1
|
Huo C, Jiao X, Wang Y, Jiang Q, Ning F, Wang J, Jia Q, Zhu Z, Tian L. Silica aggravates pulmonary fibrosis through disrupting lung microbiota and amino acid metabolites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:174028. [PMID: 38889818 DOI: 10.1016/j.scitotenv.2024.174028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
Silicosis, recognized as a severe global public health issue, is an irreversible pulmonary fibrosis caused by the long-term inhalation of silica particles. Given the intricate pathogenesis of silicosis, there is no effective intervention measure, which poses a severe threat to public health. Our previous study reported that dysbiosis of lung microbiota is associated with the development of pulmonary fibrosis, potentially involving the lipopolysaccharides/toll-like receptor 4 pathway. Similarly, the process of pulmonary fibrosis is accompanied by alterations in metabolic pathways. This study employed a combined approach of 16S rDNA sequencing and metabolomic analysis to investigate further the role of lung microbiota in silicosis delving deeper into the potential pathogenesis of silicosis. Silica exposure can lead to dysbiosis of the lung microbiota and the occurrence of pulmonary fibrosis, which was alleviated by a combination antibiotic intervention. Additionally, significant metabolic disturbances were found in silicosis, involving 85 differential metabolites among the three groups, which are mainly focused on amino acid metabolic pathways. The changed lung metabolites showed a substantial correlation with lung microbiota. The relative abundance of Pseudomonas negatively correlated with L-Aspartic acid, L-Glutamic acid, and L-Threonine levels. These results indicate that dysbiosis in pulmonary microbiota exacerbates silica-induced fibrosis through impacts on amino acid metabolism, providing new insights into the potential mechanisms and interventions of silicosis.
Collapse
Affiliation(s)
- Chuanyi Huo
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Xukun Jiao
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yan Wang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Qiyue Jiang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Fuao Ning
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Jiaxin Wang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Qiyue Jia
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| | - Zhonghui Zhu
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| | - Lin Tian
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
2
|
Suzuki T, Kropski JA, Chen J, Carrier EJ, Chen X, Sherrill TP, Winters NI, Camarata JE, Polosukhin VV, Han W, Rathinasabapathy A, Gutor S, Gulleman P, Sabusap C, Banovich NE, Tanjore H, Freeman ML, Tada Y, Young LR, Gokey JJ, Blackwell TS, West JD. Thromboxane-Prostanoid Receptor Signaling Drives Persistent Fibroblast Activation in Pulmonary Fibrosis. Am J Respir Crit Care Med 2022; 206:596-607. [PMID: 35728047 PMCID: PMC9716913 DOI: 10.1164/rccm.202106-1503oc] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 06/28/2022] [Indexed: 11/16/2022] Open
Abstract
Rationale: Although persistent fibroblast activation is a hallmark of idiopathic pulmonary fibrosis (IPF), mechanisms regulating persistent fibroblast activation in the lungs have not been fully elucidated. Objectives: On the basis of our observation that lung fibroblasts express TBXA2R (thromboxane-prostanoid receptor) during fibrosis, we investigated the role of TBXA2R signaling in fibrotic remodeling. Methods: We identified TBXA2R expression in lungs of patients with IPF and mice and studied primary mouse and human lung fibroblasts to determine the impact of TBXA2R signaling on fibroblast activation. We used TBXA2R-deficient mice and small-molecule inhibitors to investigate TBXA2R signaling in preclinical lung fibrosis models. Measurements and Main Results: TBXA2R expression was upregulated in fibroblasts in the lungs of patients with IPF and in mouse lungs during experimental lung fibrosis. Genetic deletion of TBXA2R, but not inhibition of thromboxane synthase, protected mice from bleomycin-induced lung fibrosis, thereby suggesting that an alternative ligand activates profibrotic TBXA2R signaling. In contrast to thromboxane, F2-isoprostanes, which are nonenzymatic products of arachidonic acid induced by reactive oxygen species, were persistently elevated during fibrosis. F2-isoprostanes induced TBXA2R signaling in fibroblasts and mediated a myofibroblast activation profile due, at least in part, to potentiation of TGF-β (transforming growth factor-β) signaling. In vivo treatment with the TBXA2R antagonist ifetroban reduced profibrotic signaling in the lungs, protected mice from lung fibrosis in three preclinical models (bleomycin, Hermansky-Pudlak mice, and radiation-induced fibrosis), and markedly enhanced fibrotic resolution after bleomycin treatment. Conclusions: TBXA2R links oxidative stress to fibroblast activation during lung fibrosis. TBXA2R antagonists could have utility in treating pulmonary fibrosis.
Collapse
Affiliation(s)
- Toshio Suzuki
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, and
- Department of Medical Oncology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Jonathan A. Kropski
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, and
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
- Department of Medicine, Department of Veterans Affairs Medical Center, Nashville, Tennessee
| | - Jingyuan Chen
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Erica J. Carrier
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Xinping Chen
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Taylor P. Sherrill
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Nichelle I. Winters
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Jane E. Camarata
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Vasiliy V. Polosukhin
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Wei Han
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, and
| | | | - Sergey Gutor
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Peter Gulleman
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Carleen Sabusap
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, and
| | | | - Harikrishna Tanjore
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Michael L. Freeman
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Yuji Tada
- Department of Pulmonary Medicine, School of Medicine, International University of Health and Welfare, Chiba, Japan; and
| | - Lisa R. Young
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, and
- Division of Pulmonary Medicine, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Jason J. Gokey
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Timothy S. Blackwell
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, and
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
- Department of Medicine, Department of Veterans Affairs Medical Center, Nashville, Tennessee
| | - James D. West
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, and
| |
Collapse
|
3
|
Thatcher TH, Peters-Golden M. From Biomarker to Mechanism? F2-isoprostanes in Pulmonary Fibrosis. Am J Respir Crit Care Med 2022; 206:530-532. [PMID: 35763804 DOI: 10.1164/rccm.202205-0914ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Thomas H Thatcher
- Virginia Commonwealth University, 6889, Pulmonary and Critical Care Medicine, Richmond, Virginia, United States;
| | - Marc Peters-Golden
- University of Michigan Medical School, 12266, Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Ann Arbor, Michigan, United States
| |
Collapse
|
4
|
El-Bassouny DR, Omar NM, Khalaf HA, Al-Salam RAA. Role of nuclear factor-kappa B in bleomycin induced pulmonary fibrosis and the probable alleviating role of ginsenoside: histological, immunohistochemical, and biochemical study. Anat Cell Biol 2021; 54:448-464. [PMID: 34936986 PMCID: PMC8693141 DOI: 10.5115/acb.21.068] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/17/2021] [Accepted: 08/09/2021] [Indexed: 01/04/2023] Open
Abstract
Bleomycin (BLM) is one of anti-cancerous drugs. One of its limitation is the development of pulmonary fibrosis during therapy So, we proposed to examine the outcome of BLM take on the light and electron microscopic design of rat lung. Along with, assessment the probable protecting role of ginsenoside on BLM induced pulmonary changes. In this study, thirty adult male albino rats were comprised and were classified to four clusters; Negative & positive control group, BLM treated group and BLM& ginsenoside treated group. The lung was treated for histological and immunohistochemical (anti-p65) studies. Light microscopic examination of H&E stained sections of BLM treated group showed huge distortion of the lung building. Mallory trichrome stain of this group showed evident deposition of collagen fibers in the markedly thickened interalveolar septa and around intrapulmonary bronchi, bronchioles and blood vessels. Moreover, strong positive staining for nuclear factor (NF)-κB in the wall of bronchiole as well as the thickened interalveolar septa were observed. Ultrastructural inspection of lung of this group revealed muddled lung planning. Marked improvement of the lung structure and marked reduction in NF-κB immunoexpression was appeared in BLM and ginsenoside treated group. So, we concluded that co-administration of ginsenoside with BLM significantly enhanced the histological and morphometric image of the lung.
Collapse
Affiliation(s)
- Dalia Refaat El-Bassouny
- Medical Histology and Cell Biology Department, Faculty of Medicine, Mansoura University, El Mansoura, Egypt
| | - Nesreen Mostafa Omar
- Medical Histology and Cell Biology Department, Faculty of Medicine, Mansoura University, El Mansoura, Egypt
| | - Hanaa Attia Khalaf
- Medical Histology and Cell Biology Department, Faculty of Medicine, Mansoura University, El Mansoura, Egypt
| | - Reem Ahmad Abd Al-Salam
- Medical Histology and Cell Biology Department, Faculty of Medicine, Mansoura University, El Mansoura, Egypt
| |
Collapse
|
5
|
Do Seminal Isoprostanes Have a Role in Assisted Reproduction Outcome? Life (Basel) 2021; 11:life11070675. [PMID: 34357046 PMCID: PMC8303377 DOI: 10.3390/life11070675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/01/2021] [Accepted: 07/08/2021] [Indexed: 11/25/2022] Open
Abstract
F2-isoprostanes (F2-IsoPs), stereoisomers of prostaglandin F2α generated by the free radical-induced oxidation of arachidonic acid, have been associated with different male infertility conditions. This study aimed to evaluate the role of seminal isoprostane levels and sperm characteristics in the reproductive outcome and embryo quality of 49 infertile couples. Semen analysis was performed following WHO guidelines. Sperm chromatin maturity was detected using an aniline blue (AB) assay, and DNA integrity was assessed using the acridine orange (AO) test. Seminal F2-IsoP levels were quantified by gas chromatography/negative ion chemical ionization tandem mass spectrometry (GC/NICI–MS/MS) analysis. Correlations among variables and their impact on in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI) outcome were investigated. F2-IsoP levels are positively correlated with double-stranded DNA sperm (p < 0.001) and negatively correlated with mature sperm chromatin (p < 0.001). Patients with positive outcomes had an increased percentage of sperm with double-stranded DNA, as did patients producing high-quality embryo, who showed higher F2-IsoP levels compared to those detected in the low-quality embryo group. An intriguing relationship between a mild increase in F2-IsoP levels, DNA integrity, and embryo quality seems to indicate that the non-enzymatic oxidation of arachidonic acid can be also a marker of metabolic activity in human semen.
Collapse
|
6
|
Mulvaney EP, Reid HM, Bialesova L, Bouchard A, Salvail D, Kinsella BT. NTP42, a novel antagonist of the thromboxane receptor, attenuates experimentally induced pulmonary arterial hypertension. BMC Pulm Med 2020; 20:85. [PMID: 32252727 PMCID: PMC7132963 DOI: 10.1186/s12890-020-1113-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/12/2020] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND NTP42 is a novel antagonist of the thromboxane prostanoid receptor (TP), currently in development for the treatment of pulmonary arterial hypertension (PAH). PAH is a devastating disease with multiple pathophysiological hallmarks including excessive pulmonary vasoconstriction, vascular remodelling, inflammation, fibrosis, in situ thrombosis and right ventricular hypertrophy. Signalling through the TP, thromboxane (TX) A2 is a potent vasoconstrictor and mediator of platelet aggregation. It is also a pro-mitogenic, pro-inflammatory and pro-fibrotic agent. Moreover, the TP also mediates the adverse actions of the isoprostane 8-iso-prostaglandin F2α, a free-radical-derived product of arachidonic acid produced in abundance during oxidative injury. Mechanistically, TP antagonists should treat most of the hallmarks of PAH, including inhibiting the excessive vasoconstriction and pulmonary artery remodelling, in situ thrombosis, inflammation and fibrosis. This study aimed to investigate the efficacy of NTP42 in the monocrotaline (MCT)-induced PAH rat model, alongside current standard-of-care drugs. METHODS PAH was induced by subcutaneous injection of 60 mg/kg MCT in male Wistar-Kyoto rats. Animals were assigned into groups: 1. 'No MCT'; 2. 'MCT Only'; 3. MCT + NTP42 (0.25 mg/kg BID); 4. MCT + Sildenafil (50 mg/kg BID), and 5. MCT + Selexipag (1 mg/kg BID), where 28-day drug treatment was initiated within 24 h post-MCT. RESULTS From haemodynamic assessments, NTP42 reduced the MCT-induced PAH, including mean pulmonary arterial pressure (mPAP) and right systolic ventricular pressure (RSVP), being at least comparable to the standard-of-care drugs Sildenafil or Selexipag in bringing about these effects. Moreover, NTP42 was superior to Sildenafil and Selexipag in significantly reducing pulmonary vascular remodelling, inflammatory mast cell infiltration and fibrosis in MCT-treated animals. CONCLUSIONS These findings suggest that NTP42 and antagonism of the TP signalling pathway have a relevant role in alleviating the pathophysiology of PAH, representing a novel therapeutic target with marked benefits over existing standard-of-care therapies.
Collapse
Affiliation(s)
- Eamon P Mulvaney
- ATXA Therapeutics Limited, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Helen M Reid
- ATXA Therapeutics Limited, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.,UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Lucia Bialesova
- ATXA Therapeutics Limited, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Annie Bouchard
- IPS Therapeutique Inc., 3035 Boulevard Industriel, Sherbrooke, QC, J1L 2T9, Canada
| | - Dany Salvail
- IPS Therapeutique Inc., 3035 Boulevard Industriel, Sherbrooke, QC, J1L 2T9, Canada
| | - B Therese Kinsella
- ATXA Therapeutics Limited, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland. .,UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
7
|
Zhao H, Li C, Li L, Liu J, Gao Y, Mu K, Chen D, Lu A, Ren Y, Li Z. Baicalin alleviates bleomycin‑induced pulmonary fibrosis and fibroblast proliferation in rats via the PI3K/AKT signaling pathway. Mol Med Rep 2020; 21:2321-2334. [PMID: 32323806 PMCID: PMC7185294 DOI: 10.3892/mmr.2020.11046] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 01/13/2020] [Indexed: 01/15/2023] Open
Abstract
Baicalin is an important flavonoid compound THAT is isolated from the Scutellaria baicalensis Georgi Chinese herb and plays a critical role in anti‑oxidative, anti‑inflammatory, anti‑infection and anti‑tumor functions. Although baicalin can suppress the proliferation of tumor cells, the underlying mechanisms of baicalin in bleomycin (BLM)‑induced pulmonary fibrosis remain to be elucidated. Thus, the aim of the present study was to determine the role of baicalin in pulmonary fibrosis and fibroblast proliferation in rats. Hematoxylin and eosin (H&E) and Masson staining were used to measure the morphology of pulmonary fibrosis, ELIASA kits were used to test the ROS and inflammation, and western blotting and TUNEL were performed to study the apoptosis proteins. In vitro, MTT assay, flow cytometry, western blotting and immunofluorescence were performed to investigate the effects of baicalin on proliferation of fibroblasts. The most significantly fibrotic changes were identified in the lungs of model rats at day 28. Baicalin (50 mg/kg) attenuated the degree of pulmonary fibrosis, and the hydroxyproline content of the lung tissues was decreased in the baicalin group, compared with the BLM group. Further investigation revealed that baicalin significantly increased glutathione peroxidase (GSH‑px), total‑superoxide dismutase (T‑SOD) and glutathione (GSH) levels, whilst decreasing that of serum malondialdehyde (MDA). TUNEL‑positive cells were significantly decreased in rats treated with baicalin group, compared with the model group. Furthermore, it was found that BLM promoted fibroblasts viability in a dose‑dependent manner in vivo, which was restricted following treatment with different concentrations of baicalin. Moreover, BLM promoted the expression levels of cyclin A, D and E, proliferating cell nuclear antigen, phosphorylated (p)‑AKT and p‑calcium/calmodulin‑dependent protein kinase type. BLM also promoted the transition of cells from the G0/G1 phase to the G2/M and S phases, and increased the intracellular Ca2+ concentration, which was subsequently suppressed by baicalin. Collectively, the results of the present study suggested that baicalin exerted a suppressive effect on BLM‑induced pulmonary fibrosis and fibroblast proliferation.
Collapse
Affiliation(s)
- Hong Zhao
- Department of Respiratory Medicine, First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Chundi Li
- Department of Respiratory Medicine, Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang 163316, P.R. China
| | - Lina Li
- Department of Respiratory Medicine, Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang 163316, P.R. China
| | - Junying Liu
- Department of Respiratory Medicine, Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang 163316, P.R. China
| | - Yinghui Gao
- Department of Respiratory Medicine, Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang 163316, P.R. China
| | - Kun Mu
- Department of Respiratory Medicine, Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang 163316, P.R. China
| | - Donghe Chen
- Department of Respiratory Medicine, Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang 163316, P.R. China
| | - Aiping Lu
- Department of Respiratory Medicine, Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang 163316, P.R. China
| | - Yuanyuan Ren
- Department of Respiratory Medicine, Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang 163316, P.R. China
| | - Zhenhua Li
- Department of Respiratory Medicine, First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
8
|
Evaluation of oxysterol levels of patients with silicosis by LC–MS/MS method. Mol Cell Biochem 2020; 467:117-125. [DOI: 10.1007/s11010-020-03706-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 02/15/2020] [Indexed: 01/10/2023]
|
9
|
West JD, Galindo CL, Kim K, Shin JJ, Atkinson JB, Macias‐Perez I, Pavliv L, Knollmann BC, Soslow JH, Markham LW, Carrier EJ. Antagonism of the Thromboxane-Prostanoid Receptor as a Potential Therapy for Cardiomyopathy of Muscular Dystrophy. J Am Heart Assoc 2019; 8:e011902. [PMID: 31662020 PMCID: PMC6898850 DOI: 10.1161/jaha.118.011902] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Background Muscular dystrophy (MD) causes a progressive cardiomyopathy characterized by diffuse fibrosis, arrhythmia, heart failure, and early death. Activation of the thromboxane-prostanoid receptor (TPr) increases calcium transients in cardiomyocytes and is proarrhythmic and profibrotic. We hypothesized that TPr activation contributes to the cardiac phenotype of MD, and that TPr antagonism would improve cardiac fibrosis and function in preclinical models of MD. Methods and Results Three different mouse models of MD (mdx/utrn double knockout, second generation mdx/mTR double knockout, and delta-sarcoglycan knockout) were given normal drinking water or water containing 25 mg/kg per day of the TPr antagonist ifetroban, beginning at weaning. After 6 months (10 weeks for mdx/utrn double knockout), mice were evaluated for cardiac and skeletal muscle function before euthanization. There was a 100% survival rate of ifetroban-treated mice to the predetermined end point, compared with 60%, 43%, and 90% for mdx/utrn double knockout, mdx/mTR double knockout, and delta-sarcoglycan knockout mice, respectively. TPr antagonism improved cardiac output in mdx/utrn double knockout and mdx/mTR mice, and normalized fractional shortening, ejection fraction, and other parameters in delta-sarcoglycan knockout mice. Cardiac fibrosis in delta-sarcoglycan knockout was reduced with TPr antagonism, which also normalized cardiac expression of claudin-5 and neuronal nitric oxide synthase proteins and multiple signature genes of Duchenne MD. Conclusions TPr antagonism reduced cardiomyopathy and spontaneous death in mouse models of Duchenne and limb-girdle MD. Based on these studies, ifetroban and other TPr antagonists could be novel therapeutics for treatment of the cardiac phenotype in patients with MD.
Collapse
Affiliation(s)
- James D. West
- Division of Allergy, Pulmonary, and Critical CareVanderbilt University Medical CenterNashvilleTN
| | - Cristi L. Galindo
- Division of CardiologyVanderbilt University Medical CenterNashvilleTN
| | - Kyungsoo Kim
- Division of Clinical PharmacologyVanderbilt University Medical CenterNashvilleTN
| | - John Jonghyun Shin
- Division of Rheumatology and ImmunologyDepartment of MedicineVanderbilt University Medical CenterNashvilleTN
| | - James B. Atkinson
- Department of MedicineDepartment of Pathology, Microbiology, and ImmunologyVanderbilt University Medical CenterNashvilleTN
| | | | - Leo Pavliv
- Cumberland Pharmaceuticals IncNashvilleTN
| | - Bjorn C. Knollmann
- Division of Clinical PharmacologyVanderbilt University Medical CenterNashvilleTN
| | - Jonathan H. Soslow
- Division of Pediatric CardiologyDepartment of PediatricsVanderbilt University Medical CenterNashvilleTN
| | - Larry W. Markham
- Division of CardiologyVanderbilt University Medical CenterNashvilleTN
- Division of Pediatric CardiologyDepartment of PediatricsRiley Hospital for Children and Indiana University School of MedicineIndianapolisIN
| | - Erica J. Carrier
- Division of Allergy, Pulmonary, and Critical CareVanderbilt University Medical CenterNashvilleTN
| |
Collapse
|
10
|
Soodaeva S, Kubysheva N, Klimanov I, Nikitina L, Batyrshin I. Features of Oxidative and Nitrosative Metabolism in Lung Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1689861. [PMID: 31249640 PMCID: PMC6556356 DOI: 10.1155/2019/1689861] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/30/2019] [Accepted: 04/09/2019] [Indexed: 12/17/2022]
Abstract
Respiratory diseases are accompanied by intensification of free radical processes at different levels of the biological body organization. Simultaneous stress and suppression of various parts of antioxidant protection lead to the development of oxidative stress (OS) and nitrosative stress (NS). The basic mechanisms of initiation and development of the OS and NS in pulmonary pathology are considered. The antioxidant defense system of the respiratory tract is characterized. The results of the NS and OS marker study in various respiratory diseases are presented. It is shown that NS and OS are multilevel complex-regulated processes, existing and developing in inseparable connection with a number of physiological and pathophysiological processes. The study of NS and OS mechanisms contributes to the improvement of the quality of diagnosis and the development of therapeutic agents that act on different pathogenetic stages of the disease.
Collapse
Affiliation(s)
- Svetlana Soodaeva
- Pulmonology Scientific Research Institute under FMBA of Russia, Orekhovyy Bul'var 28, Moscow 115682, Russia
| | - Nailya Kubysheva
- Kazan Federal University, Kremlyovskaya St., 18, Kazan 420000, Russia
| | - Igor Klimanov
- Pulmonology Scientific Research Institute under FMBA of Russia, Orekhovyy Bul'var 28, Moscow 115682, Russia
| | - Lidiya Nikitina
- Khanty-Mansiysk-Yugrа State Medical Academy, Mira St., 40, KMAD-Yugry, Khanty-Mansiysk 628007, Russia
| | - Ildar Batyrshin
- Centro de Investigación en Computación, Instituto Politécnico Nacional (CIC-IPN), Av. Juan de Dios Bátiz, Esq. Miguel Othón de Mendizábal S/N, Gustavo A. Madero, 07738 Mexico City, Mexico
| |
Collapse
|
11
|
Effect of a fish oil-based lipid emulsion on intestinal failure-associated liver disease in children. Eur J Clin Nutr 2018; 72:1364-1372. [DOI: 10.1038/s41430-018-0096-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 12/28/2017] [Accepted: 12/29/2017] [Indexed: 02/06/2023]
|