1
|
Luo M, Dai Y, Feng X, Wang Y, Guo X, Du J, Ji G, Lang H. A prospective randomized study of the efficacy of continuous active warming in patients undergoing laparoscopic gastrectomy. BMC Gastroenterol 2025; 25:174. [PMID: 40087578 PMCID: PMC11907992 DOI: 10.1186/s12876-025-03729-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/24/2025] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND The RCT study on the efficacy of continuous active warming (CAW) in patients undergoing laparoscopic gastrectomy is scarce. The purpose of this research was to determine if a significant difference between continuous active warming (CAW) and active warming when body temperature is below 36 °C (BAW) in terms of incidence of intraoperative hypothermia and clinical rehabilitation in patients undergoing laparoscopic gastrectomy surgery. METHODS A prospective, randomized and controlled trial with a sample of 62 patients who underwent elective total laparoscopic radical gastrectomy was conducted. Patients assigned to CAW group were warmed immediately since the surgical incision procedure, the others were warmed while the body bladder temperature dropped to 36 °C. The bladder temperature of the patient was recorded every 30 min during the operation. One-way ANOVA and ANOVA with repeated measures were used for comparisons between multiple groups, independent samples t-test for pair-wise comparisons. RESULTS This study included a total of 62 patients, with 31 in each group. Among them, there were 52 males and 10 females, with an age range of 39 to 83 years. The mean age in the CAW group was (62.52 ± 8.15) years, and in the BAW group, it was (62.74 ± 9.20) years. The overall incidence of hypothermia was 16.13% in 62 patients who underwent elective total laparoscopic radical gastrectomy. The incidence of shivering and agitation after operation was both 3.23% in CAW group, and it was 32.26% and 29.03% in BAW group. Time from end of surgery to tracheal extubation in CAW group was significantly lower than BAW group. In addition, continuous active warming could shorten time to first postoperative flatus of patients and relieve postoperative pain. CONCLUSION Our study showed that continuous active warming in patients undergoing laparoscopic gastrectomy decreased the incidence of intraoperative hypothermia and contributed to postoperative rehabilitation. TRIAL REGISTRATION It was permitted by the Ethics Committee of Xijing Hospital, Air Force Military Medical University, China. No. KY20212024-C-1 25/01/2021 and was registered with the Chinese Clinical Trial Registration Center (11/02/2025) ( www.chictr.org.cn ; registration number: ChiCTR2500097060).
Collapse
Affiliation(s)
- Mengjia Luo
- Department of Gastrointestinal Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi, China
- Department of Nursing, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Yanran Dai
- Department of Gastrointestinal Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Xiangying Feng
- Department of Gastrointestinal Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Yujie Wang
- Department of Gastrointestinal Surgery, Air Force Military Medical University, 986 Hospital, Xi'an, Shaanxi, China
| | - Xin Guo
- Department of Gastrointestinal Surgery, Air Force Military Medical University, 986 Hospital, Xi'an, Shaanxi, China
| | - Juan Du
- Department of Nursing, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Gang Ji
- Department of Gastrointestinal Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Hongjuan Lang
- Department of Nursing, Air Force Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
2
|
Jin L, Chen F, Chen X, Zhang S, Liang Z, Zhao L, Tan H. pH/Temperature Dual-Responsive Protein-Polymer Conjugates for Potential Therapeutic Hypothermia in Ischemic Stroke. ACS APPLIED BIO MATERIALS 2023; 6:5105-5113. [PMID: 37903779 DOI: 10.1021/acsabm.3c00836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Thrombolytic therapy for ischemic stroke still has several limitations, such as a narrow therapeutic time window and adverse effects. Therapeutic hypothermia is a neuroprotective strategy for stroke. In this study, we developed pH/temperature dual-responsive protein-polymer conjugates (PEG-uPA-PEG-PPG-PEG) by modifying a urokinase-type plasminogen activator (uPA) with polyethylene glycol (PEG) and poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (PEG-PPG-PEG, a thermosensitive polymer) via pH-sensitive imine bonds and disulfide bonds, respectively. At 37 °C and pH 7.4 (normothermia and physiological pH), PEG-uPA-PEG-PPG-PEG exhibits antiprotease hydrolysis and masked bioactivity of uPA due to the protective effect of the polymer segments wrapped around the protein surface. However, at 33 °C and pH 6.0 (hypothermia and pH at the thrombotic site), uPA loses the protective effect and recovers its bioactivity due to PEG dissociation and PEG-PPG-PEG stretching. The masked bioactivity of uPA at normothermia and physiological pH could reduce the risk of acute hemorrhage complication, and the recovery of protein activity at acidic pH and 33 °C is of great significance for thrombolytic therapy at mild hypothermia. Thus, PEG-uPA-PEG-PPG-PEG provides promising potential for therapeutic hypothermia in ischemic stroke.
Collapse
Affiliation(s)
- Lingli Jin
- Center for Child Care and Mental Health, Shenzhen Children's Hospital Affiliated to Shantou University Medical College, Shenzhen 518026, China
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Fengjiao Chen
- Center for Child Care and Mental Health, Shenzhen Children's Hospital Affiliated to Shantou University Medical College, Shenzhen 518026, China
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Xianwu Chen
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315211, China
| | - Shun Zhang
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo 315000, China
| | - Zhenjiang Liang
- Center for Child Care and Mental Health, Shenzhen Children's Hospital Affiliated to Shantou University Medical College, Shenzhen 518026, China
| | - Lingling Zhao
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Hui Tan
- Center for Child Care and Mental Health, Shenzhen Children's Hospital Affiliated to Shantou University Medical College, Shenzhen 518026, China
| |
Collapse
|
3
|
Vellama H, Eskla KL, Eichelmann H, Hüva A, Tennant DA, Thakker A, Roberts J, Jagomäe T, Porosk R, Laisk A, Oja V, Rämma H, Volke V, Vasar E, Luuk H. VHL-deficiency leads to reductive stress in renal cells. Free Radic Biol Med 2023; 208:1-12. [PMID: 37506952 PMCID: PMC10602395 DOI: 10.1016/j.freeradbiomed.2023.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/10/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
Heritable renal cancer syndromes (RCS) are associated with numerous chromosomal alterations including inactivating mutations in von Hippel-Lindau (VHL) gene. Here we identify a novel aspect of the phenotype in VHL-deficient human renal cells. We call it reductive stress as it is characterised by increased NADH/NAD+ ratio that is associated with impaired cellular respiration, impaired CAC activity, upregulation of reductive carboxylation of glutamine and accumulation of lipid droplets in VHL-deficient cells. Reductive stress was mitigated by glucose depletion and supplementation with pyruvate or resazurin, a redox-reactive agent. This study demonstrates for the first time that reductive stress is a part of the phenotype associated with VHL-deficiency in renal cells and indicates that the reversal of reductive stress can augment respiratory activity and CAC activity, suggesting a strategy for altering the metabolic profile of VHL-deficient tumours.
Collapse
Affiliation(s)
- Hans Vellama
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, Tartu, Estonia; Centre of Excellence for Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Kattri-Liis Eskla
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, Tartu, Estonia; Centre of Excellence for Genomics and Translational Medicine, University of Tartu, Tartu, Estonia.
| | - Hillar Eichelmann
- Institute of Biomedicine and Translational Medicine, Department of Pathophysiology, University of Tartu, Tartu, Estonia; Institute of Technology, University of Tartu, Tartu, Estonia
| | - Andria Hüva
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, Tartu, Estonia
| | - Daniel A Tennant
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Alpesh Thakker
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Jennie Roberts
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Toomas Jagomäe
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, Tartu, Estonia; Centre of Excellence for Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Rando Porosk
- Institute of Biomedicine and Translational Medicine, Department of Biochemistry, University of Tartu, Tartu, Estonia
| | - Agu Laisk
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Vello Oja
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Heikko Rämma
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Vallo Volke
- Institute of Biomedicine and Translational Medicine, Department of Pathophysiology, University of Tartu, Tartu, Estonia
| | - Eero Vasar
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, Tartu, Estonia; Centre of Excellence for Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Hendrik Luuk
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, Tartu, Estonia; Centre of Excellence for Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
4
|
Bartolo-Aguilar Y, Chávez-Cabrera C, Flores-Cotera LB, Badillo-Corona JA, Oliver-Salvador C, Marsch R. The potential of cold-shock promoters for the expression of recombinant proteins in microbes and mammalian cells. J Genet Eng Biotechnol 2022; 20:173. [PMID: 36580173 PMCID: PMC9800685 DOI: 10.1186/s43141-022-00455-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/15/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Low-temperature expression of recombinant proteins may be advantageous to support their proper folding and preserve bioactivity. The generation of expression vectors regulated under cold conditions can improve the expression of some target proteins that are difficult to express in different expression systems. The cspA encodes the major cold-shock protein from Escherichia coli (CspA). The promoter of cspA has been widely used to develop cold shock-inducible expression platforms in E. coli. Moreover, it is often necessary to employ expression systems other than bacteria, particularly when recombinant proteins require complex post-translational modifications. Currently, there are no commercial platforms available for expressing target genes by cold shock in eukaryotic cells. Consequently, genetic elements that respond to cold shock offer the possibility of developing novel cold-inducible expression platforms, particularly suitable for yeasts, and mammalian cells. CONCLUSIONS This review covers the importance of the cellular response to low temperatures and the prospective use of cold-sensitive promoters to direct the expression of recombinant proteins. This concept may contribute to renewing interest in applying white technologies to produce recombinant proteins that are difficult to express.
Collapse
Affiliation(s)
- Yaneth Bartolo-Aguilar
- Department of Biotechnology and Bioengineering, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, 07360, Mexico City, Mexico
- Instituto Politécnico Nacional-Unidad Profesional Interdisciplinaria de Biotecnología, Av. Acueducto s/n, Colonia Barrio La Laguna Ticomán, 07340, Mexico City, Mexico
| | - Cipriano Chávez-Cabrera
- Colegio de Estudios Científicos y Tecnológicos del Estado de Michoacán, CECyTE Michoacán, Héroes de la Revolución S/N, Col. Centro, 61880, Churumuco de Morelos, Michoacán, Mexico.
| | - Luis Bernardo Flores-Cotera
- Department of Biotechnology and Bioengineering, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, 07360, Mexico City, Mexico
| | - Jesús Agustín Badillo-Corona
- Instituto Politécnico Nacional-Unidad Profesional Interdisciplinaria de Biotecnología, Av. Acueducto s/n, Colonia Barrio La Laguna Ticomán, 07340, Mexico City, Mexico
| | - Carmen Oliver-Salvador
- Instituto Politécnico Nacional-Unidad Profesional Interdisciplinaria de Biotecnología, Av. Acueducto s/n, Colonia Barrio La Laguna Ticomán, 07340, Mexico City, Mexico
| | - Rodolfo Marsch
- Department of Biotechnology and Bioengineering, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, 07360, Mexico City, Mexico
| |
Collapse
|
5
|
Hypothermia Alleviates Reductive Stress, a Root Cause of Ischemia Reperfusion Injury. Int J Mol Sci 2022; 23:ijms231710108. [PMID: 36077504 PMCID: PMC9456258 DOI: 10.3390/ijms231710108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
Ischemia reperfusion injury is common in transplantation. Previous studies have shown that cooling can protect against hypoxic injury. To date, the protective effects of hypothermia have been largely associated with metabolic suppression. Since kidney transplantation is one of the most common organ transplant surgeries, we used human-derived renal proximal tubular cells (HKC8 cell line) as a model of normal renal cells. We performed a temperature titration curve from 37 °C to 22 °C and evaluated cellular respiration and molecular mechanisms that can counteract the build-up of reducing equivalents in hypoxic conditions. We show that the protective effects of hypothermia are likely to stem both from metabolic suppression (inhibitory component) and augmentation of stress tolerance (activating component), with the highest overlap between activating and suppressing mechanisms emerging in the window of mild hypothermia (32 °C). Hypothermia decreased hypoxia-induced rise in the extracellular lactate:pyruvate ratio, increased ATP/ADP ratio and mitochondrial content, normalized lipid content, and improved the recovery of respiration after anoxia. Importantly, it was observed that in contrast to mild hypothermia, moderate and deep hypothermia interfere with HIF1 (hypoxia inducible factor 1)-dependent HRE (hypoxia response element) induction in hypoxia. This work also demonstrates that hypothermia alleviates reductive stress, a conceptually novel and largely overlooked phenomenon at the root of ischemia reperfusion injury.
Collapse
|
6
|
Płódowska M, Krakowiak W, Węgierek-Ciuk A, Lankoff A, Szary K, Lis K, Wojcik A, Lisowska H. Hypothermia differentially modulates the formation and decay of NBS1, γH2AX and 53BP1 foci in U2OS cells exposed to gamma radiation. Sci Rep 2022; 12:5878. [PMID: 35393518 PMCID: PMC8989987 DOI: 10.1038/s41598-022-09829-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/22/2022] [Indexed: 11/09/2022] Open
Abstract
In studies on the mechanism of DNA damage response where ionizing radiation is used as the DNA damaging agent, cells are often exposed to ionizing radiation on melting ice (corresponding to 0.8 °C). The purpose of this procedure is to inhibit cellular processes i.e. DNA repair. Low temperature at exposure has been shown to act in a radioprotective manner at the level of cytogenetic damage, but its mechanisms of action are poorly understood. The aim of the study was to analyze the effect of hypothermia at the level of formation and decay of NBS1, γH2AX, and 53BP1 foci, micronuclei, survival, cell cycle progression and oxidative stress in U2OS cells. The results show that hypothermia alone induced oxidative stress and foci. When applied in combination with radiation but only during the exposure time, it potentiated the formation of γH2AX and 53BP1 but not of NBS1 foci. When applied during irradiation and subsequent repair time, 53BP1 and NBS1 foci formed and decayed, but the levels were markedly lower than when repair was carried out at 37 °C. The frequency of micronuclei was elevated in cells irradiated at 0.8 °C, but only when analysed 20 h after irradiation which is likely due to a reduced G2 cell cycle block. Hypothermia reduced cell survival, both with and without radiation exposure. The temperature effect should be considered when cooling cells on melting ice to inhibit DNA repair in the induction of DNA damage.
Collapse
Affiliation(s)
- Magdalena Płódowska
- Department of Medical Biology, Institute of Biology, Jan Kochanowski University, Kielce, Poland.
| | - Wiktoria Krakowiak
- Department of Medical Biology, Institute of Biology, Jan Kochanowski University, Kielce, Poland
| | - Aneta Węgierek-Ciuk
- Department of Medical Biology, Institute of Biology, Jan Kochanowski University, Kielce, Poland
| | - Anna Lankoff
- Department of Medical Biology, Institute of Biology, Jan Kochanowski University, Kielce, Poland.,Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Warsaw, Poland
| | - Karol Szary
- Department of Atomic Physics and Nanophysics, Institute of Physics, Jan Kochanowski University, Kielce, Poland
| | - Krzysztof Lis
- Department of Medical Physics, Holy Cross Cancer Center, Kielce, Poland
| | - Andrzej Wojcik
- Department of Medical Biology, Institute of Biology, Jan Kochanowski University, Kielce, Poland.,Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Halina Lisowska
- Department of Medical Biology, Institute of Biology, Jan Kochanowski University, Kielce, Poland
| |
Collapse
|
7
|
Zhu H, Zhuang Y, Li D, Dong N, Ma H, Liu L, Shi Q, Ju X. Cryo-Temperature Pretreatment Increases the Pro-Angiogenic Capacity of Three-Dimensional Mesenchymal Stem Cells via the PI3K-AKT Pathway. Cell Transplant 2022; 31:9636897221106996. [PMID: 35727010 PMCID: PMC9218451 DOI: 10.1177/09636897221106996] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
To increase the potential and effectiveness of three-dimensional (3D) mesenchymal stem cells (MSCs) for clinical applications, this study explored the effects of short cryo-temperature pretreatment on MSC function. Adipose-derived MSCs (A-MSCs) were cultured via the ordinary monolayer method and 3D hanging drop spheroid method. When the cells adhered to the wall or formed a spheroid, they were subjected to hypothermic stress at 4°C for 1 h and then divided into three recovery periods at 37°C, specifically 0, 12, and 24 h. The control group was not subjected to any treatment throughout the study. Monolayer and 3D spheroid A-MSCs were analyzed via RNA sequencing after hypothermic stress at 4°C for 1 h. Subsequently, each group of cells was collected and subjected to phenotype identification via flow cytometry, and mRNA expression was detected via reverse transcription-quantitative polymerase chain reaction analysis. Western blot analysis was performed to analyze the PI3K-AKT signaling pathway in A-MSCs. The effects of A-MSCs on angiogenesis in vivo were examined using a chick chorioallantoic membrane assay. Transwell assays were performed to determine whether the culture supernatant from each group could induce the chemotaxis of human umbilical vein endothelial cells (HUVECs). Three-dimensional spheroid culture did not change the phenotype of A-MSCs. The expression of fibroblast growth factors, hepatocyte growth factors, and other angiogenesis-related factors in A-MSCs was upregulated. A-MSCs subjected to hypothermic stress promoted angiogenesis under both monolayer and 3D spheroid cultures. Moreover, the chemotaxis of HUVECs to the 3D spheroid culture supernatant increased substantially. Short cryo-temperature pretreatment could stimulate 3D spheroid A-MSCs and activate the PI3K-AKT pathway. This approach has the advantages of promoting angiogenesis and maintaining cell viability.
Collapse
Affiliation(s)
- Huasu Zhu
- Department of Pediatrics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Stem Cell and Regenerative Medicine Research Center, Qilu Hospital of Shandong University, Jinan, China
| | - Yong Zhuang
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Dong Li
- Stem Cell and Regenerative Medicine Research Center, Qilu Hospital of Shandong University, Jinan, China
| | - Na Dong
- Department of Pediatrics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Stem Cell and Regenerative Medicine Research Center, Qilu Hospital of Shandong University, Jinan, China
| | - Huixian Ma
- Stem Cell and Regenerative Medicine Research Center, Qilu Hospital of Shandong University, Jinan, China
| | - Linghong Liu
- Stem Cell and Regenerative Medicine Research Center, Qilu Hospital of Shandong University, Jinan, China
| | - Qing Shi
- Stem Cell and Regenerative Medicine Research Center, Qilu Hospital of Shandong University, Jinan, China
| | - Xiuli Ju
- Stem Cell and Regenerative Medicine Research Center, Qilu Hospital of Shandong University, Jinan, China
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
- Xiuli Ju, Department of Pediatrics, Qilu Hospital of Shandong University, No. 107 Wenhua West Road, Jinan 250012, Shandong, China.
| |
Collapse
|
8
|
Bardallo RG, Panisello‐Roselló A, Sanchez‐Nuno S, Alva N, Roselló‐Catafau J, Carbonell T. Nrf2 and Oxidative Stress in liver Ischemia/Reperfusion Injury. FEBS J 2021; 289:5463-5479. [PMID: 34967991 DOI: 10.1111/febs.16336] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/18/2021] [Accepted: 12/29/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Raquel G. Bardallo
- Department of Cell Biology, Physiology and Immunology Universitat de Barcelona Spain
| | - Arnau Panisello‐Roselló
- Experimental Pathology Department Institute of Biomedical Research of Barcelona (IIBB) CSIC‐IDIBAPS Barcelona Spain
| | - Sergio Sanchez‐Nuno
- Department of Cell Biology, Physiology and Immunology Universitat de Barcelona Spain
| | - Norma Alva
- Department of Cell Biology, Physiology and Immunology Universitat de Barcelona Spain
| | - Joan Roselló‐Catafau
- Experimental Pathology Department Institute of Biomedical Research of Barcelona (IIBB) CSIC‐IDIBAPS Barcelona Spain
| | - Teresa Carbonell
- Department of Cell Biology, Physiology and Immunology Universitat de Barcelona Spain
| |
Collapse
|
9
|
A Role of Stress Sensor Nrf2 in Stimulating Thermogenesis and Energy Expenditure. Biomedicines 2021; 9:biomedicines9091196. [PMID: 34572382 PMCID: PMC8472024 DOI: 10.3390/biomedicines9091196] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/01/2021] [Accepted: 09/08/2021] [Indexed: 12/11/2022] Open
Abstract
During chronic cold stress, thermogenic adipocytes generate heat through uncoupling of mitochondrial respiration from ATP synthesis. Recent discovery of various dietary phytochemicals, endogenous metabolites, synthetic compounds, and their molecular targets for stimulating thermogenesis has provided promising strategies to treat or prevent obesity and its associated metabolic diseases. Nuclear factor E2 p45-related factor 2 (Nrf2) is a stress response protein that plays an important role in obesity and metabolisms. However, both Nrf2 activation and Nrf2 inhibition can suppress obesity and metabolic diseases. Here, we summarized and discussed conflicting findings of Nrf2 activities accounting for part of the variance in thermogenesis and energy metabolism. We also discussed the utility of Nrf2-activating mechanisms for their potential applications in stimulating energy expenditure to prevent obesity and improve metabolic deficits.
Collapse
|
10
|
Zhang S, Luo T, Wang J. Stable Cells with NF-κB-ZsGreen Fused Genes Created by TALEN Editing and Homology Directed Repair for Screening Anti-inflammation Drugs. J Inflamm Res 2021; 14:917-928. [PMID: 33762839 PMCID: PMC7982563 DOI: 10.2147/jir.s298938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/22/2021] [Indexed: 12/15/2022] Open
Abstract
Background NF-κB is a sequence-specific DNA-binding transcription factor that plays key roles in inflammation and cancer. It is well known that NF-κB is over-activated in these diseases. NF-κB inhibitors are therefore developed as promising drugs for these diseases. However, finding NF-κB inhibitors is dependent on effective screening platforms. Methods For providing an easy and visualizable tool for screening NF-κB inhibitors, and other NF-κB-related studies, this study edited all five genes of NF-κB family (RELA, RELB, CREL, NF-κB1, NF-κB2) in three different cell lines (293T, HepG2, and PANC1) with both TALEN and CRISPR. The edited NF-κB genes were repaired by homology-dependent repair using a linear homologous donor containing ZsGreen coding sequence. The edit efficiency was thus directly evaluated by detecting cellular fluorescence. The editing efficiency was also confirmed by PCR detection of NF-κB-ZsGreen fused genes. Results It was found that all genes were more efficiently edited by TALEN in all cells than CRISPR. The positive cells were then isolated from the TALEN-edited cell pool by flow cytometry. The purified positive cells were finally evaluated by regulating NF-κB activity with a known NF-κB inhibitor, BAY 11-7082, and an NF-κB-targeting artificial microRNA, miR533. The results revealed that all the labeled NF-κB genes responded well to the two kinds of NF-κB activity regulators in all cell lines. Conclusion This study thus obtained 15 cell lines with NF-κB-ZsGreen fused genes, which provide an easy and visualizable tool for screening NF-κB inhibitors and other NF-κB-related studies.
Collapse
Affiliation(s)
- Shuyan Zhang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, People's Republic of China
| | - Tao Luo
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, People's Republic of China
| | - Jinke Wang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, People's Republic of China
| |
Collapse
|
11
|
Dos Santos Haupenthal DP, de Bem Silveira G, Zaccaron RP, Corrêa MEAB, de Souza PS, Filho MCB, de Roch Casagrande L, de Melo Cardoso M, Rigo FK, Haupenthal A, Silveira PCL. Effects of cryotherapy on the regeneration process and muscular mechanical properties after lacerative injury model. Scand J Med Sci Sports 2021; 31:610-622. [PMID: 33176018 DOI: 10.1111/sms.13872] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 12/26/2022]
Abstract
Cryotherapy is a therapeutic modality widely used for the treatment of muscle injuries to control pain and inflammatory processes. This study aimed to investigate the effects of cryotherapy on the inflammatory and oxidative stress parameters and mechanical properties of, and pain in, the skeletal muscles of rats with lacerative muscle injury. The rats were anesthetized with 4% isoflurane and subjected to gastrocnemius muscle laceration injury. After injury, all animals in the intervention groups received cryotherapy treatment for 20 minutes using plastic bags containing crushed ice. The protocol comprised three daily applications at 3-hour intervals on the day of injury, with reapplication 24 hours later. Seventy-two male Wistar rats were divided into three groups: sham, muscle injury (MI), and MI + cryotherapy (MI + cryo). Muscle mechanical properties were analyzed by mechanical tensile testing on day 7 after injury. The MI + cryo group showed reduced TNF-α, IFN-γ, and IL1β levels; elevated IL4, IL6, and IL10 levels; reduced oxidant production and carbonyl levels; and elevated sulfhydryl contents. Animals that underwent tissue cooling showed superoxide dismutase activity and glutathione levels close to those of the animals in the sham group. The MI and MI + cryo groups showed reduced values of the evaluated mechanical properties and lower mechanical thresholds compared to those of the animals from the sham group. Our results demonstrated that the proposed cryotherapy protocol reduced the inflammatory process and controlled oxidative stress but did not reverse the changes in the mechanical properties of muscle tissues or provide analgesic effects within the time frame analyzed.
Collapse
Affiliation(s)
| | - Gustavo de Bem Silveira
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Rubya Pereira Zaccaron
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | | | - Priscila Soares de Souza
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Mário Cesar Búrigo Filho
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Laura de Roch Casagrande
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Mariana de Melo Cardoso
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Flávia Karine Rigo
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Alessandro Haupenthal
- Aging, Resources and Rheumatology Laboratory, Federal University of Santa Catarina, Araranguá, Brazil
| | - Paulo Cesar Lock Silveira
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| |
Collapse
|
12
|
Adjirackor NA, Harvey KE, Harvey SC. Eukaryotic response to hypothermia in relation to integrated stress responses. Cell Stress Chaperones 2020; 25:833-846. [PMID: 32676830 PMCID: PMC7591648 DOI: 10.1007/s12192-020-01135-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 12/25/2022] Open
Abstract
Eukaryotic cells respond to hypothermic stress through a series of regulatory mechanisms that preserve energy resources and prolong cell survival. These mechanisms include alterations in gene expression, attenuated global protein synthesis and changes in the lipid composition of the phospholipid bilayer. Cellular responses to hyperthermia, hypoxia, nutrient deprivation and oxidative stress have been comprehensively investigated, but studies of the cellular response to cold stress are more limited. Responses to cold stress are however of great importance both in the wild, where exposure to low and fluctuating environmental temperatures is common, and in medical and biotechnology settings where cells and tissues are frequently exposed to hypothermic stress and cryopreservation. This means that it is vitally important to understand how cells are impacted by low temperatures and by the decreases and subsequent increases in temperature associated with cold stress. Here, we review the ways in which eukaryotic cells respond to hypothermic stress and how these compare to the well-described and highly integrated stress response systems that govern the cellular response to other types of stress.
Collapse
Affiliation(s)
- Naki A Adjirackor
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, CT1 1QU, UK.
| | - Katie E Harvey
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, CT1 1QU, UK
| | - Simon C Harvey
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, CT1 1QU, UK
| |
Collapse
|
13
|
Tan YL, Ho HK. Hypothermia Advocates Functional Mitochondria and Alleviates Oxidative Stress to Combat Acetaminophen-Induced Hepatotoxicity. Cells 2020; 9:2354. [PMID: 33114500 PMCID: PMC7693152 DOI: 10.3390/cells9112354] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/21/2020] [Accepted: 10/21/2020] [Indexed: 12/16/2022] Open
Abstract
For years, moderate hypothermia (32 °C) has been proposed as an unorthodox therapy for liver injuries, with proven hepatoprotective potential. Yet, limited mechanistic understanding has largely denied its acceptance over conventional pharmaceuticals for hepatoprotection. Today, facing a high prevalence of acetaminophen-induced liver injury (AILI) which accounts for the highest incidence of acute liver failure, hypothermia was evaluated as a potential therapy to combat AILI. For which, transforming growth factor-α transgenic mouse hepatocytes (TAMH) were subjected to concomitant 5 mM acetaminophen toxicity and moderate hypothermic conditioning for 24 h. Thereafter, its impact on mitophagy, mitochondrial biogenesis, glutathione homeostasis and c-Jun N-terminal kinase (JNK) signaling pathways were investigated. In the presence of AILI, hypothermia displayed simultaneous mitophagy and mitochondrial biogenesis to conserve functional mitochondria. Furthermore, antioxidant response was apparent with higher glutathione recycling and repressed JNK activation. These effects were, however, unremarkable with hypothermia alone without liver injury. This may suggest an adaptive response of hypothermia only to the injured sites, rendering it favorable as a potential targeted therapy. In fact, its cytoprotective effects were displayed in other DILI of similar pathology as acetaminophen i.e., valproate- and diclofenac-induced liver injury and this further corroborates the mechanistic findings of hypothermic actions on AILI.
Collapse
Affiliation(s)
- Yeong Lan Tan
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore 117543, Singapore;
- NUS Graduate School for Integrative Sciences & Engineering, Centre for Life Sciences, National University of Singapore, Singapore 119077, Singapore
| | - Han Kiat Ho
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore 117543, Singapore;
- NUS Graduate School for Integrative Sciences & Engineering, Centre for Life Sciences, National University of Singapore, Singapore 119077, Singapore
| |
Collapse
|
14
|
Circulating Levels of miR-574-5p Are Associated with Neurological Outcome after Cardiac Arrest in Women: A Target Temperature Management (TTM) Trial Substudy. DISEASE MARKERS 2019; 2019:1802879. [PMID: 31275442 PMCID: PMC6589199 DOI: 10.1155/2019/1802879] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/18/2019] [Accepted: 03/26/2019] [Indexed: 01/10/2023]
Abstract
Purpose Postresuscitation neuroprognostication is guided by neurophysiological tests, biomarker measurement, and clinical examination. Recent investigations suggest that circulating microRNAs (miRNA) may help in outcome prediction after cardiac arrest. We assessed the ability of miR-574-5p to predict neurological outcome after cardiac arrest, in a sex-specific manner. Methods In this substudy of the Target Temperature Management (TTM) Trial, we enrolled 590 cardiac arrest patients for which blood samples were available. Expression levels of miR-574-5p were measured by quantitative PCR in plasma samples collected 48 h after cardiac arrest. The endpoint of the study was poor neurological outcome at 6 months (cerebral performance category scores 3 to 5). Results Eighty-one percent of patients were men, and 49% had a poor neurological outcome. Circulating levels of miR-574-5p at 48 h were higher in patients with a poor neurological outcome at 6 months (p < 0.001), both in women and in men. Circulating levels of miR-574-5p were univariate predictors of neurological outcome (odds ratio (OR) [95% confidence interval (CI)]: 1.5 [1.26-1.78]). After adjustment with clinical variables and NSE, circulating levels of miR-574-5p predicted neurological outcome in women (OR [95% CI]: 1.9 [1.09-3.45]), but not in men (OR [95% CI]: 1.0 [0.74-1.28]). Conclusion miR-574-5p is associated with neurological outcome after cardiac arrest in women.
Collapse
|
15
|
Johari YB, Brown AJ, Alves CS, Zhou Y, Wright CM, Estes SD, Kshirsagar R, James DC. CHO genome mining for synthetic promoter design. J Biotechnol 2019; 294:1-13. [PMID: 30703471 DOI: 10.1016/j.jbiotec.2019.01.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/07/2019] [Accepted: 01/09/2019] [Indexed: 01/01/2023]
Abstract
Synthetic promoters are an attractive alternative for use in mammalian hosts such as CHO cells as they can be designed de novo with user-defined functionalities. In this study, we describe and validate a method for bioprocess-directed design of synthetic promoters utilizing CHO genomic sequence information. We designed promoters with two objective features, (i) constitutive high-level recombinant gene transcription, and (ii) upregulated transcription under mild hypothermia or late-stage culture. CHO genes varying in transcriptional activity were selected based on a comparative analysis of RNA-Seq transcript levels in normal and biphasic cultures in combination with estimates of mRNA half-life from published genome scale datasets. Discrete transcription factor regulatory elements (TFREs) upstream of these genes were informatically identified and functionally screened in vitro to identify a subset of TFREs with the potential to support high activity recombinant gene transcription during biphasic cell culture processes. Two libraries of heterotypic synthetic promoters with varying TFRE combinations were then designed in silico that exhibited a maximal 2.5-fold increase in transcriptional strength over the CMV-IE promoter after transient transfection into host CHO-K1 cells. A subset of synthetic promoters was then used to create stable transfectant pools using CHO-K1 cells under glutamine synthetase selection. Whilst not achieving the maximal 2.5-fold increase in productivity over stable pools harboring the CMV promoter, all stably transfected cells utilizing synthetic promoters exhibited increased reporter production - up to 1.6-fold that of cells employing CMV, both in the presence or absence of intron A immediately downstream of the promoter. The increased productivity of stably transfected cells harboring synthetic promoters was maintained during fed-batch culture, with or without a transition to mild hypothermia at the onset of stationary phase. Our data exemplify that it is important to consider both host cell and intended bioprocess contexts as design criteria in the de novo construction of synthetic genetic parts for mammalian cell engineering.
Collapse
Affiliation(s)
- Yusuf B Johari
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin St., Sheffield S1 3JD, UK
| | - Adam J Brown
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin St., Sheffield S1 3JD, UK
| | | | - Yizhou Zhou
- Cell Culture Development, Biogen Inc., Cambridge, MA 02142, USA
| | | | - Scott D Estes
- Cell Culture Development, Biogen Inc., Cambridge, MA 02142, USA
| | | | - David C James
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin St., Sheffield S1 3JD, UK.
| |
Collapse
|