjacent normal liver tissues and normal liver cell lines, respectively. Compared with the control group, the cells transfected with miR-493-5p mimic (the miR-493-5p overexpression group) exhibited reduced cell viability, a reduced percentage of cells in the S phase and an increased percentage of apoptotic cells. In addition, fewer cells passed through the Transwell membrane in the miR-493-5p overexpression group compared with the control group. In the dual-luciferase reporter assay, luciferase activity in the miR‑493-5p overexpression group was attenuated compared with that in the control group. In addition, western blot analysis indicated that the VAMP2 protein levels in the miR‑493-5p overexpression group were lower than those in the control group. Furthermore, in cells overexpressing miR-493-5p and VAMP2 simultaneously, the biological behavior of the cells, including cell viability, cell cycle and cell invasiveness, was significantly rescued compared with that of the control group transfected with miR‑493-5p alone. In conclusion, miR-493-5p is indicated to be a tumor suppressor gene, and is downregulated in human liver cancer. miR-493-5p overexpression promotes cell apoptosis and inhibits the proliferation and migration of liver cancer cells by negatively regulating the expression of VAMP. These observations suggest the potential of treating liver cancer by the overexpression of microRNA-493-5p.
Collapse
Affiliation(s)
- Guannan Wang
- Department of Pancreato-Biliary Surgery, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230001, P.R. China
| | - Xiaosan Fang
- Department of Hepatobiliary Surgery, Yijishan Hospital Affiliated to Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Meng Han
- Department of Hepatobiliary Surgery, Yijishan Hospital Affiliated to Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Xiaoming Wang
- Department of Hepatobiliary Surgery, Yijishan Hospital Affiliated to Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Qiang Huang
- Department of Pancreato-Biliary Surgery, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230001, P.R. China
| |
Collapse
|
33
|
Bolaños JP, Cadenas E, Duchen MR, Hampton MB, Mann GE, Murphy MP. Introduction to Special Issue on Mitochondrial Redox Signaling in Health and Disease. Free Radic Biol Med 2016; 100:1-4. [PMID: 27502830 DOI: 10.1016/j.freeradbiomed.2016.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Juan P Bolaños
- Institute of Functional Biology and Genomics, University of Salamanca, Salamanca, Spain.
| | - Enrique Cadenas
- Pharmacology & Pharmaceutical Sciences, School of Pharmacy, University of Southern California, CA, USA.
| | - Michael R Duchen
- Department of Cell and Developmental Biology, University College London, London, UK.
| | - Mark B Hampton
- Centre for Free Radical Research, Department of Pathology, University of Otago, Christchurch, New Zealand.
| | - Giovanni E Mann
- Cardiovascular Division, Faculty of Life Sciences & Medicine, King's College London, London, UK.
| | - Michael P Murphy
- Medical Research Council, Mitochondrial Biology Unit, Cambridge, UK.
| |
Collapse
|