1
|
Umbayev B, Saliev T, Safarova (Yantsen) Y, Yermekova A, Olzhayev F, Bulanin D, Tsoy A, Askarova S. The Role of Cdc42 in the Insulin and Leptin Pathways Contributing to the Development of Age-Related Obesity. Nutrients 2023; 15:4964. [PMID: 38068822 PMCID: PMC10707920 DOI: 10.3390/nu15234964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/22/2023] [Accepted: 11/26/2023] [Indexed: 12/18/2023] Open
Abstract
Age-related obesity significantly increases the risk of chronic diseases such as type 2 diabetes, cardiovascular diseases, hypertension, and certain cancers. The insulin-leptin axis is crucial in understanding metabolic disturbances associated with age-related obesity. Rho GTPase Cdc42 is a member of the Rho family of GTPases that participates in many cellular processes including, but not limited to, regulation of actin cytoskeleton, vesicle trafficking, cell polarity, morphology, proliferation, motility, and migration. Cdc42 functions as an integral part of regulating insulin secretion and aging. Some novel roles for Cdc42 have also been recently identified in maintaining glucose metabolism, where Cdc42 is involved in controlling blood glucose levels in metabolically active tissues, including skeletal muscle, adipose tissue, pancreas, etc., which puts this protein in line with other critical regulators of glucose metabolism. Importantly, Cdc42 plays a vital role in cellular processes associated with the insulin and leptin signaling pathways, which are integral elements involved in obesity development if misregulated. Additionally, a change in Cdc42 activity may affect senescence, thus contributing to disorders associated with aging. This review explores the complex relationships among age-associated obesity, the insulin-leptin axis, and the Cdc42 signaling pathway. This article sheds light on the vast molecular web that supports metabolic dysregulation in aging people. In addition, it also discusses the potential therapeutic implications of the Cdc42 pathway to mitigate obesity since some new data suggest that inhibition of Cdc42 using antidiabetic drugs or antioxidants may promote weight loss in overweight or obese patients.
Collapse
Affiliation(s)
- Bauyrzhan Umbayev
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (Y.S.); (A.Y.); (F.O.); (A.T.); (S.A.)
| | - Timur Saliev
- S.D. Asfendiyarov Kazakh National Medical University, Almaty 050012, Kazakhstan;
| | - Yuliya Safarova (Yantsen)
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (Y.S.); (A.Y.); (F.O.); (A.T.); (S.A.)
| | - Aislu Yermekova
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (Y.S.); (A.Y.); (F.O.); (A.T.); (S.A.)
| | - Farkhad Olzhayev
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (Y.S.); (A.Y.); (F.O.); (A.T.); (S.A.)
| | - Denis Bulanin
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana 010000, Kazakhstan;
| | - Andrey Tsoy
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (Y.S.); (A.Y.); (F.O.); (A.T.); (S.A.)
| | - Sholpan Askarova
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (Y.S.); (A.Y.); (F.O.); (A.T.); (S.A.)
| |
Collapse
|
2
|
Gupta A, Balakrishnan B, Karki S, Slayton M, Jash S, Banerjee S, Grahn THM, Jambunathan S, Disney S, Hussein H, Kong D, Lowell BB, Natarajan P, Reddy UK, Gokce N, Sharma VM, Puri V. Human CIDEC transgene improves lipid metabolism and protects against high-fat diet-induced glucose intolerance in mice. J Biol Chem 2022; 298:102347. [PMID: 35963433 PMCID: PMC9472082 DOI: 10.1016/j.jbc.2022.102347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 07/08/2022] [Accepted: 07/20/2022] [Indexed: 11/12/2022] Open
Abstract
Cell death–inducing DNA fragmentation factor-like effector C (CIDEC) expression in adipose tissue positively correlates with insulin sensitivity in obese humans. Further, E186X, a single-nucleotide CIDEC variant is associated with lipodystrophy, hypertriglyceridemia, and insulin resistance. To establish the unknown mechanistic link between CIDEC and maintenance of systemic glucose homeostasis, we generated transgenic mouse models expressing CIDEC (Ad-CIDECtg) and CIDEC E186X variant (Ad-CIDECmut) transgene specifically in the adipose tissue. We found that Ad-CIDECtg but not Ad-CIDECmut mice were protected against high-fat diet-induced glucose intolerance. Furthermore, we revealed the role of CIDEC in lipid metabolism using transcriptomics and lipidomics. Serum triglycerides, cholesterol, and low-density lipoproteins were lower in high-fat diet-fed Ad-CIDECtg mice compared to their littermate controls. Mechanistically, we demonstrated that CIDEC regulates the enzymatic activity of adipose triglyceride lipase via interacting with its activator, CGI-58, to reduce free fatty acid release and lipotoxicity. In addition, we confirmed that CIDEC is indeed a vital regulator of lipolysis in adipose tissue of obese humans, and treatment with recombinant CIDEC decreased triglyceride breakdown in visceral human adipose tissue. Our study unravels a central pathway whereby adipocyte-specific CIDEC plays a pivotal role in regulating adipose lipid metabolism and whole-body glucose homeostasis. In summary, our findings identify human CIDEC as a potential ‘drug’ or a ‘druggable’ target to reverse obesity-induced lipotoxicity and glucose intolerance.
Collapse
Affiliation(s)
- Abhishek Gupta
- Department of Biomedical Sciences and Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Bijinu Balakrishnan
- Department of Biomedical Sciences and Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Shakun Karki
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Mark Slayton
- Department of Biomedical Sciences and Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Sukanta Jash
- Alpert Medical school of Brown University, Brown University, RI, USA
| | - Sayani Banerjee
- Alpert Medical school of Brown University, Brown University, RI, USA
| | - Tan Hooi Min Grahn
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University Hospital, Lund, Sweden
| | | | - Sarah Disney
- Department of Biomedical Sciences and Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Hebaallaha Hussein
- Department of Biomedical Sciences and Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Dong Kong
- Division of Endocrinology, Department of Pediatrics, F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Bradford B Lowell
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA; Program in Neuroscience, Harvard Medical School, Boston, MA, USA
| | | | - Umesh K Reddy
- Department of Biology, West Virginia State University, Institute, WV, USA
| | - Noyan Gokce
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Vishva M Sharma
- Department of Biomedical Sciences and Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA.
| | - Vishwajeet Puri
- Department of Biomedical Sciences and Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA.
| |
Collapse
|
3
|
Pereira S, Cline DL, Glavas MM, Covey SD, Kieffer TJ. Tissue-Specific Effects of Leptin on Glucose and Lipid Metabolism. Endocr Rev 2021; 42:1-28. [PMID: 33150398 PMCID: PMC7846142 DOI: 10.1210/endrev/bnaa027] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Indexed: 12/18/2022]
Abstract
The discovery of leptin was intrinsically associated with its ability to regulate body weight. However, the effects of leptin are more far-reaching and include profound glucose-lowering and anti-lipogenic effects, independent of leptin's regulation of body weight. Regulation of glucose metabolism by leptin is mediated both centrally and via peripheral tissues and is influenced by the activation status of insulin signaling pathways. Ectopic fat accumulation is diminished by both central and peripheral leptin, an effect that is beneficial in obesity-associated disorders. The magnitude of leptin action depends upon the tissue, sex, and context being examined. Peripheral tissues that are of particular relevance include the endocrine pancreas, liver, skeletal muscle, adipose tissues, immune cells, and the cardiovascular system. As a result of its potent metabolic activity, leptin is used to control hyperglycemia in patients with lipodystrophy and is being explored as an adjunct to insulin in patients with type 1 diabetes. To fully understand the role of leptin in physiology and to maximize its therapeutic potential, the mechanisms of leptin action in these tissues needs to be further explored.
Collapse
Affiliation(s)
- Sandra Pereira
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Daemon L Cline
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Maria M Glavas
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Scott D Covey
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Timothy J Kieffer
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada.,Department of Surgery, University of British Columbia, Vancouver, Canada.,School of Biomedical Engineering, University of British Columbia, Vancouver, Canada
| |
Collapse
|
4
|
Systemic Insulin Resistance and Metabolic Perturbations in Chow Fed Inducible Nitric Oxide Synthase Knockout Male Mice: Partial Reversal by Nitrite Supplementation. Antioxidants (Basel) 2020; 9:antiox9080736. [PMID: 32806494 PMCID: PMC7465804 DOI: 10.3390/antiox9080736] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/06/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023] Open
Abstract
iNOS, an important mediator of inflammation, has emerged as an important metabolic regulator. There are conflicting observations on the incidence of insulin resistance (IR) due to hyperglycemia/dyslipidemia in iNOS−/− mice. There are reports that high fat diet (HFD) fed mice exhibited no change, protection, or enhanced susceptibility to IR. Similar observations were also reported for low fat diet (LFD) fed KO mice. In the present study chow fed iNOS−/− mice were examined for the incidence of IR, and metabolic perturbations, and also for the effect of sodium nitrite supplementation (50 mg/L). In IR-iNOS−/− mice, we observed significantly higher body weight, BMI, adiposity, blood glucose, HOMA-IR, serum/tissue lipids, glucose intolerance, enhanced gluconeogenesis, and disrupted insulin signaling. Expression of genes involved in hepatic and adipose tissue lipid uptake, synthesis, oxidation, and gluconeogenesis was upregulated with concomitant downregulation of genes for hepatic lipid excretion. Nitrite supplementation restored NO levels, significantly improved systemic IR, glucose tolerance, and also reduced lipid accumulation by rescuing hepatic insulin sensitivity, glucose, and lipid homeostasis. Obesity, gluconeogenesis, and adipose tissue insulin signaling were only partially reversed in nitrite supplemented iNOS−/− mice. Our results thus demonstrate that nitrite supplementation to iNOS−/− mice improves insulin sensitivity and metabolic homeostasis, thus further highlighting the metabolic role of iNOS.
Collapse
|
5
|
Variya BC, Bakrania AK, Patel SS. Antidiabetic potential of gallic acid from Emblica officinalis: Improved glucose transporters and insulin sensitivity through PPAR-γ and Akt signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 73:152906. [PMID: 31064680 DOI: 10.1016/j.phymed.2019.152906] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/28/2019] [Accepted: 03/30/2019] [Indexed: 05/28/2023]
Abstract
BACKGROUND Nature has gifted a variety of vital phytochemicals having potential therapeutic application against various ailments. Emblica officinalis (E. officinalis), an ancient plant, has long been used as a remedy for diabetes and cardiovascular complications, and presence of abundant amount of gallic acid could be accountable for its medicinal potential. PURPOSE The study was aimed to determine the in-vivo and in-vitro anti-diabetic potential of gallic acid and fruit juice of E. officinalis. Molecular mechanism of gallic acid as well as fruit juice of E. officinalis for anti-diabetic potential has also been revealed. EXPERIMENTAL STUDY DESIGN Anti-diabetic potential of E. officinalis and gallic acid was evaluated in 3T3-L1 preadipocytes and various animal models like db/db mice and fructose administered rats. PPAR-γ expression and glucose translocation were observed using western blot and PCR techniques. RESULTS Treatment of E. officinalis fruit juice and gallic acid facilitated their glucose homeostasis; improved insulin sensitivity; reduced obesity; abridged elevated blood pressure and declined cholesterol level, and also induced adipogenesis in 3T3-L1 adipocytes. Mechanistically, treatment increased expression of PPAR-γ through activation of C/EBPs and simultaneously increased Glut4 translocation in 3T3-L1 adipocytes. Moreover, gallic acid treatment increased insulin sensitivity through activation of Akt rather than AMPK signaling pathway while fruit juice of E. officinalis showed dual activation, Akt and AMPK as well. CONCLUSION These findings reveal the role of gallic acid in E. officinalis mediated antidiabetic potential, and delineate the upregulation of pAkt, PPAR-γ and Glut4 in gallic acid mediated antidiabetic activity, thus providing potential therapy for diabetes and related disorders.
Collapse
Affiliation(s)
- Bhavesh C Variya
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Anita K Bakrania
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Snehal S Patel
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India.
| |
Collapse
|
6
|
Anavi S, Tirosh O. iNOS as a metabolic enzyme under stress conditions. Free Radic Biol Med 2020; 146:16-35. [PMID: 31672462 DOI: 10.1016/j.freeradbiomed.2019.10.411] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 12/18/2022]
Abstract
Nitric oxide (NO) is a free radical acting as a cellular signaling molecule in many different biochemical processes. NO is synthesized from l-arginine through the action of the nitric oxide synthase (NOS) family of enzymes, which includes three isoforms: endothelial NOS (eNOS), neuronal NOS (nNOS) and inducible NOS (iNOS). iNOS-derived NO has been associated with the pathogenesis and progression of several diseases, including liver diseases, insulin resistance, obesity and diseases of the cardiovascular system. However, transient NO production can modulate metabolism to survive and cope with stress conditions. Accumulating evidence strongly imply that iNOS-derived NO plays a central role in the regulation of several biochemical pathways and energy metabolism including glucose and lipid metabolism during inflammatory conditions. This review summarizes current evidence for the regulation of glucose and lipid metabolism by iNOS during inflammation, and argues for the role of iNOS as a metabolic enzyme in immune and non-immune cells.
Collapse
Affiliation(s)
- Sarit Anavi
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Israel; Peres Academic Center, Rehovot, Israel
| | - Oren Tirosh
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Israel.
| |
Collapse
|
7
|
Fitzgerald DM, Anderson ST, Sillence MN, de Laat MA. The cresty neck score is an independent predictor of insulin dysregulation in ponies. PLoS One 2019; 14:e0220203. [PMID: 31339945 PMCID: PMC6655749 DOI: 10.1371/journal.pone.0220203] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 07/10/2019] [Indexed: 01/12/2023] Open
Abstract
Generalized obesity, regional adiposity, hyperinsulinemia and hypertriglyceridemia are all potential indicators of equine metabolic syndrome (EMS). This study aimed to assess the relationship between morphometric measurements of body condition and metabolic hormone concentrations in ponies, with and without a neck crest or generalised obesity. Twenty-six ponies were assigned a body condition score (BCS) and cresty neck score (CNS). Height, girth, and neck measurements were taken. An oral glucose test (OGT; 0.75g dextrose/kg BW) was performed and blood samples collected prior to and 2 hours post dosing. Basal blood samples were analysed for blood glucose, serum insulin, triglyceride and leptin, and plasma HMW adiponectin concentrations. Post-prandial samples were analysed for serum insulin concentration. The ponies were grouped as having a) a normal to fleshy body status (BCS ≤7 and CNS ≤2; n = 10); b) having a high CNS, but without generalised obesity (BCS ≤7 and CNS ≥3; n = 11), or c) being obese (BCS ≥8 and CNS ≥1; n = 5). Responses to the OGT indicated that both normal and insulin-dysregulated ponies were included in the cohort. Post-prandial serum insulin was positively associated with CNS (P<0.035) and ponies with a CNS ≥ 3 had 5 times greater odds of being insulin-dysregulated. The high CNS group had a greater insulin response to the OGT than those in the normal/fleshy group (P = 0.006), whereas obese ponies did not differ from the other two groups. Basal HMW adiponectin was negatively correlated with post-prandial insulin concentrations (r = -0.5, P = 0.009), as well as being decreased in the group with a high CNS, compared to the obese group (P = 0.05). Cresty neck score was more predictive of insulin dysregulation than BCS, and this may be relevant to the diagnosis of EMS. Adiponectin may also be a measure of insulin dysregulation that is independent of body condition.
Collapse
Affiliation(s)
- Danielle M. Fitzgerald
- Earth, Environmental and Biological Sciences School, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Stephen T. Anderson
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Martin N. Sillence
- Earth, Environmental and Biological Sciences School, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Melody A. de Laat
- Earth, Environmental and Biological Sciences School, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
8
|
Shankar K, Kumar D, Gupta S, Varshney S, Rajan S, Srivastava A, Gupta A, Gupta AP, Vishwakarma AL, Gayen JR, Gaikwad AN. Role of brown adipose tissue in modulating adipose tissue inflammation and insulin resistance in high-fat diet fed mice. Eur J Pharmacol 2019; 854:354-364. [PMID: 30822393 DOI: 10.1016/j.ejphar.2019.02.044] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 02/24/2019] [Accepted: 02/26/2019] [Indexed: 12/13/2022]
Abstract
Obesity results in the chronic activation of innate immune system and subsequently sets in diabetes. Aim of the study was to investigate the immunometabolic role of brown adipose tissue (BAT) in the obesity. We performed both BAT transplantation as well as extirpation experiments in the mouse model of high-fat diet (HFD)-induced obesity. We carried out immune cell profiling in the stromal vascular fraction (SVF) isolated from epididymal white adipose tissue (eWAT). BAT transplantation reversed HFD-induced increase in body weight gain and insulin resistance without altering diet intake. Importantly, BAT transplantation attenuated the obesity-associated adipose tissue inflammation in terms of decreased pro-inflammatory M1-macrophages, cytotoxic CD8a T-cells and restored anti-inflammatory regulatory T-cells (Tregs) in the eWAT. BAT transplantation also improved endogenous BAT activity by elevating protein expression of browning markers (UCP-1, PRDM16 and PGC1α) in it. In addition, BAT transplantation promoted the eWAT expression of various genes involved in fatty acid oxidation (such as Elvol3 and Tfam,). In contrast, extirpation of the interscapular BAT exacerbated HFD-induced obesity, insulin resistance and adipose tissue inflammation (by increasing M1 macrophages, CD8a T-cell and decreasing Tregs in eWAT). Taken together, our results suggested an important role of BAT in combating obesity-associated metabolic complications. These results open a novel therapeutic option to target obesity and related metabolic disorders like type 2 diabetes.
Collapse
Affiliation(s)
- Kripa Shankar
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Durgesh Kumar
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Sanchita Gupta
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research, New Delhi 110025, India
| | - Salil Varshney
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research, New Delhi 110025, India
| | - Sujith Rajan
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research, New Delhi 110025, India
| | - Ankita Srivastava
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research, New Delhi 110025, India
| | - Abhishek Gupta
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Anand Prakash Gupta
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research, New Delhi 110025, India
| | - Achchhe Lal Vishwakarma
- Sophisticated Analytical Instrument Facility, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Jiaur R Gayen
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Anil Nilkanth Gaikwad
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India.
| |
Collapse
|
9
|
Kumar D, Shankar K, Patel S, Gupta A, Varshney S, Gupta S, Rajan S, Srivastava A, Vishwakarma AL, Gaikwad AN. Chronic hyperinsulinemia promotes meta-inflammation and extracellular matrix deposition in adipose tissue: Implications of nitric oxide. Mol Cell Endocrinol 2018; 477:15-28. [PMID: 29753026 DOI: 10.1016/j.mce.2018.05.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 01/02/2023]
Abstract
Various imperative studies support the notion that hyperinsulinemia (HI) itself serves as the common link between adipose tissue inflammation (ATI) and metabolic syndrome. However, the contribution of HI mediated ATI and its metabolic consequences are yet to be explored. We induced chronic HI per se in mice by administration of exogenous insulin for 8 weeks through mini-osmotic pumps. For the reduction of circulating insulin in response to excess calorie intake, we have partially ablated β-cells by using streptozotocin (STZ) in the diet-induced obesity (DIO) and genetic mice models (db/db). Flow cytometry analysis was performed for the quantification of immune cells in stromal vascular fraction (SVF) isolated from epididymal white adipose tissue (eWAT). Our studies demonstrated that chronic HI augmented ATI in terms of elevated pro-inflammatory cells (M1 macrophages and NK-cells) and suppressed anti-inflammatory cells (M2 macrophages, eosinophils and regulatory T-cells). These results were correlated with altered obesity-associated metabolic phenotype. Partial reduction of circulating insulin level attenuated excess calorie-induced ATI and improved insulin sensitivity. Mechanistically, an imbalance in M1 and M2 macrophage proportions in eWAT promoted iNOS (inducible nitric oxide synthase): arginase-1 imbalance that resulted into extracellular matrix (ECM) deposition and insulin resistance (IR) development. However, iNOS-/- mice were protected from HI-induced M1:M2 macrophage imbalance, ECM deposition and IR in adipose tissue. Overall, we conclude that chronic HI per se contributed in ATI and iNOS corroborated ECM deposition.
Collapse
Affiliation(s)
- Durgesh Kumar
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research, CSIR-CDRI, India
| | - Kripa Shankar
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Saraswati Patel
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Abhishek Gupta
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Salil Varshney
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research, CSIR-CDRI, India
| | - Sanchita Gupta
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research, CSIR-CDRI, India
| | - Sujith Rajan
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research, CSIR-CDRI, India
| | - Ankita Srivastava
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research, CSIR-CDRI, India
| | - Achchhe Lal Vishwakarma
- Sophisticated Analytical Instrument Facility, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Anil N Gaikwad
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research, CSIR-CDRI, India.
| |
Collapse
|
10
|
Chronic hyperinsulinemia induced miR-27b is linked to adipocyte insulin resistance by targeting insulin receptor. J Mol Med (Berl) 2018; 96:315-331. [PMID: 29455245 DOI: 10.1007/s00109-018-1623-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 02/01/2018] [Accepted: 02/05/2018] [Indexed: 12/31/2022]
Abstract
Defect in insulin signaling leads to the development of insulin resistance followed by type 2 diabetes. Exploiting our previously developed physiological chronic hyperinsulinemia (CI)-mediated insulin resistance (IR) model, we wanted to understand how miRNAs contribute to the development of IR. Amongst the identified and validate miRNAs, the expression of miR-27b was found to be highly upregulated during CI-induced IR in 3T3-L1 adipocytes. We also validated the expression of miR-27b in CI-induced IR in human mesenchymal stem cell (hMSC)-derived adipocytes and in vivo high fat diet (HFD)-induced IR mice model. Bioinformatics target prediction softwares and luciferase reporter assay identified insulin receptor (INSR) as one of a prime target of miR-27b. Lentiviral mediated overexpression of miR-27b impairs insulin signaling by modulating INSR expression that in turn led to decreased glucose uptake in both 3T3-L1 and hMSC-derived adipocytes. Conversely, inhibition of miR-27b reversed CI-mediated suppression of target protein INSR and improved phosphorylation of Akt, a nodal protein of insulin signaling that is impaired by CI treatment. Lentiviral mediated overexpression of miR-27b in in vivo C57BL/6 mice impaired whole body glucose tolerance and adipose tissue insulin sensitivity. Furthermore, inhibition of miR-27b in HFD-induced insulin resistance mice model improved glucose tolerance and adipose tissue insulin sensitivity by increasing the expression of its target gene INSR in eWAT. Thus, our results indicate that miR-27b functions as a prime modulator of CI-induced IR via regulating the expression of INSR. KEY MESSAGES: miR-27b is upregulated in different in vitro and in vivo models of insulin resistance. miR-27b directly suppresses the expression of INSR by targeting 3'UTR of INSR. Modulation of miR-27b expression regulates insulin sensitivity by targeting INSR.
Collapse
|
11
|
Gupta A, Kumar A, Kumar D, Nandan S, Shankar K, Varshney S, Rajan S, Srivastava A, Gupta S, Kanojiya S, Narender T, Gaikwad AN. Ethyl acetate fraction of Eclipta alba: a potential phytopharmaceutical targeting adipocyte differentiation. Biomed Pharmacother 2017; 96:572-583. [PMID: 29032341 DOI: 10.1016/j.biopha.2017.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 09/21/2017] [Accepted: 10/02/2017] [Indexed: 02/05/2023] Open
Abstract
Natural products have always fascinated mankind for their miraculous properties. Eclipta alba (E. alba), a medicinal herb has long been used in traditional medicine for curing several pathologies. It has been shown to have anti-diabetic effect as well as hepato-protective activity. Here, in order to address metabolic derangements, the study was designed to evaluate the efficacy of E. alba and its fractions in adipogenesis inhibition and dyslipidemia. Of the crude extract and fractions screened, ethyl acetate fraction of E. alba inhibited adipocyte differentiation in 3T3-L1 pre-adipocytes and hMSC derived adipocytes. It inhibited mitotic clonal expansion and caused cell cycle arrest in G1 and S phase as suggested by western blot analysis and flow cytometry. It was also shown to have lipolytic effects. Oral administration of ethyl acetate fraction of E. alba to hamsters unveiled its anti-adipogenic as well as anti-dyslipidemic activity in-vivo. Mass spectrometry analysis of ethyl acetate fraction confirmed the presence of several bioactive components, projecting it as an effective phytopharmaceutical agent. In conclusion, ethyl acetate fraction of E. alba possesses potent anti-adipogenic as well as anti-dyslipidemic activity and could be projected as an herbal formulation towards obesity.
Collapse
Affiliation(s)
- Abhishek Gupta
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Ashok Kumar
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Durgesh Kumar
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research, New Delhi, 110025, India
| | - Shiv Nandan
- Sophisticated Analytical Instrument Facility, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Kripa Shankar
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Salil Varshney
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research, New Delhi, 110025, India
| | - Sujith Rajan
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research, New Delhi, 110025, India
| | - Ankita Srivastava
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research, New Delhi, 110025, India
| | - Sanchita Gupta
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research, New Delhi, 110025, India
| | - Sanjeev Kanojiya
- Sophisticated Analytical Instrument Facility, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - T Narender
- Academy of Scientific and Innovative Research, New Delhi, 110025, India.
| | - Anil Nilkanth Gaikwad
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India.
| |
Collapse
|