1
|
Traber MG. Deciphering the enigma of the function of alpha-tocopherol as a vitamin. Free Radic Biol Med 2024; 221:64-74. [PMID: 38754744 PMCID: PMC11908772 DOI: 10.1016/j.freeradbiomed.2024.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/18/2024]
Abstract
α-Tocopherol (α-T) is a vitamin, but the reasons for the α-T requirement are controversial. Given that α-T deficiency was first identified in embryos, we studied to the premier model of vertebrate embryo development, the zebrafish embryo. We developed an α-T-deficient diet for zebrafish and used fish consuming this diet to produce α-T deficient (E-) embryos. We showed that α-T deficiency causes increased lipid peroxidation, leading to metabolic dysregulation that impacts both biochemical and morphological changes at very early stages in development. These changes occur at an early developmental window, which takes place prior to an analogous time to when a human knows she is pregnant. We found that α-T limits the chain reaction of lipid peroxidation and protects metabolic pathways and integrated gene expression networks that control embryonic development. Importantly, not only is α-T critical during early development, but the neurodevelopmental process is highly dependent on α-T trafficking by the α-T transfer protein (TTPa). Data from both gene expression and evaluation of the metabolome in E- embryos suggest that the activity of the mechanistic Target of Rapamycin (mTOR) signaling pathway is dysregulated-mTOR is a master regulatory mechanism, which controls both metabolism and neurodevelopment. Our findings suggest that TTPa is needed not only for regulation of plasma α-T in adults but is a key regulator during embryogenesis.
Collapse
Affiliation(s)
- Maret G Traber
- Linus Pauling Institute, Oregon State University, Corvallis, 97330, OR, USA.
| |
Collapse
|
2
|
Radulescu D, Mihai FD, Trasca MET, Caluianu EI, Calafeteanu CDM, Radulescu PM, Mercut R, Ciupeanu-Calugaru ED, Marinescu GA, Siloşi CA, Nistor CCE, Danoiu S. Oxidative Stress in Military Missions-Impact and Management Strategies: A Narrative Analysis. Life (Basel) 2024; 14:567. [PMID: 38792589 PMCID: PMC11121804 DOI: 10.3390/life14050567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
This narrative review comprehensively examines the impact of oxidative stress on military personnel, highlighting the crucial role of physical exercise and tailored diets, particularly the ketogenic diet, in minimizing this stress. Through a meticulous analysis of the recent literature, the study emphasizes how regular physical exercise not only enhances cardiovascular, cognitive, and musculoskeletal health but is also essential in neutralizing the effects of oxidative stress, thereby improving endurance and performance during long-term missions. Furthermore, the implementation of the ketogenic diet provides an efficient and consistent energy source through ketone bodies, tailored to the specific energy requirements of military activities, and significantly contributes to the reduction in reactive oxygen species production, thus protecting against cellular deterioration under extreme stress. The study also underlines the importance of integrating advanced technologies, such as wearable devices and smart sensors that allow for the precise and real-time monitoring of oxidative stress and physiological responses, thus facilitating the customization of training and nutritional regimes. Observations from this review emphasize significant variability among individuals in responses to oxidative stress, highlighting the need for a personalized approach in formulating intervention strategies. It is crucial to develop and implement well-monitored, personalized supplementation protocols to ensure that each member of the military personnel receives a regimen tailored to their specific needs, thereby maximizing the effectiveness of measures to combat oxidative stress. This analysis makes a valuable contribution to the specialized literature, proposing a detailed framework for addressing oxidative stress in the armed forces and opening new directions for future research with the aim of optimizing clinical practices and improving the health and performance of military personnel under stress and specific challenges of the military field.
Collapse
Affiliation(s)
- Dumitru Radulescu
- Department of Surgery, The Military Emergency Clinical Hospital ‘Dr. Stefan Odobleja’ Craiova, 200749 Craiova, Romania; (D.R.); (E.-I.C.); (P.-M.R.); (G.-A.M.)
| | - Florina-Diana Mihai
- Doctoral School, University of Medicine and Pharmacy of Craiova, 2 Petru Rares Street, 200349 Craiova, Romania;
| | - Major Emil-Tiberius Trasca
- Department of Surgery, The Military Emergency Clinical Hospital ‘Dr. Stefan Odobleja’ Craiova, 200749 Craiova, Romania; (D.R.); (E.-I.C.); (P.-M.R.); (G.-A.M.)
| | - Elena-Irina Caluianu
- Department of Surgery, The Military Emergency Clinical Hospital ‘Dr. Stefan Odobleja’ Craiova, 200749 Craiova, Romania; (D.R.); (E.-I.C.); (P.-M.R.); (G.-A.M.)
| | - Captain Dan Marian Calafeteanu
- Department of Ortopedics, The Military Emergency Clinical Hospital ‘Dr. Stefan Odobleja’ Craiova, 200749 Craiova, Romania;
| | - Patricia-Mihaela Radulescu
- Department of Surgery, The Military Emergency Clinical Hospital ‘Dr. Stefan Odobleja’ Craiova, 200749 Craiova, Romania; (D.R.); (E.-I.C.); (P.-M.R.); (G.-A.M.)
| | - Razvan Mercut
- Department of Plastic and Reconstructive Surgery, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | | | - Georgiana-Andreea Marinescu
- Department of Surgery, The Military Emergency Clinical Hospital ‘Dr. Stefan Odobleja’ Craiova, 200749 Craiova, Romania; (D.R.); (E.-I.C.); (P.-M.R.); (G.-A.M.)
| | - Cristian-Adrian Siloşi
- Doctoral School, University of Medicine and Pharmacy of Craiova, 2 Petru Rares Street, 200349 Craiova, Romania;
| | | | - Suzana Danoiu
- Department of Pathophysiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| |
Collapse
|
3
|
Montoya-Arroyo A, Frank J. Revising the nomenclature for vitamin E requires agreement on its vitamin function. Free Radic Biol Med 2024; 215:77-78. [PMID: 38431239 DOI: 10.1016/j.freeradbiomed.2024.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Affiliation(s)
- Alexander Montoya-Arroyo
- Department of Food Biofunctionality, Institute of Nutritional Sciences, University of Hohenheim, 70599, Stuttgart, Germany
| | - Jan Frank
- Department of Food Biofunctionality, Institute of Nutritional Sciences, University of Hohenheim, 70599, Stuttgart, Germany.
| |
Collapse
|
4
|
Henderson TD, Choi J, Leonard SW, Head B, Tanguay RL, Barton CL, Traber MG. Chronic Vitamin E Deficiency Dysregulates Purine, Phospholipid, and Amino Acid Metabolism in Aging Zebrafish Skeletal Muscle. Antioxidants (Basel) 2023; 12:1160. [PMID: 37371890 PMCID: PMC10294951 DOI: 10.3390/antiox12061160] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Muscle wasting occurs with aging and may be a result of oxidative stress damage and potentially inadequate protection by lipophilic antioxidants, such as vitamin E. Previous studies have shown muscular abnormalities and behavioral defects in vitamin E-deficient adult zebrafish. To test the hypothesis that there is an interaction between muscle degeneration caused by aging and oxidative damage caused by vitamin E deficiency, we evaluated long-term vitamin E deficiency in the skeletal muscle of aging zebrafish using metabolomics. Zebrafish (55 days old) were fed E+ and E- diets for 12 or 18 months. Then, skeletal muscle samples were analyzed using UPLC-MS/MS. Data were analyzed to highlight metabolite and pathway changes seen with either aging or vitamin E status or both. We found that aging altered purines, various amino acids, and DHA-containing phospholipids. Vitamin E deficiency at 18 months was associated with changes in amino acid metabolism, specifically tryptophan pathways, systemic changes in the regulation of purine metabolism, and DHA-containing phospholipids. In sum, while both aging and induced vitamin E deficiency did have some overlap in altered and potentially dysregulated metabolic pathways, each factor also presented unique alterations, which require further study with more confirmatory approaches.
Collapse
Affiliation(s)
- Trent D. Henderson
- Linus Pauling Institute, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR 97331, USA;
| | - Jaewoo Choi
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; (J.C.); (S.W.L.); (B.H.)
| | - Scott W. Leonard
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; (J.C.); (S.W.L.); (B.H.)
| | - Brian Head
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; (J.C.); (S.W.L.); (B.H.)
| | - Robyn L. Tanguay
- Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA; (R.L.T.)
| | - Carrie L. Barton
- Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA; (R.L.T.)
| | - Maret G. Traber
- Linus Pauling Institute, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR 97331, USA;
| |
Collapse
|
5
|
Head B, Traber MG. Expanding role of vitamin E in protection against metabolic dysregulation: Insights gained from model systems, especially the developing nervous system of zebrafish embryos. Free Radic Biol Med 2021; 176:80-91. [PMID: 34555455 DOI: 10.1016/j.freeradbiomed.2021.09.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/27/2021] [Accepted: 09/07/2021] [Indexed: 12/20/2022]
Abstract
This review discusses why the embryo requires vitamin E (VitE) and shows that its lack causes metabolic dysregulation and impacts morphological changes at very early stages in development, which occur prior to when a woman knows she is pregnant. VitE halts the chain reactions of lipid peroxidation (LPO). Metabolomic analyses indicate that thiols become depleted in E- embryos because LPO generates products that require compensation using limited amino acids and methyl donors that are also developmentally relevant. Thus, VitE protects metabolic networks and the integrated gene expression networks that control development. VitE is critical especially for neurodevelopment, which is dependent on trafficking by the α-tocopherol transfer protein (TTPa). VitE-deficient (E-) zebrafish embryos initially appear normal, but by 12 and 24 h post-fertilization (hpf) E- embryos are developmentally abnormal with expression of pax2a and sox10 mis-localized in the midbrain-hindbrain boundary, neural crest cells and throughout the spinal neurons. These patterning defects indicate cells that are especially in need of VitE-protection. They precede obvious morphological abnormalities (cranial-facial malformation, pericardial edema, yolksac edema, skewed body-axis) and impaired behavioral responses to locomotor activity tests. The TTPA gene (ttpa) is expressed at the leading edges of the brain ventricle border. Ttpa knockdown using morpholinos is 100% lethal by 24 hpf, while E- embryo brains are often over- or under-inflated at 24 hpf. Further, E- embryos prior to 24 hpf have increased expression of genes involved in glycolysis and the pentose phosphate pathway, and decreased expression of genes involved in anabolic pathways and transcription. Combined data from both gene expression and the metabolome in E- embryos at 24 hpf suggest that the activity of the mechanistic Target of Rapamycin (mTOR) signaling pathway is decreased, which may impact both metabolism and neurodevelopment. Further evaluation of VitE deficiency in neurogenesis and its subsequent impact on learning and behavior is needed.
Collapse
Affiliation(s)
- Brian Head
- Linus Pauling Institute, Corvallis, OR, USA; Molecular and Cell Biology Program, Corvallis, OR, USA
| | - Maret G Traber
- Linus Pauling Institute, Corvallis, OR, USA; School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
6
|
Watt AT, Head B, Leonard SW, Tanguay RL, Traber MG. Gene Expression of CRAL_TRIO Family Proteins modulated by Vitamin E Deficiency in Zebrafish (Danio Rerio). J Nutr Biochem 2021; 97:108801. [PMID: 34119630 PMCID: PMC10129037 DOI: 10.1016/j.jnutbio.2021.108801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 04/19/2021] [Accepted: 06/01/2021] [Indexed: 11/15/2022]
Abstract
An evaluation of the impact of vitamin E deficiency on expression of the alpha-tocopherol transfer protein (α-TTP) and related CRAL_TRIO genes was undertaken using livers from adult zebrafish based on the hypothesis that increased lipid peroxidation would modulate gene expression. Zebrafish were fed either a vitamin E sufficient (E+) or deficient (E-) diet for 9 months, then fish were euthanized, and livers were harvested. Livers from the E+ relative to E- fish contained 40-times more α-tocopherol (P <0.0001) and one fourth the malondialdehyde (P = 0.0153). RNA was extracted from E+ and E- livers, then subject to evaluation of gene expression of ttpa and other genes of the CRAL_TRIO family, genes of antioxidant markers, and genes related to lipid metabolism. Ttpa expression was not altered by vitamin E status. However, one member of the CRAL_TRIO family, tyrosine-protein phosphatase non-receptor type 9 gene (ptpn9a), showed a 2.4-fold increase (P = 0.029) in E- relative to E+ livers. Further, we identified that the gene for choline kinase alpha (chka) showed a 3.0-fold increase (P = 0.010) in E- livers. These outcomes are consistent with our previous findings that show vitamin E deficiency increased lipid peroxidation causing increases in phospholipid turnover.
Collapse
Affiliation(s)
- Alexander T Watt
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon; Integrative Biology Program, Oregon State University, Corvallis, Oregon
| | - Brian Head
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon; Molecular and Cell Biology Program
| | - Scott W Leonard
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon
| | - Robyn L Tanguay
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon
| | - Maret G Traber
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon; School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon.
| |
Collapse
|
7
|
Abstract
Vitamin A, acting through its metabolite, all-trans-retinoic acid, is a potent transcriptional regulator affecting expression levels of hundreds of genes through retinoic acid response elements present within these genes. However, the literature is replete with claims that consider vitamin A to be an antioxidant vitamin, like vitamins C and E. This apparent contradiction in the understanding of how vitamin A acts mechanistically within the body is a major focus of this review. Vitamin E, which is generally understood to act as a lipophilic antioxidant protecting polyunsaturated fatty acids present in membranes, is often proposed to be a transcriptional regulator. The evaluation of this claim is another focus of the review. We conclude that vitamin A is an indirect antioxidant, whose indirect function is to transcriptionally regulate a number of genes involved in mediating the body's canonical antioxidant responses. Vitamin E, in addition to being a direct antioxidant, prevents the increase of peroxidized lipids that alter both metabolic pathways and gene expression profiles within tissues and cells. However, there is little compelling evidence that vitamin E has a direct transcriptional mechanism like that of vitamin A. Thus, we propose that the term antioxidant not be applied to vitamin A, and we discourage the use of the term transcriptional mediator when discussing vitamin E.
Collapse
Affiliation(s)
- William S Blaner
- Department of Medicine, Columbia University, New York, NY 10032, USA;
| | - Igor O Shmarakov
- Department of Medicine, Columbia University, New York, NY 10027, USA
| | - Maret G Traber
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon 97331, USA
| |
Collapse
|
8
|
da Silva KM, Iturrospe E, Bars C, Knapen D, Van Cruchten S, Covaci A, van Nuijs ALN. Mass Spectrometry-Based Zebrafish Toxicometabolomics: A Review of Analytical and Data Quality Challenges. Metabolites 2021; 11:metabo11090635. [PMID: 34564451 PMCID: PMC8467701 DOI: 10.3390/metabo11090635] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/17/2022] Open
Abstract
Metabolomics has achieved great progress over the last 20 years, and it is currently considered a mature research field. As a result, the number of applications in toxicology, biomarker, and drug discovery has also increased. Toxicometabolomics has emerged as a powerful strategy to provide complementary information to study molecular-level toxic effects, which can be combined with a wide range of toxicological assessments and models. The zebrafish model has gained importance in recent decades as a bridging tool between in vitro assays and mammalian in vivo studies in the field of toxicology. Furthermore, as this vertebrate model is a low-cost system and features highly conserved metabolic pathways found in humans and mammalian models, it is a promising tool for toxicometabolomics. This short review aims to introduce zebrafish researchers interested in understanding the effects of chemical exposure using metabolomics to the challenges and possibilities of the field, with a special focus on toxicometabolomics-based mass spectrometry. The overall goal is to provide insights into analytical strategies to generate and identify high-quality metabolomic experiments focusing on quality management systems (QMS) and the importance of data reporting and sharing.
Collapse
Affiliation(s)
- Katyeny Manuela da Silva
- Toxicological Center, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium; (E.I.); (A.C.)
- Correspondence: (K.M.d.S.); (A.L.N.v.N.)
| | - Elias Iturrospe
- Toxicological Center, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium; (E.I.); (A.C.)
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Campus Jette, Free University of Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Chloe Bars
- Comparative Perinatal Development, Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium; (C.B.); (S.V.C.)
| | - Dries Knapen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium;
| | - Steven Van Cruchten
- Comparative Perinatal Development, Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium; (C.B.); (S.V.C.)
| | - Adrian Covaci
- Toxicological Center, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium; (E.I.); (A.C.)
| | - Alexander L. N. van Nuijs
- Toxicological Center, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium; (E.I.); (A.C.)
- Correspondence: (K.M.d.S.); (A.L.N.v.N.)
| |
Collapse
|
9
|
Luo J, Hashimoto Y, Martens LG, Meulmeester FL, Ashrafi N, Mook-Kanamori DO, Rosendaal FR, Jukema JW, van Dijk KW, Mills K, le Cessie S, Noordam R, van Heemst D. Associations of metabolomic profiles with circulating vitamin E and urinary vitamin E metabolites in middle-aged individuals. Nutrition 2021; 93:111440. [PMID: 34534944 DOI: 10.1016/j.nut.2021.111440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/20/2021] [Accepted: 07/20/2021] [Indexed: 11/18/2022]
Abstract
Vitamin E (α-tocopherol [α-TOH]) is transported in lipoprotein particles in blood, but little is known about the transportation of its oxidized metabolites. In the Netherlands Epidemiology of Obesity Study, we aimed to investigate the associations of 147 circulating metabolomic measures obtained through targeted nuclear magnetic resonance with serum α-TOH and its urinary enzymatic (α-CEHC) and oxidized (α-TLHQ) metabolites from 24-h urine quantified by liquid chromatography with tandem mass spectrometry. Multivariable linear regression analyses, in which multiple testing was taken into account, were performed to assess associations between metabolomic measures (determinants; standardized to mean = 0, SD = 1) and vitamin E metabolites (outcomes), adjusted for demographic factors. We analyzed 474 individuals (55% women, 45% men) with a mean (SD) age of 55.7 (6.0) y. Out of 147 metabolomic measures, 106 were associated (P < 1.34 × 10-3) with serum α-TOH (median β [interquartile range] = 0.416 [0.383-0.466]), predominantly lipoproteins associated with higher α-TOH. The associations of metabolomic measures with urinary α-CEHC have directions similar to those with α-TOH, but effect sizes were smaller and non-significant (median β [interquartile range] = 0.065 [0.047-0.084]). However, associations of metabolomic measures with urinary α-TLHQ were markedly different from those with both serum α-TOH and urinary α-CEHC, with negative and small-to-null relations to most very-low-density lipoproteins and amino acids. Therefore, our results highlight the differences in the lipoproteins involved in the transportation of circulating α-TOH and oxidized vitamin E metabolites. This indicates that circulating α-TOH may be representative of the enzymatic but not the antioxidative function of vitamin E.
Collapse
Affiliation(s)
- Jiao Luo
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands; Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands.
| | - Yasufumi Hashimoto
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - Leon G Martens
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - Fleur L Meulmeester
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - Nadia Ashrafi
- NIHR Great Ormond Street Biomedical Research Centre, Great Ormond Street Hospital and UCL Great Ormond Street Institute of Child Health, London, UK
| | - Dennis O Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands; Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, the Netherlands
| | - Frits R Rosendaal
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands; Netherlands Heart Institute, Utrecht, the Netherlands
| | - Ko Willems van Dijk
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands; Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands; Leiden Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Kevin Mills
- NIHR Great Ormond Street Biomedical Research Centre, Great Ormond Street Hospital and UCL Great Ormond Street Institute of Child Health, London, UK
| | - Saskia le Cessie
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands; Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | - Raymond Noordam
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - Diana van Heemst
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
10
|
RedEfish: Generation of the Polycistronic mScarlet: GSG-T2A: Ttpa Zebrafish Line. Antioxidants (Basel) 2021; 10:antiox10060965. [PMID: 34208660 PMCID: PMC8235169 DOI: 10.3390/antiox10060965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/10/2021] [Indexed: 11/17/2022] Open
Abstract
The vitamin E regulatory protein, the alpha-tocopherol transfer protein (Ttpa), is necessary for zebrafish embryo development. To evaluate zebrafish embryo Ttpa function, we generated a fluorescent-tagged zebrafish transgenic line using CRISPR-Cas9 technology. One-cell stage embryos (from Casper (colorless) zebrafish adults) were injected the mScarlet coding sequence in combination with cas9 protein complexed to single guide RNA molecule targeting 5′ of the ttpa genomic region. Embryos were genotyped for proper insertion of the mScarlet coding sequence, raised to adulthood and successively in-crossed to produce the homozygote RedEfish (mScarlet: GSG-T2A: Ttpa). RedEfish were characterized by in vivo fluorescence detection at 1, 7 and 14 days post-fertilization (dpf). Fluorescent color was detectable in RedEfish embryos at 1 dpf; it was distributed throughout the developing brain, posterior tailbud and yolk sac. At 7 dpf, the RedEfish was identifiable by fluorescence in olfactory pits, gill arches, pectoral fins, posterior tail region and residual yolk sac. Subsequently (14 dpf), the mScarlet protein was found in olfactory pits, distributed throughout the digestive tract, along the lateral line and especially in caudal vertebrae. No adverse morphological outcomes or developmental delays were observed. The RedEfish will be a powerful model to study Ttpa function during embryo development.
Collapse
|
11
|
Zhang XJ, Zhou L, Lu WJ, Du WX, Mi XY, Li Z, Li XY, Wang ZW, Wang Y, Duan M, Gui JF. Comparative transcriptomic analysis reveals an association of gibel carp fatty liver with ferroptosis pathway. BMC Genomics 2021; 22:328. [PMID: 33952209 PMCID: PMC8101161 DOI: 10.1186/s12864-021-07621-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 04/14/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Fatty liver has become a main problem that causes huge economic losses in many aquaculture modes. It is a common physiological or pathological phenomenon in aquaculture, but the causes and occurring mechanism are remaining enigmatic. METHODS Each three liver samples from the control group of allogynogenetic gibel carp with normal liver and the overfeeding group with fatty liver were collected randomly for the detailed comparison of histological structure, lipid accumulation, transcriptomic profile, latent pathway identification analysis (LPIA), marker gene expression, and hepatocyte mitochondria analyses. RESULTS Compared to normal liver, larger hepatocytes and more lipid accumulation were observed in fatty liver. Transcriptomic analysis between fatty liver and normal liver showed a totally different transcriptional trajectory. GO terms and KEGG pathways analyses revealed several enriched pathways in fatty liver, such as lipid biosynthesis, degradation accumulation, peroxidation, or metabolism and redox balance activities. LPIA identified an activated ferroptosis pathway in the fatty liver. qPCR analysis confirmed that gpx4, a negative regulator of ferroptosis, was significantly downregulated while the other three positively regulated marker genes, such as acsl4, tfr1 and gcl, were upregulated in fatty liver. Moreover, the hepatocytes of fatty liver had more condensed mitochondria and some of their outer membranes were almost ruptured. CONCLUSIONS We reveal an association between ferroptosis and fish fatty liver for the first time, suggesting that ferroptosis might be activated in liver fatty. Therefore, the current study provides a clue for future studies on fish fatty liver problems.
Collapse
Affiliation(s)
- Xiao-Juan Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei-Jia Lu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen-Xuan Du
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiang-Yuan Mi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xi-Yin Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhong-Wei Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ming Duan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian-Fang Gui
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
12
|
Abstract
Vitamin E, discovered in 1922, is essential for pregnant rats to carry their babies to term. However, 100 years later, the molecular mechanisms for the vitamin E requirement during embryogenesis remain unknown. Vitamin E's role during pregnancy has been difficult to study and thus, a vitamin E-deficient (E-) zebrafish embryo model was developed. Vitamin E deficiency in zebrafish embryos initiates lipid peroxidation, depletes a specific phospholipid (DHA-phosphatidyl choline), causes secondary deficiencies of choline, betaine and critical thiols (such as glutathione), and dysregulates energy metabolism. Vitamin E deficiency not only distorts the carefully programmed development of the nervous system, but it leads to defects in several developing organs. Both the α-tocopherol transfer protein and vitamin E are necessary for embryonic development, neurogenesis and cognition in this model and likely in human embryos. Elucidation of the control mechanisms for the cellular and metabolic pathways involved in the molecular dysregulation caused by vitamin E deficiency will lead to important insights into abnormal neurogenesis and embryonic malformations.
Collapse
|
13
|
Vitamin E Deficiency Disrupts Gene Expression Networks during Zebrafish Development. Nutrients 2021; 13:nu13020468. [PMID: 33573233 PMCID: PMC7912379 DOI: 10.3390/nu13020468] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 02/08/2023] Open
Abstract
Vitamin E (VitE) is essential for vertebrate embryogenesis, but the mechanisms involved remain unknown. To study embryonic development, we fed zebrafish adults (>55 days) either VitE sufficient (E+) or deficient (E–) diets for >80 days, then the fish were spawned to generate E+ and E– embryos. To evaluate the transcriptional basis of the metabolic and phenotypic outcomes, E+ and E– embryos at 12, 18 and 24 h post-fertilization (hpf) were subjected to gene expression profiling by RNASeq. Hierarchical clustering, over-representation analyses and gene set enrichment analyses were performed with differentially expressed genes. E– embryos experienced overall disruption to gene expression associated with gene transcription, carbohydrate and energy metabolism, intracellular signaling and the formation of embryonic structures. mTOR was apparently a major controller of these changes. Thus, embryonic VitE deficiency results in genetic and transcriptional dysregulation as early as 12 hpf, leading to metabolic dysfunction and ultimately lethal outcomes.
Collapse
|
14
|
Traber MG. Brain-E, Does It Equate to Brainy? J Nutr 2020; 150:3049-3050. [PMID: 33096559 DOI: 10.1093/jn/nxaa303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/02/2020] [Accepted: 09/11/2020] [Indexed: 01/20/2023] Open
Affiliation(s)
- Maret G Traber
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA.,School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
15
|
Shoaib M, Choudhary RC, Choi J, Kim N, Hayashida K, Yagi T, Yin T, Nishikimi M, Stevens JF, Becker LB, Kim J. Plasma metabolomics supports the use of long-duration cardiac arrest rodent model to study human disease by demonstrating similar metabolic alterations. Sci Rep 2020; 10:19707. [PMID: 33184308 PMCID: PMC7665036 DOI: 10.1038/s41598-020-76401-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/20/2020] [Indexed: 12/16/2022] Open
Abstract
Cardiac arrest (CA) is a leading cause of death and there is a necessity for animal models that accurately represent human injury severity. We evaluated a rat model of severe CA injury by comparing plasma metabolic alterations to human patients. Plasma was obtained from adult human control and CA patients post-resuscitation, and from male Sprague–Dawley rats at baseline and after 20 min CA followed by 30 min cardiopulmonary bypass resuscitation. An untargeted metabolomics evaluation using UPLC-QTOF-MS/MS was performed for plasma metabolome comparison. Here we show the metabolic commonality between humans and our severe injury rat model, highlighting significant metabolic dysfunction as seen by similar alterations in (1) TCA cycle metabolites, (2) tryptophan and kynurenic acid metabolites, and (3) acylcarnitine, fatty acid, and phospholipid metabolites. With substantial interspecies metabolic similarity in post-resuscitation plasma, our long duration CA rat model metabolically replicates human disease and is a suitable model for translational CA research.
Collapse
Affiliation(s)
- Muhammad Shoaib
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA.,Donald and Barbara Zucker School of Medicine At Hofstra/Northwell, Hempstead, NY, USA
| | - Rishabh C Choudhary
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
| | - Jaewoo Choi
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA.,Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, USA
| | - Nancy Kim
- Donald and Barbara Zucker School of Medicine At Hofstra/Northwell, Hempstead, NY, USA
| | - Kei Hayashida
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
| | - Tsukasa Yagi
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
| | - Tai Yin
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
| | - Mitsuaki Nishikimi
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
| | - Jan F Stevens
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA.,Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, USA
| | - Lance B Becker
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA.,Donald and Barbara Zucker School of Medicine At Hofstra/Northwell, Hempstead, NY, USA.,Department of Emergency Medicine, Northwell Health, NY, USA
| | - Junhwan Kim
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA. .,Donald and Barbara Zucker School of Medicine At Hofstra/Northwell, Hempstead, NY, USA. .,Department of Emergency Medicine, Northwell Health, NY, USA.
| |
Collapse
|
16
|
Zhang J, Head B, Leonard SW, Choi J, Tanguay RL, Traber MG. Vitamin E deficiency dysregulates thiols, amino acids and related molecules during zebrafish embryogenesis. Redox Biol 2020; 38:101784. [PMID: 33186843 PMCID: PMC7658488 DOI: 10.1016/j.redox.2020.101784] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 11/01/2020] [Indexed: 02/06/2023] Open
Abstract
Vitamin E (α-tocopherol, VitE) was discovered as a nutrient essential to protect fetuses, but its molecular role in embryogenesis remains undefined. We hypothesize that the increased lipid peroxidation due to VitE deficiency drives a complex mechanism of overlapping biochemical pathways needed to maintain glutathione (GSH) homeostasis that is dependent on betaine and its methyl group donation. We assess amino acids and thiol changes that occur during embryogenesis [12, 24 and 48 h post fertilization (hpf)] in VitE-sufficient (E+) and deficient (E-) embryos using two separate, novel protocols to quantitate changes using UPLC-MS/MS. Using partial least squares discriminant analysis, we found that betaine is a critical feature separating embryos by VitE status and is higher in E- embryos at all time points. Other important features include: glutamic acid, increased in E- embryos at 12 hpf; choline, decreased in E- embryos at 24 hpf; GSH, decreased in E- embryos at 48 hpf. By 48 hpf, GSH was significantly lower in E- embryos (P < 0.01), as were both S-adenosylmethionine (SAM, P < 0.05) and S-adenosylhomocysteine (SAH, P < 0.05), while glutamic acid was increased (P < 0.01). Since GSH synthesis requires cysteine (which was unchanged), these data suggest that both the conversion of homocysteine and the uptake of cystine via the Xc- exchanger are dysregulated. Our data clearly demonstrates the highly inter-related dependence of methyl donors (choline, betaine, SAM) and the methionine cycle for maintenance of thiol homeostasis. Additional quantitative flux studies are needed to clarify the quantitative importance of these routes.
Collapse
Affiliation(s)
- Jie Zhang
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA; College of Science, China Agriculture University, Beijing, China
| | - Brian Head
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA; Molecular and Cell Biology Program, Oregon State University, Corvallis, OR, USA
| | - Scott W Leonard
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - Jaewoo Choi
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - Robyn L Tanguay
- Department of Environmental Toxicology, College of Agricultural Sciences, Oregon State University, Corvallis, OR, USA
| | - Maret G Traber
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA; School of Biological and Population Health Sciences, College of Public Health, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
17
|
Zhang J, Qian L, Wang C, Teng M, Duan M, Chen X, Li X, Wang C. UPLC-TOF-MS/MS metabolomics analysis of zebrafish metabolism by spirotetramat. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115310. [PMID: 32798906 DOI: 10.1016/j.envpol.2020.115310] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
Spirotetramat, a member of tetronic and tetramic acid derivatives, is a unique insecticide and acaricide. Although the effect on zebrafish embryos lipid biosynthesis of spirotetramat has been characterized, the energy metabolism and toxic effect mechanism warrant further investigation. To investigate the toxic mechanism of spirotetramat on energy metabolism, zebrafish embryos were exposed to 100, 500 and 1000 µg/L of spirotetramat for 4 days. Untargeted metabolomics showed the synthesis and degradation of ketone pathway metabolites (R)-3-Hydroxybutyric acid and Acetoacetate significantly decreased, as well as increasing the abundance of Anti-Acetyl Coenzyme A Carboxylase protein (ACC1). Down-regulation of the genes related to ß-oxidation and the tricarboxylic acid cycle in the embryos show decreased energy metabolism. Carnitine palmitoyltransferase 1 (CPT- I) significantly decreased while citrate synthase (CS) significantly increased. Additionally, mitochondrial lesions in embryos were found using electron microscopy. Our study provides novel and robust perspectives, which show that spirotetramat treatment in embryos leads to metabolic disturbances that adversely affect cellular energy homeostasis.
Collapse
Affiliation(s)
- Jie Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Le Qian
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Chen Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Miaomiao Teng
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Manman Duan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Xiangguang Chen
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Xuefeng Li
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Chengju Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
18
|
Vitamin E is necessary for zebrafish nervous system development. Sci Rep 2020; 10:15028. [PMID: 32958954 PMCID: PMC7506018 DOI: 10.1038/s41598-020-71760-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 08/17/2020] [Indexed: 12/12/2022] Open
Abstract
Vitamin E (VitE) deficiency results in embryonic lethality. Knockdown of the gene ttpa encoding for the VitE regulatory protein [α-tocopherol transfer protein (α-TTP)] in zebrafish embryos causes death within 24 h post-fertilization (hpf). To test the hypothesis that VitE, not just α-TTP, is necessary for nervous system development, adult 5D strain zebrafish, fed either VitE sufficient (E+) or deficient (E-) diets, were spawned to obtain E+ and E- embryos, which were subjected to RNA in situ hybridization and RT-qPCR. Ttpa was expressed ubiquitously in embryos up to 12 hpf. Early gastrulation (6 hpf) assessed by goosecoid expression was unaffected by VitE status. By 24 hpf, embryos expressed ttpa in brain ventricle borders, which showed abnormal closure in E- embryos. They also displayed disrupted patterns of paired box 2a (pax2a) and SRY-box transcription factor 10 (sox10) expression in the midbrain-hindbrain boundary, spinal cord and dorsal root ganglia. In E- embryos, the collagen sheath notochord markers (col2a1a and col9a2) appeared bent. Severe developmental errors in E- embryos were characterized by improper nervous system patterning of the usually carefully programmed transcriptional signals. Histological analysis also showed developmental defects in the formation of the fore-, mid- and hindbrain and somites of E- embryos at 24 hpf. Ttpa expression profile was not altered by the VitE status demonstrating that VitE itself, and not ttpa, is required for development of the brain and peripheral nervous system in this vertebrate embryo model.
Collapse
|
19
|
Ni ZH, Wu L, Cao KX, Zhang XQ, Wang DY, Zeng YW, Liang LL, Qiu XD, Guo RS, Cheng HB, Chen ZP. Investigation of the pharmacodynamic substances in dahuang zhechong pill that inhibit energy metabolism. JOURNAL OF ETHNOPHARMACOLOGY 2020; 251:112332. [PMID: 31669443 DOI: 10.1016/j.jep.2019.112332] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 10/17/2019] [Accepted: 10/21/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dahuang Zhechong pill (DHZCP) is a commonly used traditional Chinese medicine for the treatment of hepatocarcinoma. AIM OF THE STUDY Previous studies have found that DHZCP can exert anti-hepatocarcinoma effects and reverse drug resistance by inhibiting energy metabolism. The goal of this study was to further explore the pharmacodynamic substances that inhibit energy metabolism. METHODS The components of DHZCP absorbed into plasma were identified by UHPLC-Q-TOF-MS/MS. The Swiss and STITCH databases were used for target collection. The DAVID database was used for pathway enrichment analysis. Cytoscape software was used for network construction. The CCK-8 method detected cell viability. Chemiluminescence was used to detect ATP levels. RESULTS A total of 89 components absorbed into plasma were identified by UHPLC-Q-TOF-MS/MS. Based on this, 24 potential pharmacodynamic substances were selected by network pharmacology. Among them, 11 components such as rhein can significantly inhibit ATP levels. CONCLUSIONS Rhein, emodin, chrysophanol, hypoxanthine, baicalein, baicalin, wogonoside, acteoside, formononetin, isoliquiritigenin, and glycyrrhizic acid were the pharmacodynamic substances responsible for inhibition of energy metabolism of DHZCP.
Collapse
Affiliation(s)
- Zi Hui Ni
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
| | - Li Wu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
| | - Ke Xin Cao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
| | - Xi Qiong Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
| | - Dan Yu Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
| | - Yu Wei Zeng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
| | - Lin Lin Liang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
| | - Xian Dan Qiu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
| | - Run Sheng Guo
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
| | - Hai Bo Cheng
- The First Clinical Medical College, Nanjing University of Chinese Medicine, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing, China.
| | - Zhi Peng Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China; Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
| |
Collapse
|
20
|
Moore KJ, Carmichael SL, Forestieri NE, Desrosiers TA, Meyer RE, Freedman SF, North KE, Olshan AF. Maternal diet as a risk factor for primary congenital glaucoma and defects of the anterior segment of the eye in the National Birth Defects Prevention Study. Birth Defects Res 2020; 112:503-514. [PMID: 32154673 DOI: 10.1002/bdr2.1664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 01/10/2020] [Accepted: 02/18/2020] [Indexed: 12/15/2022]
Abstract
Primary congenital glaucoma (PCG) and anterior segment defects (ASDs) are rare ocular malformations diagnosed early in life which can cause blindness. Pathogenic variants in several genes have been linked to these conditions, but little is known about nongenetic risk factors. We investigated the association between maternal nutrition and PCG and ASDs in the National Birth Defects Prevention Study, a large population-based, multicenter case-control study of major birth defects in the United States. Mothers of cases (n = 152) and control infants without a birth defect (n = 9,178) completed an interview which included a food frequency questionnaire capturing usual dietary intake in the year before pregnancy. Maternal nutrition was assessed through individual nutrient intake, calculating a Diet Quality Index for Pregnancy (DQI-P) score for each mother, and using latent class analysis to empirically derive four dietary patterns. We calculated adjusted odds ratios (aORs) and 95% confidence intervals (CI) using logistic regression. The results for individual nutrients varied, with some having an inverse or U-shaped pattern of association with increasing intake. The DQI-P was not associated with risk of PCG and ASDs (aOR 0.91; CI 0.49-1.66, highest vs. lowest quartile). The dietary pattern analysis suggested lower odds among women with a Prudent and Mexican dietary pattern (aOR 0.82, 95% CI 0.52-1.29; aOR 0.80, 95% CI 0.36-1.78, respectively) compared to those with a Western dietary pattern. We found that higher intake of some nutrients and certain dietary patterns may be inversely associated with PCG and ASDs, though caution is urged due to imprecision of estimates.
Collapse
Affiliation(s)
- Kristin J Moore
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Program in Health Disparities Research, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Suzan L Carmichael
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | - Nina E Forestieri
- State Center for Health Statistics, North Carolina Birth Defects Monitoring Program, Raleigh, North Carolina, USA
| | - Tania A Desrosiers
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Robert E Meyer
- State Center for Health Statistics, North Carolina Birth Defects Monitoring Program, Raleigh, North Carolina, USA.,Department of Maternal and Child Health, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sharon F Freedman
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, USA
| | - Kari E North
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Andrew F Olshan
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | |
Collapse
|
21
|
Choi J, Shoaib M, Yin T, Nayyar G, Shinozaki K, Stevens JF, Becker LB, Kim J. Tissue-Specific Metabolic Profiles After Prolonged Cardiac Arrest Reveal Brain Metabolome Dysfunction Predominantly After Resuscitation. J Am Heart Assoc 2019; 8:e012809. [PMID: 31475603 PMCID: PMC6755859 DOI: 10.1161/jaha.119.012809] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Background Cardiac arrest (CA) has been a leading cause of death for many decades. Despite years of research, we still do not understand how each organ responds to the reintroduction of blood flow after prolonged CA. Following changes in metabolites of individual organs after CA and resuscitation gives context to the efficiency and limitations of current resuscitation protocols. Methods and Results Adult male Sprague–Dawley rats were arbitrarily assigned into 3 groups: control, 20 minutes of CA, or 20 minutes of CA followed by 30 minutes of cardiopulmonary bypass resuscitation. The rats were euthanized by decapitation to harvest brain, heart, kidney, and liver tissues. The obtained tissue samples were analyzed by ultra‐high‐performance liquid chromatography–high‐accuracy mass spectrometry for comprehensive metabolomics evaluation. After resuscitation, the brain showed decreased glycolysis metabolites and fatty acids and increased amino acids compared with control. Similarly, the heart displayed alterations mostly in amino acids. The kidney showed decreased amino acid and fatty acid pools with severely increased tricarboxylic acid cycle metabolites following resuscitation, while the liver showed minimal alterations with slight changes in the lipid pool. Each tissue has a distinct pattern of metabolite changes after ischemia/reperfusion. Furthermore, resuscitation worsens the metabolic dysregulation in the brain and kidney, while it normalizes metabolism in the heart. Conclusions Developing metabolic profiles using a global metabolome analysis identifies the variable nature of metabolites in individual organs after CA and reperfusion, establishing a stark contrast between the normalized heart and liver and the exacerbated brain and kidney, only after the reestablishment of blood circulation.
Collapse
Affiliation(s)
- Jaewoo Choi
- Linus Pauling Institute Oregon State University Corvallis OR
| | - Muhammad Shoaib
- Laboratory for Critical Care Physiology Feinstein Institute for Medical Research Manhasset NY.,Department of Molecular Medicine Zucker School of Medicine at Hofstra/Northwell Hempstead NY
| | - Tai Yin
- Laboratory for Critical Care Physiology Feinstein Institute for Medical Research Manhasset NY
| | | | - Koichiro Shinozaki
- Laboratory for Critical Care Physiology Feinstein Institute for Medical Research Manhasset NY
| | - Jan F Stevens
- Linus Pauling Institute Oregon State University Corvallis OR.,Department of Pharmaceutical Sciences Oregon State University Corvallis OR
| | - Lance B Becker
- Laboratory for Critical Care Physiology Feinstein Institute for Medical Research Manhasset NY.,Department of Molecular Medicine Zucker School of Medicine at Hofstra/Northwell Hempstead NY.,Department of Emergency Medicine North Shore University Hospital Manhasset NY
| | - Junhwan Kim
- Laboratory for Critical Care Physiology Feinstein Institute for Medical Research Manhasset NY.,Department of Molecular Medicine Zucker School of Medicine at Hofstra/Northwell Hempstead NY.,Department of Emergency Medicine North Shore University Hospital Manhasset NY
| |
Collapse
|
22
|
Excitotoxicity, neuroinflammation and oxidant stress as molecular bases of epileptogenesis and epilepsy-derived neurodegeneration: The role of vitamin E. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1098-1112. [PMID: 30703511 DOI: 10.1016/j.bbadis.2019.01.026] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/15/2019] [Accepted: 01/24/2019] [Indexed: 12/14/2022]
Abstract
Glutamate-mediated excitotoxicity, neuroinflammation, and oxidative stress are common underlying events in neurodegeneration. This pathogenic "triad" characterizes the neurobiology of epilepsy, leading to seizure-induced cell death, increased susceptibility to neuronal synchronization and network alterations. Along with other maladaptive changes, these events pave the way to spontaneous recurrent seizures and progressive degeneration of the interested brain areas. In vivo models of epilepsy are available to explore such epileptogenic mechanisms, also assessing the efficacy of chemoprevention and therapy strategies at the pre-clinical level. The kainic acid model of pharmacological excitotoxicity and epileptogenesis is one of the most investigated mimicking the chronicization profile of temporal lobe epilepsy in humans. Its pathogenic cues include inflammatory and neuronal death pathway activation, mitochondrial disturbances and lipid peroxidation of several regions of the brain, the most vulnerable being the hippocampus. The importance of neuroinflammation and lipid peroxidation as underlying molecular events of brain damage was demonstrated in this model by the possibility to counteract the related maladaptive morphological and functional changes of this organ with vitamin E, the main fat-soluble cellular antioxidant and "conditional" co-factor of enzymatic pathways involved in polyunsaturated lipid metabolism and inflammatory signaling. The present review paper provides an overview of the literature supporting the potential for a timely intervention with vitamin E therapy in clinical management of seizures and epileptogenic processes associated with excitotoxicity, neuroinflammation and lipid peroxidation, i.e. the pathogenic "triad".
Collapse
|
23
|
Kim HK, Han SN. Vitamin E: Regulatory role on gene and protein expression and metabolomics profiles. IUBMB Life 2019; 71:442-455. [DOI: 10.1002/iub.2003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/26/2018] [Accepted: 12/21/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Hye-Kyeong Kim
- Department of Food Science and Nutrition; The Catholic University of Korea; Bucheon South Korea
| | - Sung Nim Han
- Department of Food and Nutrition, College of Human Ecology; Seoul National University; Seoul South Korea
- Research Institute of Human Ecology, Seoul National University; Seoul South Korea
| |
Collapse
|
24
|
Margaritelis NV, Paschalis V, Theodorou AA, Kyparos A, Nikolaidis MG. Antioxidants in Personalized Nutrition and Exercise. Adv Nutr 2018; 9:813-823. [PMID: 30256898 PMCID: PMC6247356 DOI: 10.1093/advances/nmy052] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The present review highlights the idea that antioxidant supplementation can be optimized when tailored to the precise antioxidant status of each individual. A novel methodologic approach involving personalized nutrition, the mechanisms by which antioxidant status regulates human metabolism and performance, and similarities between antioxidants and other nutritional supplements are described. The usefulness of higher-level phenotypes for data-driven personalized treatments is also explained. We conclude that personally tailored antioxidant interventions based on specific antioxidant inadequacies or deficiencies could result in improved exercise performance accompanied by consistent alterations in redox profile.
Collapse
Affiliation(s)
- Nikos V Margaritelis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece,Intensive Care Unit, 424 General Military Hospital of Thessaloniki, Thessaloniki, Greece,Address correspondence to NVM (e-mail: )
| | - Vassilis Paschalis
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasios A Theodorou
- Department of Health Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - Antonios Kyparos
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Michalis G Nikolaidis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| |
Collapse
|
25
|
Souders CL, Liang X, Wang X, Ector N, Zhao YH, Martyniuk CJ. High-throughput assessment of oxidative respiration in fish embryos: Advancing adverse outcome pathways for mitochondrial dysfunction. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 199:162-173. [PMID: 29631217 DOI: 10.1016/j.aquatox.2018.03.031] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 03/21/2018] [Accepted: 03/26/2018] [Indexed: 06/08/2023]
Abstract
Mitochondrial dysfunction is a prevalent molecular event that can result in multiple adverse outcomes. Recently, a novel high throughput method to assess metabolic capacity in fish embryos following exposure to chemicals has been adapted for environmental toxicology. Assessments of oxygen consumption rates using the Seahorse XF(e) 24/96 Extracellular Flux Analyzer (Agilent Technologies) can be used to garner insight into toxicant effects at early stages of development. Here we synthesize the current state of the science using high throughput metabolic profiling in zebrafish embryos, and present considerations for those wishing to adopt high throughput methods for mitochondrial bioenergetics into their research. Chemicals that have been investigated in zebrafish using this metabolic platform include herbicides (e.g. paraquat, diquat), industrial compounds (e.g. benzo-[a]-pyrene, tributyltin), natural products (e.g. quercetin), and anti-bacterial chemicals (i.e. triclosan). Some of these chemicals inhibit mitochondrial endpoints in the μM-mM range, and reduce basal respiration, maximum respiration, and spare capacity. We present a theoretical framework for how one can use mitochondrial performance data in zebrafish to categorize chemicals of concern and prioritize mitochondrial toxicants. Noteworthy is that our studies demonstrate that there can be considerable variation in basal respiration of untreated zebrafish embryos due to clutch-specific effects as well as individual variability, and basal oxygen consumption rates (OCR) can vary on average between 100 and 300 pmol/min/embryo. We also compare OCR between chorionated and dechorionated embryos, as both models are employed to test chemicals. After 24 h, dechorionated embryos remain responsive to mitochondrial toxicants, although they show a blunted response to the uncoupling agent carbonylcyanide-4-trifluoromethoxyphenylhydrazone (FCCP); dechorionated embryos are therefore a viable option for investigations into mitochondrial bioenergetics. We present an adverse outcome pathway framework that incorporates endpoints related to mitochondrial bioenergetics. High throughput bioenergetics assays conducted using whole embryos are expected to support adverse outcome pathways for mitochondrial dysfunction.
Collapse
Affiliation(s)
- Christopher L Souders
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Xuefang Liang
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA; School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Xiaohong Wang
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA; State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, China
| | - Naomi Ector
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Yuan H Zhao
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, China
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
26
|
Metabolic phenotyping of malnutrition during the first 1000 days of life. Eur J Nutr 2018; 58:909-930. [PMID: 29644395 PMCID: PMC6499750 DOI: 10.1007/s00394-018-1679-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 03/26/2018] [Indexed: 02/07/2023]
Abstract
Nutritional restrictions during the first 1000 days of life can impair or delay the physical and cognitive development of the individual and have long-term consequences for their health. Metabolic phenotyping (metabolomics/metabonomics) simultaneously measures a diverse range of low molecular weight metabolites in a sample providing a comprehensive assessment of the individual's biochemical status. There are a growing number of studies applying such approaches to characterize the metabolic derangements induced by various forms of early-life malnutrition. This includes acute and chronic undernutrition and specific micronutrient deficiencies. Collectively, these studies highlight the diverse and dynamic metabolic disruptions resulting from various forms of nutritional deficiencies. Perturbations were observed in many pathways including those involved in energy, amino acid, and bile acid metabolism, the metabolic interactions between the gut microbiota and the host, and changes in metabolites associated with gut health. The information gleaned from such studies provides novel insights into the mechanisms linking malnutrition with developmental impairments and assists in the elucidation of candidate biomarkers to identify individuals at risk of developmental shortfalls. As the metabolic profile represents a snapshot of the biochemical status of an individual at a given time, there is great potential to use this information to tailor interventional strategies specifically to the metabolic needs of the individual.
Collapse
|
27
|
Paschalis V, Theodorou AA, Margaritelis NV, Kyparos A, Nikolaidis MG. N-acetylcysteine supplementation increases exercise performance and reduces oxidative stress only in individuals with low levels of glutathione. Free Radic Biol Med 2018; 115:288-297. [PMID: 29233792 DOI: 10.1016/j.freeradbiomed.2017.12.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/04/2017] [Accepted: 12/06/2017] [Indexed: 01/05/2023]
Abstract
Most of the evidence indicates that chronic antioxidant supplementation induces negative effects in healthy individuals. However, it is currently unknown whether specific redox deficiencies exist and whether targeted antioxidant interventions in deficient individuals can induce positive effects. We hypothesized that the effectiveness of antioxidant supplements to decrease oxidative stress and promote exercise performance depends on the redox status of the individuals that receive the antioxidant treatment. To this aim, we investigated whether N-acetylcysteine (NAC) supplementation would enhance exercise performance by increasing glutathione concentration and by reducing oxidative stress only in individuals with low resting levels of glutathione. We screened 100 individuals for glutathione levels and formed three groups with low, moderate and high levels (N = 36, 12 per group). After by-passing the regression to the mean artifact, by performing a second glutathione measurement, the individuals were supplemented with NAC (2 × 600mg, twice daily, for 30 days) or placebo using a double-blind cross-over design. We performed three whole-body performance tests (VO2max, time trial and Wingate), measured two systemic oxidative stress biomarkers (F2-isoprostanes and protein carbonyls) and assessed glutathione-dependent redox metabolism in erythrocytes (glutathione, glutathione peroxidase, glutathione reductase, superoxide dismutase, catalase and NADPH). The low glutathione group improved after NAC supplementation in VO2max, time trial and Wingate by 13.6%, 15.4% and 11.4%, respectively. Thirty days of NAC supplementation were sufficient to restore baseline glutathione concentration, reduce systemic oxidative stress and improve erythrocyte glutathione metabolism in the low glutathione group. On the contrary, the 30-day supplementation period did not affect performance and redox state of the moderate and high glutathione groups, although few both beneficial and detrimental effects in performance were observed. In conclusion, individuals with low glutathione levels were linked with decreased physical performance, increased oxidative stress and impaired redox metabolism of erythrocytes. NAC supplementation restored both performance and redox homeostasis.
Collapse
Affiliation(s)
- Vassilis Paschalis
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Greece
| | - Anastasios A Theodorou
- Department of Health Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - Nikos V Margaritelis
- Intensive Care Unit, 424 General Military Hospital of Thessaloniki, Thessaloniki, Greece; Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Antonios Kyparos
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Michalis G Nikolaidis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece.
| |
Collapse
|
28
|
McDougall M, Choi J, Magnusson K, Truong L, Tanguay R, Traber MG. Chronic vitamin E deficiency impairs cognitive function in adult zebrafish via dysregulation of brain lipids and energy metabolism. Free Radic Biol Med 2017; 112:308-317. [PMID: 28790013 PMCID: PMC5629005 DOI: 10.1016/j.freeradbiomed.2017.08.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/28/2017] [Accepted: 08/03/2017] [Indexed: 01/18/2023]
Abstract
Zebrafish (Danio rerio) are a recognized model for studying the pathogenesis of cognitive deficits and the mechanisms underlying behavioral impairments, including the consequences of increased oxidative stress within the brain. The lipophilic antioxidant vitamin E (α-tocopherol; VitE) has an established role in neurological health and cognitive function, but the biological rationale for this action remains unknown. In the present study, we investigated behavioral perturbations due to chronic VitE deficiency in adult zebrafish fed from 45 days to 18-months of age diets that were either VitE-deficient (E-) or VitE-sufficient (E+). We hypothesized that E- zebrafish would display cognitive impairments associated with elevated lipid peroxidation and metabolic disruptions in the brain. Quantified VitE levels at 18-months in E- brains (5.7 ± 0.1 nmol/g tissue) were ~20-times lower than in E+ (122.8 ± 1.1; n = 10/group). Using assays of both associative (avoidance conditioning) and non-associative (habituation) learning, we found E- vs E+ fish were learning impaired. These functional deficits occurred concomitantly with the following observations in adult E- brains: decreased concentrations of and increased peroxidation of polyunsaturated fatty acids (especially docosahexaenoic acid, DHA), altered brain phospholipid and lysophospholipid composition, as well as perturbed energy (glucose/ketone), phosphatidylcholine and choline/methyl-donor metabolism. Collectively, these data suggest that chronic VitE deficiency leads to neurological dysfunction through multiple mechanisms that become dysregulated secondary to VitE deficiency. Apparently, the E- animals alter their metabolism to compensate for the VitE deficiency, but these compensatory mechanisms are insufficient to maintain cognitive function.
Collapse
Affiliation(s)
- Melissa McDougall
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97330, USA; College of Public Health and Human Sciences, Oregon State University, Corvallis, OR 97330, USA
| | - Jaewoo Choi
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97330, USA
| | - Kathy Magnusson
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97330, USA; College of Veterinary Medicine, Oregon State University, Corvallis, OR 97330, USA
| | - Lisa Truong
- Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97330, USA; Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, OR 97330, USA
| | - Robert Tanguay
- Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97330, USA; Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, OR 97330, USA
| | - Maret G Traber
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97330, USA; College of Public Health and Human Sciences, Oregon State University, Corvallis, OR 97330, USA.
| |
Collapse
|
29
|
McDougall M, Choi J, Truong L, Tanguay R, Traber MG. Vitamin E deficiency during embryogenesis in zebrafish causes lasting metabolic and cognitive impairments despite refeeding adequate diets. Free Radic Biol Med 2017; 110. [PMID: 28645790 PMCID: PMC5548191 DOI: 10.1016/j.freeradbiomed.2017.06.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Vitamin E (α-tocopherol; VitE) is a lipophilic antioxidant required for normal embryonic development in vertebrates, but the long-term effects of embryonic VitE deficiency, and whether they are ameliorated by feeding VitE-adequate diets, remain unknown. We addressed these questions using a zebrafish (Danio rerio) model of developmental VitE deficiency followed by dietary remediation. Adult zebrafish maintained on VitE-deficient (E-) or sufficient (E+) diets were spawned to obtained E- and E+ embryos, respectively, which we evaluated up to 12 days post-fertilization (dpf). The E- group suffered significantly increased morbidity and mortality as well as altered DNA methylation status through 5 dpf when compared to E+ larvae, but upon feeding with a VitE-adequate diet from 5 to 12 dpf both the E- and E+ groups survived and grew normally; the DNA methylation profile also was similar between groups by 12 dpf. However, 12 dpf E- larvae still had behavioral defects. These observations coincided with sustained VitE deficiency in the E- vs. E+ larvae (p < 0.0001), despite adequate dietary supplementation. We also found in E- vs. E+ larvae continued docosahexaenoic acid (DHA) depletion (p < 0.0001) and significantly increased lipid peroxidation. Further, targeted metabolomics analyses revealed persistent dysregulation of the cellular antioxidant network, the CDP-choline pathway, and glucose metabolism. While anaerobic processes were increased, aerobic metabolism was decreased in the E- vs. E+ larvae, indicating mitochondrial damage. Taken together, these outcomes suggest embryonic VitE deficiency causes lasting behavioral impairments due to persistent lipid peroxidation and metabolic perturbations that are not resolved via later dietary VitE supplementation.
Collapse
Affiliation(s)
- Melissa McDougall
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97330, USA; College of Public Health and Human Sciences, Oregon State University, Corvallis, OR 97330, USA
| | - Jaewoo Choi
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97330, USA
| | - Lisa Truong
- Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97330, USA; Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, OR 97330, USA
| | - Robert Tanguay
- Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97330, USA; Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, OR 97330, USA
| | - Maret G Traber
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97330, USA; College of Public Health and Human Sciences, Oregon State University, Corvallis, OR 97330, USA.
| |
Collapse
|
30
|
McDougall M, Choi J, Kim HK, Bobe G, Stevens JF, Cadenas E, Tanguay R, Traber MG. Lipid quantitation and metabolomics data from vitamin E-deficient and -sufficient zebrafish embryos from 0 to 120 hours-post-fertilization. Data Brief 2017; 11:432-441. [PMID: 28280764 PMCID: PMC5334496 DOI: 10.1016/j.dib.2017.02.046] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 02/11/2017] [Accepted: 02/17/2017] [Indexed: 11/30/2022] Open
Abstract
The data herein is in support of our research article by McDougall et al. (2017) [1], in which we used our zebrafish model of embryonic vitamin E (VitE) deficiency to study the consequences of VitE deficiency during development. Adult 5D wild-type zebrafish (Danio rerio), fed defined diets without (E–) or with VitE (E+, 500 mg RRR-α-tocopheryl acetate/kg diet), were spawned to obtain E– and E+ embryos that we evaluated using metabolomics and specific lipid analyses (each measure at 24, 48, 72, 120 hours-post-fertilization, hpf), neurobehavioral development (locomotor responses at 96 hpf), and rescue strategies. Rescues were attempted using micro-injection into the yolksac using VitE (as a phospholipid emulsion containing d6-α-tocopherol at 0 hpf) or D-glucose (in saline at 24 hpf).
Collapse
Affiliation(s)
- Melissa McDougall
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; College of Public Health and Human Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Jaewoo Choi
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | - Hye-Kyeong Kim
- The Catholic University of Korea, Seoul, Republic of Korea
| | - Gerd Bobe
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | - J Frederik Stevens
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA; Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA
| | - Enrique Cadenas
- University of Southern California, School of Pharmacy, Los Angeles, CA 90089, USA
| | - Robert Tanguay
- Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA; Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA; Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, OR 97331, USA
| | - Maret G Traber
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; College of Public Health and Human Sciences, Oregon State University, Corvallis, OR 97331, USA; Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|