1
|
Wang Y, Ding D, Kang N, Xu Z, Yuan H, Ji X, Dou Y, Guo L, Shu M, Wang X. Effects of combined exposure to PM 2.5, O 3, and NO 2 on health risks of different disease populations in the Beijing-Tianjin-Hebei region. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:178103. [PMID: 39693662 DOI: 10.1016/j.scitotenv.2024.178103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/01/2024] [Accepted: 12/11/2024] [Indexed: 12/20/2024]
Abstract
Air pollution adversely affects people's health. Under the current background of compound air pollution in China, the emission reduction potential of air pollution control has significantly decreased, and there are few studies on multi-pollutant emission reduction and synergistic effects. PM2.5, O3, and NO2 have caused the enormous disease burden and health risks. This study evaluated the single and combined health effects of pollutants in the Beijing-Tianjin-Hebei region, and discussed the differences in susceptibility among disease populations. Identified the interactions of multiple pollutants and evaluated current environmental policies. This study provided evidence of the interactive effect of combined PM2.5, O3, and NO2 exposure on the health risks of different disease populations. Among them, the interaction between PM2.5 and O3 posed the most significant health risks (Odds Ratio of 3.026) and had the greatest impact on the health of people with cardiovascular diseases (Odds Ratio of 3.136). The excess deaths affected by combined exposure exceeded 40 % of the total excess deaths. The assessment of environmental policies indicated that compliance with the AQG 2021 guideline values would reduce ambient air pollution-related deaths in the Beijing-Tianjin-Hebei region alone by about 30,000 per year. Our national standards were still far from the benchmarks given by the World Health Organization, especially for NO2. In the future, attentions should also be paid to the control of NO2 and other reaction precursors while coordinating the control of PM2.5 and O3.
Collapse
Affiliation(s)
- Yu Wang
- Center Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China; Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing 100054, China
| | - Ding Ding
- Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing 100054, China; School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ning Kang
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics/Ministry of Education Key Laboratory of Epidemiology of Major Diseases (PKU), School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Zhizhen Xu
- Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing 100054, China
| | - Hanyu Yuan
- Center Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China; Beijing Computing Center, Beijing Academy of Science and Technology, Yongfeng Industrial Base, Beijing 100094, China
| | - Xiaohui Ji
- Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing 100054, China
| | - Yan Dou
- Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing 100054, China
| | - Ling Guo
- Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing 100054, China
| | - Mushui Shu
- Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing 100054, China.
| | - Xiayan Wang
- Center Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
2
|
Pignatelli A, Benedusi M, Barbieri M, Pecorelli A, Valacchi G. Tropospheric ozone effect on olfactory perception and olfactory bulb dopaminergic interneuron excitability. Neurotoxicology 2024; 104:36-44. [PMID: 39004287 DOI: 10.1016/j.neuro.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/14/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024]
Abstract
Ozone (O3) forms in the Earth's atmosphere, both naturally and by reactions of man-made air pollutants. Deleterious effects of O3 have been found in the respiratory system. Here, we examine whether O3 alters olfactory behavior and cellular properties in the olfactory system. For this purpose, mice were exposed to O3 at a concentration found in highly polluted city air [0.8 ppm], and the behavior elicited by social and non-social odors in habituation/dishabituation tests was assessed. In addition, the electrical responses of dopaminergic olfactory bulb (OB) neurons were also evaluated. O3 differentially compromises olfactory perception to odors: it reduces responses to social and non-social odors in Swiss Webster mice, while this effect was observed in C57BL/6 J mice only for some non-social odors. Additionally, O3 reduced the rate of spontaneous spike firing in periglomerular dopaminergic cells (PG-DA) of the OB. Because this effect could reflect changes in excitability and/or synaptic inputs, the ability of O3 to alter PG-DA spontaneous activity was also tested together with cell membrane resistance, membrane potential, rheobase and chronaxie. Taken together, our data suggest the ability of O3 to affect olfactory perception.
Collapse
Affiliation(s)
- Angela Pignatelli
- Dept. of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy.
| | - Mascia Benedusi
- Dept. of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy.
| | - Mario Barbieri
- Dept. of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy.
| | - Alessandra Pecorelli
- Dept. of Environmental and Prevention Sciences, University of Ferrara, Ferrara 44121, Italy.
| | - Giuseppe Valacchi
- Dept. of Environmental and Prevention Sciences, University of Ferrara, Ferrara 44121, Italy; Dept. of Animal Sciences, Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA; Dept. of Food and Nutrition, Kyung Hee University, Seoul 26723, Republic of Korea.
| |
Collapse
|
3
|
Canella R, Benedusi M, Vallese A, Pecorelli A, Guiotto A, Ferrara F, Rispoli G, Cervellati F, Valacchi G. The role of potassium current in the pulmonary response to environmental oxidative stress. Arch Biochem Biophys 2023; 737:109534. [PMID: 36740034 DOI: 10.1016/j.abb.2023.109534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/30/2022] [Accepted: 01/24/2023] [Indexed: 02/05/2023]
Abstract
Exposure of human lung epithelial cells (A549 cell line) to the oxidant pollutant ozone (O3) alters cell membrane currents inducing its decrease, when the cell undergoes to a voltage-clamp protocol ranging from -90 to +70mV. The membrane potential of these cells is mainly maintained by the interplay of potassium and chloride currents. Our previous studies indicated the ability of O3 to activate ORCC (Outward Rectifier Chloride Channel) and consequently increases the chloride current. In this paper our aim was to understand the response of potassium current to oxidative stress challenge and to identify the kind potassium channel involved in O3 induced current changes. After measuring the total membrane current using an intracellular solution with or without potassium ions, we obtained the contribution of potassium to the overall membrane current in control condition by a mathematical approach. Repeating these experiments after O3 treatment we observed a significant decrease of Ipotassium. Treatment of the cells with Iberiotoxin (IbTx), a specific inhibitor of BK channel, we were able to verify the presence and the functionality of BK channels. In addition, the administration of 4-Aminopyridine (an inhibitor of voltage dependent K channels but not BK channels) and Tetraethylammonium (TEA) before and after O3 treatment we observed the formation of BK oxidative post-translation modifications. Our data suggest that O3 is able to inhibit potassium current by targeting BK channel. Further studies are needed to better clarify the role of this BK channel and its interplay with the other membrane channels under oxidative stress conditions. These findings can contribute to identify the biomolecular pathway induced by O3 allowing a possible pharmacological intervention against oxidative stress damage in lung tissue.
Collapse
Affiliation(s)
- Rita Canella
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via L. Borsari, 46, Ferrara, Italy.
| | - Mascia Benedusi
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via L. Borsari, 46, Ferrara, Italy
| | - Andrea Vallese
- Department of Environmental Sciences and Prevention, University of Ferrara, Via L. Borsari, 46, Ferrara, Italy
| | - Alessandra Pecorelli
- Department of Environmental Sciences and Prevention, University of Ferrara, Via L. Borsari, 46, Ferrara, Italy
| | - Anna Guiotto
- Department of Environmental Sciences and Prevention, University of Ferrara, Via L. Borsari, 46, Ferrara, Italy
| | - Francesca Ferrara
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari, 46, Ferrara, Italy
| | - Giorgio Rispoli
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via L. Borsari, 46, Ferrara, Italy
| | - Franco Cervellati
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via L. Borsari, 46, Ferrara, Italy
| | - Giuseppe Valacchi
- Department of Environmental Sciences and Prevention, University of Ferrara, Via L. Borsari, 46, Ferrara, Italy; NC State University, Plants for Human Health Institute, Animal Science Dept. NC Research Campus 600 Laureate Way, Kannapolis, NC, 28081, USA; Department of Food and Nutrition, Kyung Hee University, Seoul, South Korea.
| |
Collapse
|
4
|
Lin C, Ma Y, Liu R, Shao Y, Ma Z, Zhou L, Jing Y, Bell ML, Chen K. Associations between short-term ambient ozone exposure and cause-specific mortality in rural and urban areas of Jiangsu, China. ENVIRONMENTAL RESEARCH 2022; 211:113098. [PMID: 35288156 DOI: 10.1016/j.envres.2022.113098] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/08/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Most previous studies on the acute health effects of ozone are limited to urban areas, largely due to the paucity of air pollutant measurements in rural areas. We here estimated the county-specific daily maximum 8-h average ozone concentration in Jiangsu Province, China during 2015-2018, using a recently developed spatiotemporal machine learning model at a spatial resolution of 0.1° × 0.1° (∼11 × 11 km). Counties were equally divided into urban and rural groups based on the median of the percentage of urban residents across Jiangsu counties obtained from the National Population Census in 2010. We first conducted time-series analyses to estimate the county-specific effect of ozone using generalized linear models, then pooled the effect estimates by random-effects modeling. A 10 μg/m3 increase in the 4-day moving average (lag 0-3) of ambient ozone exposure was associated with increases of 0.66% (95% confidence interval [CI] 0.36%-0.95%) in daily nonaccidental mortality in rural areas and 0.42% in urban areas (95% CI, 0.27%-0.56%). Short-term ambient ozone exposure was associated with an increased risk of mortality caused by chronic obstructive pulmonary disease, hypertension, ischemic heart disease, and stroke. Our finding suggests that both urban and rural residents suffer adverse health effects from short-term ozone exposure.
Collapse
Affiliation(s)
- Chengyi Lin
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA; Yale Center on Climate Change and Health, Yale School of Public Health, New Haven, CT, USA
| | - Yiqun Ma
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA; Yale Center on Climate Change and Health, Yale School of Public Health, New Haven, CT, USA
| | - Riyang Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
| | - Yanchuan Shao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
| | - Zongwei Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China.
| | - Lian Zhou
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China; College of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, China.
| | - Yuanshu Jing
- College of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, China
| | - Michelle L Bell
- School of the Environment, Yale University, New Haven, CT, USA
| | - Kai Chen
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA; Yale Center on Climate Change and Health, Yale School of Public Health, New Haven, CT, USA.
| |
Collapse
|
5
|
Cervellati F, Woodby B, Benedusi M, Ferrara F, Guiotto A, Valacchi G. Evaluation of oxidative damage and Nrf2 activation by combined pollution exposure in lung epithelial cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:31841-31853. [PMID: 32504424 DOI: 10.1007/s11356-020-09412-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
The lungs are one the main organs exposed to environmental pollutants, such as tropospheric ozone (O3) and particulate matter (PM), which induce lung pathologies through similar mechanisms, resulting in altered redox homeostasis and inflammation. Although numerous studies have investigated the effects of these pollutants in the respiratory tract, there are only a few evidences that have evaluated the combined effects of outdoor stressors, despite the fact that humans are consistently exposed to more pollutants simultaneously. In this study, we wanted to investigate whether exposure to PM and O3 could have an additive, noxious effect in lung epithelial cells by measuring oxidative damage and the activity of redox-sensitive nuclear factor erythroid 2-related factor 2 (Nrf2) which is a master regulator of cellular antioxidant defenses. First, we measured the cytotoxic effects of O3 and PM individually and in combination. We observed that both pollutants alone increased LDH release 24 h post-exposure. Interestingly, we did observe via TEM that combined exposure to O3 and PM resulted in increased cellular penetration of PM particles. Furthermore, we found that levels of 4-hydroxy-nonenal (4HNE), a marker of oxidative damage, significantly increased 24 h post-exposure, in response to the combined pollutants. In addition, we observed increased levels of Nrf2, in response to the combined pollutants vs. either pollutant, although this effect was not followed by the increase in Nrf2-responsive genes expression HO1, SOD1, GPX, or GR nor enzymatic activity. Despite these observations, our study suggests that O3 exposure facilitate the cellular penetration of the particles leading to an increased oxidative damage, and additive defensive response.
Collapse
Affiliation(s)
- Franco Cervellati
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Brittany Woodby
- Animal Science Department, NC Research Campus Kannapolis, Plants for Human Health Institute, 600 Laureate Way, Kannapolis, NC, 28081, USA
| | - Mascia Benedusi
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Francesca Ferrara
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy
- Animal Science Department, NC Research Campus Kannapolis, Plants for Human Health Institute, 600 Laureate Way, Kannapolis, NC, 28081, USA
| | - Anna Guiotto
- Animal Science Department, NC Research Campus Kannapolis, Plants for Human Health Institute, 600 Laureate Way, Kannapolis, NC, 28081, USA
| | - Giuseppe Valacchi
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy.
- Animal Science Department, NC Research Campus Kannapolis, Plants for Human Health Institute, 600 Laureate Way, Kannapolis, NC, 28081, USA.
- Department of Food and Nutrition, Kyung Hee University, Seoul, South Korea.
| |
Collapse
|
6
|
Pambianchi E, Ferrara F, Pecorelli A, Woodby B, Grace M, Therrien JP, Lila MA, Valacchi G. Blueberry Extracts as a Novel Approach to Prevent Ozone-Induced Cutaneous Inflammasome Activation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9571490. [PMID: 32855770 PMCID: PMC7443250 DOI: 10.1155/2020/9571490] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/24/2020] [Accepted: 07/21/2020] [Indexed: 12/11/2022]
Abstract
The World Health Organization estimates that 7 million people die every year due to pollution exposure. Among the different pollutants to which living organism are exposed, ozone (O3) represents one of the most toxic, because its location which is the skin is one of the direct tissues exposed to the outdoor environment. Chronic exposure to outdoor stressors can alter cutaneous redox state resulting in the activation of inflammatory pathways. Recently, a new player in the inflammation mechanism was discovered: the multiprotein complex NLRP1 inflammasome, which has been shown to be also expressed in the skin. The topical application of natural compounds has been studied for the last 40 years as a possible approach to prevent and eventually cure skin conditions. Recently, the possibility to use blueberry (BB) extract to prevent pollution-induced skin toxicity has been of great interest in the cosmeceutical industry. In the present study, we analyzed the cutaneous protective effect of BB extract in several skin models (2D, 3D, and human skin explants). Specifically, we observed that in the different skin models used, BB extracts were able to enhance keratinocyte wound closure and normalize proliferation and migration responses previously altered by O3. In addition, pretreatment with BB extracts was able to prevent ozone-induced ROS production and inflammasome activation measured as NRLP1-ASC scaffold formation and also prevent the transcripts of key inflammasome players such as CASP1 and IL-18, suggesting that this approach as a possible new technology to prevent cutaneous pollution damage. Our data support the hypothesis that BB extracts can effectively reduce skin inflammation and be a possible new technology against cutaneous pollution-induced damage.
Collapse
Affiliation(s)
- Erika Pambianchi
- Plants for Human Health Institute, Animal Sciences Dept., NC Research Campus Kannapolis, NC State University, 28081, NC, USA
| | - Francesca Ferrara
- Plants for Human Health Institute, Animal Sciences Dept., NC Research Campus Kannapolis, NC State University, 28081, NC, USA
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Alessandra Pecorelli
- Plants for Human Health Institute, Animal Sciences Dept., NC Research Campus Kannapolis, NC State University, 28081, NC, USA
| | - Brittany Woodby
- Plants for Human Health Institute, Animal Sciences Dept., NC Research Campus Kannapolis, NC State University, 28081, NC, USA
| | - Mary Grace
- Plants for Human Health Institute, Food Bioprocessing & Nutrition Sciences Dept., NC Research Campus Kannapolis, NC State University, 28081, NC, USA
| | | | - Mary Ann Lila
- Plants for Human Health Institute, Food Bioprocessing & Nutrition Sciences Dept., NC Research Campus Kannapolis, NC State University, 28081, NC, USA
| | - Giuseppe Valacchi
- Plants for Human Health Institute, Animal Sciences Dept., NC Research Campus Kannapolis, NC State University, 28081, NC, USA
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy
- Department of Food and Nutrition, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
7
|
Mechanisms involved in the unbalanced redox homeostasis in osteoblastic cellular model of Alkaptonuria. Arch Biochem Biophys 2020; 690:108416. [PMID: 32502471 DOI: 10.1016/j.abb.2020.108416] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 11/22/2022]
Abstract
Alkaptonuria (AKU) is a rare metabolic disease correlated with the deficiency of homogentisate 1,2-dioxygenase and leading to an accumulation of the metabolite homogentisic acid (HGA) which can be subjected to oxidation and polymerization reactions. These events are considered a trigger for the induction of oxidative stress in AKU but, despite the large description of an altered redox status, the underlying pathogenetic processes are still unstudied. In the present study, we investigated the molecular mechanisms responsible for the oxidative damage present in an osteoblast-based cellular model of AKU. Bone, in fact, is largely affected in AKU patients: severe osteoclastic resorption, osteoporosis, even for pediatric cases, and an altered rate of remodeling biomarkers have been reported. In our AKU osteoblast cell model, we found a clear altered redox homeostasis, determined by elevated hydrogen peroxide (H2O2) levels and 4HNE protein adducts formation. These findings were correlated with increased NADPH oxidase (NOX) activity and altered mitochondrial respiration. In addition, we observed a decreased activity of superoxide dismutase (SOD) and reduced levels of thioredoxin (TRX) that parallel the decreased Nrf2-DNA binding. Overall, our results reveal that HGA is able to alter the cellular redox homeostasis by modulating the endogenous ROS production via NOX activation and mitochondrial dysfunctions and impair the cellular response mechanism. These findings can be useful for understanding the pathophysiology of AKU, not yet well studied in bones, but which is an important source of comorbidities that affect the life quality of the patients.
Collapse
|
8
|
HelixComplex snail mucus as a potential technology against O3 induced skin damage. PLoS One 2020; 15:e0229613. [PMID: 32084249 PMCID: PMC7034816 DOI: 10.1371/journal.pone.0229613] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 02/10/2020] [Indexed: 02/03/2023] Open
Abstract
Mucus form H. aspersa muller has been reported to have several therapeutic proprieties, such as antimicrobial activity, skin protection and wound repair. In this study, we have analyzed H. aspersa mucus (Helixcomplex) bio-adhesive efficacy and its defensive properties against the ozone (O3) (0.5 ppm for 2 hours) exposure in human keratinocytes and reconstructed human epidermis models. Cytotoxicity, tissue morphology and cytokine levels were determined. We confirmed HelixComplex regenerative and bio-adhesive properties, the latter possibly via the characteristic mucopolysaccharide composition. In addition, HelixComplex was able to protect from O3 exposure by preventing oxidative damage and the consequent pro-inflammatory response in both 2D and 3D models. Based on this study, it is possible to suggest HelixComplex as a potentially new protective technology against pollution induced skin damage.
Collapse
|
9
|
Pecorelli A, Woodby B, Prieux R, Valacchi G. Involvement of 4-hydroxy-2-nonenal in pollution-induced skin damage. Biofactors 2019; 45:536-547. [PMID: 31087730 DOI: 10.1002/biof.1513] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/19/2019] [Accepted: 04/02/2019] [Indexed: 12/17/2022]
Abstract
The effects of environmental insults on human health are a major global concern. Some of the most noxious pollutants that humans are exposed to include ozone (O3 ), particulate matter (PM), and cigarette smoke (CS). Since the skin is the first line of defense against environmental insults, it is considered one of the main target organs for the harmful insults of air pollution. Thus, there is solid evidence that skin pathologies such as premature aging, atopic dermatitis (AD), and psoriasis are associated with pollutant exposure; all of these skin conditions are also associated with an altered redox status. Therefore, although the mechanisms of action and concentrations of O3 , PM, and CS that we are exposed to differ, exposure to all of these pollutants is associated with the development of similar skin conditions due to the fact that all of these pollutants alter redox homeostasis, increasing reactive oxygen species production and oxidative stress. A main product of oxidative stress, induced by exposure to the aforementioned pollutants, is 4-hydroxy-2-nonenal (HNE), which derives from the oxidation of ω-6 polyunsaturated fatty acids. HNE is a highly reactive compound that can form adducts with cellular proteins and even DNA; it is also an efficient cell signaling molecule able to regulate mitogen-activated protein kinase pathways and the activity of redox-sensitive transcription factors such as Nrf2, AP1, and NFκB. Therefore, increased levels of HNE in the skin, in response to pollutants, likely accelerates skin aging and exacerbates existing skin inflammatory conditions; thus, targeting HNE formation could be an innovative cosmeceutical approach for topical applications.
Collapse
Affiliation(s)
- Alessandra Pecorelli
- Plants for Human Health Institute, Department of Animal Sciences, North Carolina State University, Kannapolis, North Carolina
| | - Brittany Woodby
- Plants for Human Health Institute, Department of Animal Sciences, North Carolina State University, Kannapolis, North Carolina
| | - Roxane Prieux
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Giuseppe Valacchi
- Plants for Human Health Institute, Department of Animal Sciences, North Carolina State University, Kannapolis, North Carolina
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|