1
|
Bottoni L, Minetti A, Realini G, Pio E, Giustarini D, Rossi R, Rocchio C, Franci L, Salvini L, Catona O, D'Aurizio R, Rasa M, Giurisato E, Neri F, Orlandini M, Chiariello M, Galvagni F. NRF2 activation by cysteine as a survival mechanism for triple-negative breast cancer cells. Oncogene 2024; 43:1701-1713. [PMID: 38600165 PMCID: PMC11136656 DOI: 10.1038/s41388-024-03025-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
Triple-negative breast cancer (TNBC) is a very aggressive and heterogeneous group of tumors. In order to develop effective therapeutic strategies, it is therefore essential to identify the subtype-specific molecular mechanisms underlying disease progression and resistance to chemotherapy. TNBC cells are highly dependent on exogenous cystine, provided by overexpression of the cystine/glutamate antiporter SLC7A11/xCT, to fuel glutathione synthesis and promote an oxidative stress response consistent with their high metabolic demands. Here we show that TNBC cells of the mesenchymal stem-like subtype (MSL) utilize forced cystine uptake to induce activation of the transcription factor NRF2 and promote a glutathione-independent mechanism to defend against oxidative stress. Mechanistically, we demonstrate that NRF2 activation is mediated by direct cysteinylation of the inhibitor KEAP1. Furthermore, we show that cystine-mediated NRF2 activation induces the expression of important genes involved in oxidative stress response, but also in epithelial-to-mesenchymal transition and stem-like phenotype. Remarkably, in survival analysis, four upregulated genes (OSGIN1, RGS17, SRXN1, AKR1B10) are negative prognostic markers for TNBC. Finally, expression of exogenous OSGIN1, similarly to expression of exogenous NRF2, can prevent cystine depletion-dependent death of MSL TNBC cells. The results suggest that the cystine/NRF2/OSGIN1 axis is a potential target for effective treatment of MSL TNBCs.
Collapse
Affiliation(s)
- Laura Bottoni
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100, Siena, Italy
| | - Alberto Minetti
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100, Siena, Italy
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Giulia Realini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100, Siena, Italy
| | - Elena Pio
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100, Siena, Italy
| | - Daniela Giustarini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100, Siena, Italy
- Center for Colloid and Surface Science (CSGI), University of Florence, Sesto Fiorentino, 50019, Florence, Italy
| | - Ranieri Rossi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100, Siena, Italy
- Center for Colloid and Surface Science (CSGI), University of Florence, Sesto Fiorentino, 50019, Florence, Italy
| | - Chiara Rocchio
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100, Siena, Italy
| | - Lorenzo Franci
- Istituto di Fisiologia Clinica (IFC), Consiglio Nazionale delle Ricerche (CNR) and Core Research Laboratory, Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), 53100, Siena, Italy
| | | | - Orazio Catona
- Institute of Informatics and Telematics (IIT), CNR, Pisa, Italy
| | | | - Mahdi Rasa
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
- Institute of Immunology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Emanuele Giurisato
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100, Siena, Italy
| | - Francesco Neri
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
- Molecular Biotechnology Center, University of Turin, Torino, Italy
| | - Maurizio Orlandini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100, Siena, Italy
| | - Mario Chiariello
- Istituto di Fisiologia Clinica (IFC), Consiglio Nazionale delle Ricerche (CNR) and Core Research Laboratory, Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), 53100, Siena, Italy
| | - Federico Galvagni
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100, Siena, Italy.
| |
Collapse
|
2
|
Getsy PM, Coffee GA, May WJ, Baby SM, Bates JN, Lewis SJ. The Reducing Agent Dithiothreitol Modulates the Ventilatory Responses That Occur in Freely Moving Rats during and following a Hypoxic-Hypercapnic Challenge. Antioxidants (Basel) 2024; 13:498. [PMID: 38671945 PMCID: PMC11047747 DOI: 10.3390/antiox13040498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
The present study examined the hypothesis that changes in the oxidation-reduction state of thiol residues in functional proteins play a major role in the expression of the ventilatory responses in conscious rats that occur during a hypoxic-hypercapnic (HH) gas challenge and upon return to room air. A HH gas challenge in vehicle-treated rats elicited robust and sustained increases in minute volume (via increases in frequency of breathing and tidal volume), peak inspiratory and expiratory flows, and inspiratory and expiratory drives while minimally affecting the non-eupneic breathing index (NEBI). The HH-induced increases in these parameters, except for frequency of breathing, were substantially diminished in rats pre-treated with the potent and lipophilic disulfide-reducing agent, L,D-dithiothreitol (100 µmol/kg, IV). The ventilatory responses that occurred upon return to room air were also substantially different in dithiothreitol-treated rats. In contrast, pre-treatment with a substantially higher dose (500 µmol/kg, IV) of the lipophilic congener of the monosulfide, N-acetyl-L-cysteine methyl ester (L-NACme), only minimally affected the expression of the above-mentioned ventilatory responses that occurred during the HH gas challenge or upon return to room air. The effectiveness of dithiothreitol suggests that the oxidation of thiol residues occurs during exposure to a HH gas challenge and that this process plays an essential role in allowing for the expression of the post-HH excitatory phase in breathing. However, this interpretation is contradicted by the lack of effects of L-NACme. This apparent conundrum may be explained by the disulfide structure affording unique functional properties to dithiothreitol in comparison to monosulfides. More specifically, the disulfide structure may give dithiothreitol the ability to alter the conformational state of functional proteins while transferring electrons. It is also possible that dithiothreitol is simply a more efficient reducing agent following systemic injection, although one interpretation of the data is that the effects of dithiothreitol are not due to its reducing ability.
Collapse
Affiliation(s)
- Paulina M. Getsy
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106, USA; (P.M.G.); (G.A.C.)
| | - Gregory A. Coffee
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106, USA; (P.M.G.); (G.A.C.)
| | - Walter J. May
- Department of Pediatrics, University of Virginia, Charlottesville, VA 22903, USA;
| | - Santhosh M. Baby
- Galleon Pharmaceuticals, Inc., 213 Witmer Road, Horsham, PA 19044, USA;
| | - James N. Bates
- Department of Anesthesiology, University of Iowa Hospitals and Clinics, Iowa, IA 52242, USA;
| | - Stephen J. Lewis
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106, USA; (P.M.G.); (G.A.C.)
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
- Functional Electrical Stimulation Center, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
3
|
Kukoc-Modun L, Kraljevic T, Tsikas D, Spassov TG, Kolev SD. Determination of N-Acetyl-L-cysteine Ethyl Ester (NACET) by Sequential Injection Analysis. SENSORS (BASEL, SWITZERLAND) 2024; 24:312. [PMID: 38257405 PMCID: PMC10820985 DOI: 10.3390/s24020312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/25/2023] [Accepted: 12/30/2023] [Indexed: 01/24/2024]
Abstract
New sequential injection analysis (SIA) methods with optical sensing for the determination of N-acetyl-L-cysteine ethyl ester (NACET) have been developed and optimized. NACET is a potential drug and antioxidant with advantageous pharmacokinetics. The methods involve the reduction of Cu(II) in its complexes with neocuproine (NCN), bicinchoninic acid (BCA), and bathocuproine disulfonic acid (BCS) to the corresponding chromophoric Cu(I) complexes by the analyte. The absorbance of the Cu(I) complexes with NCN, BCA, and BCS was measured at their maximum absorbance wavelengths of 458, 562, and 483 nm, respectively. The sensing manifold parameters and experimental conditions were optimized for each of the Cu(II) complexes used. Under optimal conditions, the corresponding linear calibration ranges, limits of detection, and sampling rates were 8.0 × 10-6-2.0 × 10-4 mol L-1, 5.5 × 10-6 mol L-1, and 60 h-1 for NCN; 6.0 × 10-6-1.0 × 10-4 mol L-1, 5.2 × 10-6 mol L-1, and 60 h-1 for BCA; and 4.0 × 10-6-1.0 × 10-4 mol L-1, 2.6 × 10-6 mol L-1, and 78 h-1 for BCS. The Cu(II)-BCS complex was found to be best performing in terms of sensitivity and sampling rate. Usual excipients in pharmaceutical preparations did not interfere with NACET analysis.
Collapse
Affiliation(s)
- Lea Kukoc-Modun
- Department of Analytical Chemistry, Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000 Split, Croatia
| | - Tomislav Kraljevic
- Department of Chemistry, Faculty of Science and Education, University of Mostar, Matice hrvatske bb, 88000 Mostar, Bosnia and Herzegovina;
| | - Dimitrios Tsikas
- Institute of Toxicology, Core Unit Proteomics, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany;
| | - Tony G. Spassov
- Faculty of Chemistry and Pharmacy, Sofia University “St. Kl. Ohridski”, 1 James Bourchier Blvd., 1164 Sofia, Bulgaria;
| | - Spas D. Kolev
- Faculty of Chemistry and Pharmacy, Sofia University “St. Kl. Ohridski”, 1 James Bourchier Blvd., 1164 Sofia, Bulgaria;
- School of Chemistry, The University of Melbourne, Melbourne, VIC 3010, Australia
- Department of Chemical Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
4
|
Pontes AP, van der Wal S, Ranamalla SR, Roelofs K, Tomuta I, Creemers LB, Rip J. Cell uptake and intracellular trafficking of bioreducible poly(amidoamine) nanoparticles for efficient mRNA translation in chondrocytes. Front Bioeng Biotechnol 2023; 11:1290871. [PMID: 38026902 PMCID: PMC10668025 DOI: 10.3389/fbioe.2023.1290871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Disulfide-containing poly(amidoamine) (PAA) is a cationic and bioreducible polymer, with potential use as a nanocarrier for mRNA delivery in the treatment of several diseases including osteoarthritis (OA). Successful transfection of joint cells with PAA-based nanoparticles (NPs) was shown previously, but cell uptake, endosomal escape and nanoparticle biodegradation were not studied in detail. In this study, C28/I2 human chondrocytes were transfected with NPs co-formulated with a PEG-polymer coating and loaded with EGFP mRNA for confocal imaging of intracellular trafficking and evaluation of transfection efficiency. Compared with uncoated NPs, PEG-coated NPs showed smaller particle size, neutral surface charge, higher colloidal stability and superior transfection efficiency. Furthermore, endosomal entrapment of these PEG-coated NPs decreased over time and mRNA release could be visualized both in vitro and in live cells. Importantly, cell treatment with modulators of the intracellular reducing environment showed that glutathione (GSH) concentrations affect translation of the mRNA payload. Finally, we applied a D-optimal experimental design to test different polymer-to-RNA loading ratios and dosages, thus obtaining an optimal formulation with up to ≈80% of GFP-positive cells and without toxic effects. Together, the biocompatibility and high transfection efficiency of this system may be a promising tool for intra-articular delivery of therapeutical mRNA in OA treatment.
Collapse
Affiliation(s)
| | | | - Saketh R. Ranamalla
- Department of Pharmaceutical Technology and Biopharmacy, University of Medicine and Pharmacy “Iuliu Hațieganu”, Cluj-Napoca, Romania
| | | | - Ioan Tomuta
- Department of Pharmaceutical Technology and Biopharmacy, University of Medicine and Pharmacy “Iuliu Hațieganu”, Cluj-Napoca, Romania
| | - Laura B. Creemers
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, Netherlands
| | - Jaap Rip
- 20Med Therapeutics BV, Leiden, Netherlands
| |
Collapse
|
5
|
Giustarini D, Milzani A, Dalle-Donne I, Rossi R. How to Increase Cellular Glutathione. Antioxidants (Basel) 2023; 12:antiox12051094. [PMID: 37237960 DOI: 10.3390/antiox12051094] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/29/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Glutathione (GSH) has special antioxidant properties due to its high intracellular concentration, ubiquity, and high reactivity towards electrophiles of the sulfhydryl group of its cysteine moiety. In most diseases where oxidative stress is thought to play a pathogenic role, GSH concentration is significantly reduced, making cells more susceptible to oxidative damage. Therefore, there is a growing interest in determining the best method(s) to increase cellular glutathione for both disease prevention and treatment. This review summarizes the major strategies for successfully increasing cellular GSH stores. These include GSH itself, its derivatives, NRf-2 activators, cysteine prodrugs, foods, and special diets. The possible mechanisms by which these molecules can act as GSH boosters, their related pharmacokinetic issues, and their advantages and disadvantages are discussed.
Collapse
Affiliation(s)
- Daniela Giustarini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Aldo Milzani
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | | | - Ranieri Rossi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| |
Collapse
|
6
|
γ-Glutamylcysteine Alleviates Ischemic Stroke-Induced Neuronal Apoptosis by Inhibiting ROS-Mediated Endoplasmic Reticulum Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:2961079. [PMID: 34824669 PMCID: PMC8610689 DOI: 10.1155/2021/2961079] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/27/2021] [Indexed: 11/22/2022]
Abstract
Ischemic stroke is a severe and acute neurological disorder with limited therapeutic strategies currently available. Oxidative stress is one of the critical pathological factors in ischemia/reperfusion injury, and high levels of reactive oxygen species (ROS) may drive neuronal apoptosis. Rescuing neurons in the penumbra is a potential way to recover from ischemic stroke. Endogenous levels of the potent ROS quencher glutathione (GSH) decrease significantly after cerebral ischemia. Here, we aimed to investigate the neuroprotective effects of γ-glutamylcysteine (γ-GC), an immediate precursor of GSH, on neuronal apoptosis and brain injury during ischemic stroke. Middle cerebral artery occlusion (MCAO) and oxygen-glucose deprivation/reoxygenation (OGD/R) were used to mimic cerebral ischemia in mice, neuronal cell lines, and primary neurons. Our data indicated that exogenous γ-GC treatment mitigated oxidative stress, as indicated by upregulated GSH and decreased ROS levels. In addition, γ-GC attenuated ischemia/reperfusion-induced neuronal apoptosis and brain injury in vivo and in vitro. Furthermore, transcriptomics approaches and subsequent validation studies revealed that γ-GC attenuated penumbra neuronal apoptosis by inhibiting the activation of protein kinase R-like endoplasmic reticulum kinase (PERK) and inositol-requiring enzyme 1α (IRE1α) in the endoplasmic reticulum (ER) stress signaling pathway in OGD/R-treated cells and ischemic brain tissues. To the best of our knowledge, this study is the first to report that γ-GC attenuates ischemia-induced neuronal apoptosis by suppressing ROS-mediated ER stress. γ-GC may be a promising therapeutic agent for ischemic stroke.
Collapse
|
7
|
Li S, Lu Z, Jiao L, Zhang R, Hong Y, Aa J, Wang G. Quantitative determination of D 4-cystine in mice using LC-MS/MS and its application to the assessment of pharmacokinetics and bioavailability. J Pharm Anal 2021; 11:580-587. [PMID: 34765270 PMCID: PMC8572678 DOI: 10.1016/j.jpha.2020.08.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/20/2020] [Accepted: 08/17/2020] [Indexed: 12/01/2022] Open
Abstract
Cystine is the primary source material for the synthesis of glutathione. However, the pharmacokinetics and tissue distribution of cystine are largely unknown. A surrogate analyte D4-cystine was employed to generate calibration curves for the determination of levels of D4-cystine and endogenous cystine in mice by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Validation assessments proved the sensitivity, specificity and reproducibility of the method with a lower limit of quantification (LLOQ) of 5 ng/mL over 5–5000 ng/mL in plasma. The pharmacokinetics of D4-cystine were evaluated after administering injections and oral solutions, both of which minimally impacted endogenous cystine levels. The absolute bioavailability of cystine was 18.6%, 15.1% and 25.6% at doses of 25, 50 and 100 mg/kg, respectively. Intravenously injected D4-cystine resulted in dramatically high plasma levels with reduced levels in the brain and liver. Intragastrically administered D4-cystine resulted in high levels in the plasma and stomach with relatively low levels in the lung, kidney, heart and brain. An LC-MS/MS method was developed to determine exogenous and endogenous cystine with an isotope-labelled surrogate analyte. The pharmacokinetics of D4-cystine were assessed after i.v./i.g. administration and the absolute bioavailability was evaluated. For the first time, the distribution of D4-cystine was profiled in diverse tissues/organs after i.v./i.g. administration.
Collapse
Affiliation(s)
- Shuning Li
- Jiangsu Province Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| | - Zhenyao Lu
- Jiangsu Province Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| | - Li Jiao
- Jiangsu Province Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| | - Ran Zhang
- Jiangsu Province Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| | - Yu Hong
- Jiangsu Province Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| | - Jiye Aa
- Jiangsu Province Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| | - Guangji Wang
- Jiangsu Province Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| |
Collapse
|
8
|
Kukoc-Modun L, Kraljević T, Tsikas D, Radić N, Modun D. Determination of N-Acetyl-l-cysteine Ethyl Ester (NACET) by Flow Injection Analysis and Spectrophotometric Detection Using Different Thiol-Sensitive Ligands. Molecules 2021; 26:molecules26226826. [PMID: 34833918 PMCID: PMC8624116 DOI: 10.3390/molecules26226826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 11/22/2022] Open
Abstract
A new flow injection spectrophotometric method for the determination of N-acetyl-l-cysteine ethyl ester (NACET) was developed and validated. The method is based on the reduction of Cu(II)-ligand complexes to chromophoric Cu(I)-ligand complexes with the analyte. The studied ligands were neocuproine (NCN), bicinchoninic acid (BCA) and bathocuproine disulfonic acid (BCS). The absorbance of the Cu(I)-ligand complex was measured at 458, 562 and 483 nm for the reactions of NACET with NCN, BCA and BCS, respectively. The method was validated in terms of linear dynamic range, limit of detection and quantitation, accuracy, selectivity, and precision. Experimental conditions were optimized by a univariate method, yielding linear calibration curves in a concentration range from 2.0 × 10−6 mol L−1 to 2.0 × 10−4 mol L−1 using NCN; 2.0 × 10−6 mol L−1 to 1.0 × 10−4 mol L−1 using BCA and 6.0 × 10−7 mol L−1 to 1.2 × 10−4 mol L−1 using BCS. The achieved analytical frequency was 90 h−1 for all three ligands. The method was successfully employed for NACET determination in pharmaceutical preparations, indicating that this FIA method fulfilled all the essential demands for the determination of NACET in quality control laboratories, as it combined low instrument and reagent costs with a high sampling rate.
Collapse
Affiliation(s)
- Lea Kukoc-Modun
- Department of Analytical Chemistry, Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000 Split, Croatia;
- Correspondence: ; Tel.: +385-98706693
| | - Tomislav Kraljević
- Department of Chemistry, Faculty of Science and Education, University of Mostar, Matice hrvatske bb, 88000 Mostar, Bosnia and Herzegovina;
| | - Dimitrios Tsikas
- Institute of Toxicology, Core Unit Proteomics, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany;
| | - Njegomir Radić
- Department of Analytical Chemistry, Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000 Split, Croatia;
| | - Darko Modun
- Department of Pharmacy, School of Medicine, University of Split, Šoltanska 2, 21000 Split, Croatia;
| |
Collapse
|
9
|
Navarro-Barreda D, Bedrina B, Galindo F, Miravet JF. Glutathione-responsive molecular nanoparticles from a dianionic bolaamphiphile and their use as carriers for targeted delivery. J Colloid Interface Sci 2021; 608:2009-2017. [PMID: 34752979 DOI: 10.1016/j.jcis.2021.10.142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/21/2021] [Accepted: 10/24/2021] [Indexed: 12/26/2022]
Abstract
The formation in aqueous media of molecular nanoparticles from a bolaamphiphile (SucIleCsa) incorporating a disulfide moiety is described. The particles can be loaded efficiently with the lipophilic mitochondrial marker DiOC6(3), quenching its fluorescence, which is recovered upon reductive particle disassembly. DiOC6(3) transport into human colorectal adenocarcinoma cells (HT-29) is demonstrated using flow cytometry and confocal scanning fluorescence microscopy. A significant increase in intracellular fluorescence is observed when the cells are stimulated to produce glutathione (GSH). These new molecular nanoparticles can be considered a theranostic tool that simultaneously achieves targeted delivery of lipophilic substances and signals high levels of GSH.
Collapse
Affiliation(s)
- Diego Navarro-Barreda
- Department of Inorganic and Organic Chemistry, Universitat Jaume, 12071 Castelló de la Plana, Spain
| | - Begoña Bedrina
- Department of Inorganic and Organic Chemistry, Universitat Jaume, 12071 Castelló de la Plana, Spain
| | - Francisco Galindo
- Department of Inorganic and Organic Chemistry, Universitat Jaume, 12071 Castelló de la Plana, Spain.
| | - Juan F Miravet
- Department of Inorganic and Organic Chemistry, Universitat Jaume, 12071 Castelló de la Plana, Spain.
| |
Collapse
|
10
|
Baby S, Gruber R, Discala J, Puskovic V, Jose N, Cheng F, Jenkins M, Seckler J, Lewis S. Systemic Administration of Tempol Attenuates the Cardiorespiratory Depressant Effects of Fentanyl. Front Pharmacol 2021; 12:690407. [PMID: 34248639 PMCID: PMC8260831 DOI: 10.3389/fphar.2021.690407] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/11/2021] [Indexed: 11/30/2022] Open
Abstract
Fentanyl is a high-potency opioid receptor agonist that elicits profound analgesia and suppression of breathing in humans and animals. To date, there is limited evidence as to whether changes in oxidant stress are important factors in any of the actions of acutely administered fentanyl. This study determined whether the clinically approved superoxide dismutase mimetic, Tempol (4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl), or a potent antioxidant, N-acetyl-L-cysteine methyl ester (L-NACme), modify the cardiorespiratory and analgesic actions of fentanyl. We examined whether the prior systemic injection of Tempol or L-NACme affects the cardiorespiratory and/or analgesic responses elicited by the subsequent injection of fentanyl in isoflurane-anesthetized and/or freely moving male Sprague-Dawley rats. Bolus injections of Tempol (25, 50 or 100 mg/kg, IV) elicited minor increases in frequency of breathing, tidal volume and minute ventilation. The ventilatory-depressant effects of fentanyl (5 μg/kg, IV) given 15 min later were dose-dependently inhibited by prior injections of Tempol. Tempol elicited dose-dependent and transient hypotension that had (except for the highest dose) resolved when fentanyl was injected. The hypotensive responses elicited by fentanyl were markedly blunted after Tempol pretreatment. The analgesic actions of fentanyl (25 μg/kg, IV) were not affected by Tempol (100 mg/kg, IV). L-NACme did not modify any of the effects of fentanyl. We conclude that prior administration of Tempol attenuates the cardiorespiratory actions of fentanyl without affecting the analgesic effects of this potent opioid. As such, Tempol may not directly affect opioid-receptors that elicit the effects of fentanyl. Whether, the effects of Tempol are solely due to alterations in oxidative stress is in doubt since the powerful antioxidant, L-NACme, did not affect fentanyl-induced suppression of breathing.
Collapse
Affiliation(s)
- Santhosh Baby
- Galleon Pharmaceuticals, Inc., Horsham, PA, United States
| | - Ryan Gruber
- Galleon Pharmaceuticals, Inc., Horsham, PA, United States
| | - Joseph Discala
- Galleon Pharmaceuticals, Inc., Horsham, PA, United States
| | | | - Nijo Jose
- Department of Radiotherapy and Oncology, Kasturba Medical College, Manipal, India
| | - Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Michael Jenkins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States.,Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
| | - James Seckler
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Stephen Lewis
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
11
|
Pedre B, Barayeu U, Ezeriņa D, Dick TP. The mechanism of action of N-acetylcysteine (NAC): The emerging role of H 2S and sulfane sulfur species. Pharmacol Ther 2021; 228:107916. [PMID: 34171332 DOI: 10.1016/j.pharmthera.2021.107916] [Citation(s) in RCA: 227] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 12/19/2022]
Abstract
Initially adopted as a mucolytic about 60 years ago, the cysteine prodrug N-acetylcysteine (NAC) is the standard of care to treat paracetamol intoxication, and is included on the World Health Organization's list of essential medicines. Additionally, NAC increasingly became the epitome of an "antioxidant". Arguably, it is the most widely used "antioxidant" in experimental cell and animal biology, as well as clinical studies. Most investigators use and test NAC with the idea that it prevents or attenuates oxidative stress. Conventionally, it is assumed that NAC acts as (i) a reductant of disulfide bonds, (ii) a scavenger of reactive oxygen species and/or (iii) a precursor for glutathione biosynthesis. While these mechanisms may apply under specific circumstances, they cannot be generalized to explain the effects of NAC in a majority of settings and situations. In most cases the mechanism of action has remained unclear and untested. In this review, we discuss the validity of conventional assumptions and the scope of a newly discovered mechanism of action, namely the conversion of NAC into hydrogen sulfide and sulfane sulfur species. The antioxidative and cytoprotective activities of per- and polysulfides may explain many of the effects that have previously been ascribed to NAC or NAC-derived glutathione.
Collapse
Affiliation(s)
- Brandán Pedre
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Uladzimir Barayeu
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Daria Ezeriņa
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Tobias P Dick
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany.
| |
Collapse
|
12
|
Tosi GM, Giustarini D, Franci L, Minetti A, Imperatore F, Caldi E, Fiorenzani P, Aloisi AM, Sparatore A, Rossi R, Chiariello M, Orlandini M, Galvagni F. Superior Properties of N-Acetylcysteine Ethyl Ester over N-Acetyl Cysteine to Prevent Retinal Pigment Epithelial Cells Oxidative Damage. Int J Mol Sci 2021; 22:E600. [PMID: 33435325 PMCID: PMC7827200 DOI: 10.3390/ijms22020600] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/28/2020] [Accepted: 01/06/2021] [Indexed: 12/20/2022] Open
Abstract
Oxidative stress plays a key role in the pathophysiology of retinal diseases, including age-related macular degeneration (AMD) and diabetic retinopathy, which are the major causes of irreversible blindness in developed countries. An excess of reactive oxygen species (ROS) can directly cause functional and morphological impairments in retinal pigment epithelium (RPE), endothelial cells, and retinal ganglion cells. Antioxidants may represent a preventive/therapeutic strategy and reduce the risk of progression of AMD. Among antioxidants, N-acetyl-L-cysteine (NAC) is widely studied and has been proposed to have therapeutic benefit in treating AMD by mitigating oxidative damage in RPE. Here, we demonstrate that N-acetyl-L-cysteine ethyl ester (NACET), a lipophilic cell-permeable cysteine derivative, increases the viability in oxidative stressed RPE cells more efficiently than NAC by reacting directly and more rapidly with oxidizing agents, and that NACET, but not NAC, pretreatment predisposes RPE cells to oxidative stress resistance and increases the intracellular reduced glutathione (GSH) pool available to act as natural antioxidant defense. Moreover, we demonstrate the ability of NACET to increase GSH levels in rats' eyes after oral administration. In conclusion, even if experiments in AMD animal models are still needed, our data suggest that NACET may play an important role in preventing and treating retinal diseases associated with oxidative stress, and may represent a valid and more efficient alternative to NAC in therapeutic protocols in which NAC has already shown promising results.
Collapse
Affiliation(s)
- Gian Marco Tosi
- Ophthalmology Unit of the Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy;
| | - Daniela Giustarini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy; (D.G.); (A.M.); (E.C.); (R.R.)
| | - Lorenzo Franci
- Core Research Laboratory, Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), 53100 Siena, Italy; (L.F.); (F.I.); (M.C.)
- Istituto di Fisiologia Clinica, Consiglio Nazionale delle Ricerche, 53100 Siena, Italy
| | - Alberto Minetti
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy; (D.G.); (A.M.); (E.C.); (R.R.)
| | - Francesco Imperatore
- Core Research Laboratory, Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), 53100 Siena, Italy; (L.F.); (F.I.); (M.C.)
- Istituto di Fisiologia Clinica, Consiglio Nazionale delle Ricerche, 53100 Siena, Italy
| | - Elena Caldi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy; (D.G.); (A.M.); (E.C.); (R.R.)
| | - Paolo Fiorenzani
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy; (P.F.); (A.M.A.)
| | - Anna Maria Aloisi
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy; (P.F.); (A.M.A.)
| | - Anna Sparatore
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy;
| | - Ranieri Rossi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy; (D.G.); (A.M.); (E.C.); (R.R.)
| | - Mario Chiariello
- Core Research Laboratory, Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), 53100 Siena, Italy; (L.F.); (F.I.); (M.C.)
- Istituto di Fisiologia Clinica, Consiglio Nazionale delle Ricerche, 53100 Siena, Italy
| | - Maurizio Orlandini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy; (D.G.); (A.M.); (E.C.); (R.R.)
| | - Federico Galvagni
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy; (D.G.); (A.M.); (E.C.); (R.R.)
| |
Collapse
|
13
|
Progression of heart failure is attenuated by antioxidant therapy with N-acetylcysteine in myocardial infarcted female rats. Mol Biol Rep 2020; 47:8645-8656. [PMID: 33048324 DOI: 10.1007/s11033-020-05907-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/07/2020] [Indexed: 01/09/2023]
Abstract
This study investigated the therapeutic potential of N-acetylcysteine (NAC) in the treatment of heart failure in female rats. Myocardial infarcted (MI) rats were given NAC (250 mg/kg/day p.o.) during 28 days after surgery (MI + NAC) or vehicle (MI + Placebo), and sham-operated rats received the same treatments (Sham + NAC and Sham + Placebo). Electrocardiographic and echocardiographic analyses were performed in the last week of treatment. Cardiac mRNA levels of types I and II superoxide dismutase (SOD), catalase, types I and III glutathione peroxidase (GPX), nerve growth factor (NGF), β1-adrenergic receptor (β1ADR), and type 2 muscarinic receptor (M2R) were assessed. Cardiac levels NADPH oxidase (NOX) activity, total content of reduced thiols, and SOD, GPX, and catalase activity were assessed. Compared to MI + Placebo group, MI + NAC group exhibited decreased NOX activity, increased content of reduced thiols, increased GPX activity, and normalized GPX III mRNA levels (p < 0.05). Heart and lung weights, left ventricular (LV) end-diastolic volume and left atrium/aorta ratio were decreased, while LV posterior wall thickness and ejection fraction were increased in MI + NAC group versus MI + Placebo rats (p < 0.05). Power density of low frequency band was decreased, while power density of high frequency and the root mean square of the successive differences were increased in MI + NAC rats versus MI + Placebo (p < 0.05). These findings indicate that NAC promotes therapeutic effects in the progression of MI-induced heart failure in female rats.
Collapse
|
14
|
Anethole Dithiolethione Increases Glutathione in Kidney by Inhibiting γ-Glutamyltranspeptidase: Biochemical Interpretation and Pharmacological Consequences. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3562972. [PMID: 33062138 PMCID: PMC7539083 DOI: 10.1155/2020/3562972] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/28/2020] [Accepted: 09/10/2020] [Indexed: 01/10/2023]
Abstract
Aims Anethole dithiolethione (ADT) is a marketed drug to treat xerostomia. Its mechanism of action is still unknown, but several preclinical studies indicate that it is able to increase intracellular glutathione (GSH) and protect against oxidative stress. Here, we investigated the molecular mechanisms behind these effects. Results Oral treatment of rats confirmed the GSH enhancing properties of ADT; among the different organs examined in this study, only the kidney showed a significant GSH increase that was already observed at low-dose treatments. The increase in GSH correlated with a decrease in γ-glutamyltranspeptidase (γ-GT) activity of the different tissues. In vitro and ex vivo experiments with tubular renal cells and isolated perfused rat kidney showed that the cellular uptake of intact GSH was correlated with the extracellular concentrations of GSH. Conclusion s. The prominent in vivopharmacological effect of ADT was a marked increase of GSH concentration in the kidney and a decrease of some systemic and renal biomarkers of oxidative stress. In particular, by inhibition of γ-GT activity, it decreased the production cysteinylglycine, a thiol that has prooxidant effects as the consequence of its autooxidation. The activity of ADT as GSH enhancer in both the circulation and the kidney was long-lasting. All these characteristics make ADT a promising drug to protect the kidney, and in particular proximal tubule cells, from xenobiotic-induced damage.
Collapse
|
15
|
Kularatne RN, Bulumulla C, Catchpole T, Takacs A, Christie A, Stefan MC, Csaky KG. Protection of human retinal pigment epithelial cells from oxidative damage using cysteine prodrugs. Free Radic Biol Med 2020; 152:386-394. [PMID: 32229256 DOI: 10.1016/j.freeradbiomed.2020.03.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/11/2020] [Accepted: 03/24/2020] [Indexed: 01/25/2023]
Abstract
Age-related macular degeneration (AMD) is one of the major causes of vision loss in the elderly in most developed countries. Among other causes, oxidative stress in the retinal pigment epithelium (RPE) has been hypothesized to be a major driving force of AMD pathology. Oxidative stress could be treated by antioxidant administration into the RPE cells. However, to achieve high in-vivo efficacy of an antioxidant, it is imperative that the agent be able to penetrate the tissues and cells. Evidence suggests that lipophilicity governs cellular penetrance. Out of many antioxidant candidates, N-acetyl-L-cysteine (a prodrug of L-cysteine) (NAC) is a potent antioxidant as the bioavailability of the parent drug, L-cysteine, determines the production of glutathione; the universal antioxidant that regulates ROS. To increase the lipophilicity, four ester derivatives of N-acetylcysteine: N-acetylcysteine methyl ester, N-acetylcysteine ethyl ester, N-acetylcysteine propyl ester, and N-acetylcysteine butyl ester were synthesized. To mimic in vitro AMD conditions, hydroquinone, a component of cigarette smoke, was used as the oxidative insult. Cytosolic and mitochondrial protection against oxidative stress were tested using cytosolic and mitochondrial specific assays. The results provide evidence that these lipophilic cysteine prodrugs provide increased protection against oxidative stress in human RPE cells compared with NAC.
Collapse
Affiliation(s)
| | | | | | - Alison Takacs
- Retina Foundation of the Southwest, Dallas, TX, 75231, USA
| | | | - Mihaela C Stefan
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, 75080, USA; Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Karl G Csaky
- Retina Foundation of the Southwest, Dallas, TX, 75231, USA.
| |
Collapse
|
16
|
Rose CD, Pompili D, Henke K, Van Gennip JLM, Meyer-Miner A, Rana R, Gobron S, Harris MP, Nitz M, Ciruna B. SCO-Spondin Defects and Neuroinflammation Are Conserved Mechanisms Driving Spinal Deformity across Genetic Models of Idiopathic Scoliosis. Curr Biol 2020; 30:2363-2373.e6. [PMID: 32386528 DOI: 10.1016/j.cub.2020.04.020] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 03/05/2020] [Accepted: 04/08/2020] [Indexed: 12/23/2022]
Abstract
Adolescent idiopathic scoliosis (AIS) affects 3% to 4% of children between the ages of 11 and 18 [1, 2]. This disorder, characterized by abnormal three-dimensional spinal curvatures that typically develop during periods of rapid growth, occurs in the absence of congenital vertebral malformations or neuromuscular defects [1]. Genetic heterogeneity [3] and a historical lack of appropriate animal models [4] have confounded basic understanding of AIS biology; thus, treatment options remain limited [5, 6]. Recently, genetic studies using zebrafish have linked idiopathic-like scoliosis to irregularities in motile cilia-mediated cerebrospinal fluid flow [7-9]. However, because loss of cilia motility in human primary ciliary dyskinesia patients is not fully associated with scoliosis [10, 11], other pathogenic mechanisms remain to be determined. Here, we demonstrate that zebrafish scospondin (sspo) mutants develop late-onset idiopathic-like spinal curvatures in the absence of obvious cilia motility defects. Sspo is a large secreted glycoprotein functionally associated with the subcommissural organ and Reissner's fiber [12]-ancient and enigmatic organs of the brain ventricular system reported to govern cerebrospinal fluid homeostasis [13, 14], neurogenesis [12, 15-18], and embryonic morphogenesis [19]. We demonstrate that irregular deposition of Sspo within brain ventricles is associated with idiopathic-like scoliosis across diverse genetic models. Furthermore, Sspo defects are sufficient to induce oxidative stress and neuroinflammatory responses implicated in AIS pathogenesis [9]. Through screening for chemical suppressors of sspo mutant phenotypes, we also identify potent agents capable of blocking severe juvenile spine deformity. Our work thus defines a new preclinical model of AIS and provides tools to realize novel therapeutic strategies.
Collapse
Affiliation(s)
- Chloe D Rose
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, The University of Toronto, Toronto, ON M5S 1A8, Canada
| | - David Pompili
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, The University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Katrin Henke
- Department of Orthopedic Research, Boston Children's Hospital, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Jenica L M Van Gennip
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, The University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Anne Meyer-Miner
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, The University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Rahul Rana
- Department of Chemistry, The University of Toronto, Toronto, ON M5S 3H6, Canada
| | | | - Matthew P Harris
- Department of Orthopedic Research, Boston Children's Hospital, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Mark Nitz
- Department of Chemistry, The University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Brian Ciruna
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, The University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
17
|
Bartoccini F, Mari M, Retini M, Fraternale A, Piersanti G. Large-Scale Preparation of N-Butanoyl- l-glutathione (C4-GSH). Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.9b00120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Francesca Bartoccini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza Rinascimento 6, 61029 Urbino, PU, Italy
- Gluos s.r.l., Piazza Brancaleoni, 1, 61049 Urbania, Italy
| | - Michele Mari
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza Rinascimento 6, 61029 Urbino, PU, Italy
- Gluos s.r.l., Piazza Brancaleoni, 1, 61049 Urbania, Italy
| | - Michele Retini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza Rinascimento 6, 61029 Urbino, PU, Italy
- Gluos s.r.l., Piazza Brancaleoni, 1, 61049 Urbania, Italy
| | - Alessandra Fraternale
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza Rinascimento 6, 61029 Urbino, PU, Italy
| | - Giovanni Piersanti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza Rinascimento 6, 61029 Urbino, PU, Italy
- Gluos s.r.l., Piazza Brancaleoni, 1, 61049 Urbania, Italy
| |
Collapse
|
18
|
Zhang J, Ahmad S, Wang LY, Han Q, Zhang JC, Luo YP. Cell death induced by α-terthienyl via reactive oxygen species-mediated mitochondrial dysfunction and oxidative stress in the midgut of Aedes aegypti larvae. Free Radic Biol Med 2019; 137:87-98. [PMID: 31022448 DOI: 10.1016/j.freeradbiomed.2019.04.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 04/14/2019] [Accepted: 04/16/2019] [Indexed: 12/13/2022]
Abstract
α-Terthienyl (α-T) is a photosensitizer that produces many reactive oxygen species (ROS) under ultraviolet light. Here, we aimed to evaluate the oxidation mechanism of the 25%, 50%, and 75% lethal concentrations in Aedes aegypti larvae; the lethal concentration of α-T was used as the test value. The effects on mitochondria, oxidative stress, and cell death patterns caused by ROS were evaluated. The results showed that α-T mainly produced large amounts of ROS in the midgut of larvae. Moreover, mitochondrial ROS were increased in midgut cells, and the production of ROS sites, such as complex enzymes, was inhibited, resulting in enhanced production of ROS. Ultrastructural analysis of mitochondria revealed significant vacuolation, decreased activity of tricarboxylic acid cycle enzymes, and reduced ATP content and mitochondrial membrane potential in the high concentration group compared with those in the control group. Additionally, mitochondrial biosynthesis was blocked in the high concentration group. Thus, exposure to α-T disrupted mitochondrial function, although the mitochondrial DNA content may have increased because of mitochondrial self-protection mechanisms against oxidative stress. Furthermore, high concentrations of α-T aggravated oxidative stress and increased the number of intracellular oxidative damage products. Reverse transcription polymerase chain reaction and fluorescence staining showed that ROS induced by low α-T concentrations upregulated apoptotic genes, including Dronc (P < 0.05), thereby promoting apoptosis. Moderate concentrations of α-T promoted autophagy through induction of ROS, inhibited apoptosis, and induced necrosis. In contrast, high α-T concentrations induced high levels of ROS, which caused mitochondrial dysfunction and increased cytoplasmic Ca2+ concentration, directly inducing cell necrosis. We also found that α-T may disrupt the permeability of the peritrophic membrane, leading to intestinal barrier dysfunction. These results provided insights into the mode of action of α-T in Aedes aegypti.
Collapse
Affiliation(s)
- Jie Zhang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Hainan University, Ministry of Education, Haikou, Hainan 570228, PR China
| | - Shakil Ahmad
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Hainan University, Ministry of Education, Haikou, Hainan 570228, PR China
| | - Lan-Ying Wang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Hainan University, Ministry of Education, Haikou, Hainan 570228, PR China
| | - Qian Han
- The Laboratory of Tropical Animal Medicine and Vector Biology, Hainan University, Haikou, Hainan 570228, PR China
| | - Jian-Chun Zhang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Hainan University, Ministry of Education, Haikou, Hainan 570228, PR China
| | - Yan-Ping Luo
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Hainan University, Ministry of Education, Haikou, Hainan 570228, PR China.
| |
Collapse
|
19
|
Antioxidant Supplementation in Renal Replacement Therapy Patients: Is There Evidence? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9109473. [PMID: 30774749 PMCID: PMC6350615 DOI: 10.1155/2019/9109473] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/15/2018] [Accepted: 12/20/2018] [Indexed: 12/26/2022]
Abstract
The disruption of balance between production of reactive oxygen species and antioxidant systems in favor of the oxidants is termed oxidative stress (OS). To counteract the damaging effects of prooxidant free radicals, all aerobic organisms have antioxidant defense mechanisms that are aimed at neutralizing the circulating oxidants and repair the resulting injuries. Antioxidants are either endogenous (the natural defense mechanisms produced by the human body) or exogenous, found in supplements and foods. OS is present at the early stages of chronic kidney disease, augments progressively with renal function deterioration, and is further exacerbated by renal replacement therapy. End-stage renal disease patients, on hemodialysis (HD) or peritoneal dialysis (PD), suffer from accelerated OS, which has been associated with increased risk for mortality and cardiovascular disease. During HD sessions, the bioincompatibility of dialyzers and dialysate trigger activation of white blood cells and formation of free radicals, while a significant loss of antioxidants is also present. In PD, the bioincompatibility of solutions, including high osmolality, elevated lactate levels, low pH, and accumulation of advanced glycation end-products trigger formation of prooxidants, while there is significant loss of vitamins in the ultrafiltrate. A number of exogenous antioxidants have been suggested to ameliorate OS in dialysis patients. Vitamins B, C, D, and E, coenzyme Q10, L-carnitine, a-lipoic acid, curcumin, green tea, flavonoids, polyphenols, omega-3 polyunsaturated fatty acids, statins, trace elements, and N-acetylcysteine have been studied as exogenous antioxidant supplements in both PD and HD patients.
Collapse
|