1
|
Bispo Matos JH, Bernardo de Lima Silva AH, Ferreira MV, Verri WA, da Cunha JM, Zanoveli JM. Sex-based differences in the prevention of stress-induced anxiety by Resolvin D5 and its precursor docosahexaenoic acid: A comparative study. Brain Res 2025; 1857:149612. [PMID: 40174854 DOI: 10.1016/j.brainres.2025.149612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/28/2025] [Accepted: 03/29/2025] [Indexed: 04/04/2025]
Abstract
Acute stress can cause emotional dysregulation and trigger various molecular changes, including increased neuroinflammation in limbic regions. These changes have the potential to induce anxiety by disrupting brain physiology and functional connectivity. In this study, we investigated whether an 8-day treatment with inflammation-resolving compounds, specifically Resolvin D5 (RvD5) and its precursor, the omega-3 fatty acid docosahexaenoic acid (DHA), could alleviate anxiety induced by acute restraint stress (ARS) in male and female rats. Additionally, we assessed whether these effects persisted one week after treatment cessation. Serum corticosterone levels and proinflammatory cytokine levels in the hippocampus (HIP) were also assessed. Our results confirmed that ARS induced significant anxiety-like behavior in both the short and long term, with females displaying greater exploratory activity than males. Both RvD5 and DHA prevented the development of pronounced anxiety-like behavior in stressed rats, without affecting anxiety levels in non-stressed rats. Notably, the effect persisted for at least one-week post-treatment in females. The treatments also prevented the elevation of TNF alpha and interleukin-1 beta levels in the HIP and serum corticosterone levels in stressed animals. In conclusion, our findings confirm the neuroprotective profile of these compounds and indicate that the continuous use of DHA or RvD5 may have promising effects in preventing anxiety responses triggered by acute stressful event, regardless of sex. Furthermore, this study is the first to demonstrate that RvD5 can downregulate corticosterone levels in stressed animals.
Collapse
Affiliation(s)
| | | | - Matheus Vinicius Ferreira
- Department of Pharmacology, Biological Science Sector, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Waldiceu Aparecido Verri
- Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil
| | - Joice Maria da Cunha
- Department of Pharmacology, Biological Science Sector, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Janaína Menezes Zanoveli
- Department of Pharmacology, Biological Science Sector, Federal University of Paraná, Curitiba, Paraná, Brazil.
| |
Collapse
|
2
|
Vassileff N, Spiers JG, Bamford SE, Lowe RGT, Datta KK, Pigram PJ, Hill AF. Microglial activation induces nitric oxide signalling and alters protein S-nitrosylation patterns in extracellular vesicles. J Extracell Vesicles 2024; 13:e12455. [PMID: 38887871 PMCID: PMC11183937 DOI: 10.1002/jev2.12455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 04/30/2024] [Accepted: 05/10/2024] [Indexed: 06/20/2024] Open
Abstract
Neuroinflammation is an underlying feature of neurodegenerative conditions, often appearing early in the aetiology of a disease. Microglial activation, a prominent initiator of neuroinflammation, can be induced through lipopolysaccharide (LPS) treatment resulting in expression of the inducible form of nitric oxide synthase (iNOS), which produces nitric oxide (NO). NO post-translationally modifies cysteine thiols through S-nitrosylation, which can alter function of the target protein. Furthermore, packaging of these NO-modified proteins into extracellular vesicles (EVs) allows for the exertion of NO signalling in distant locations, resulting in further propagation of the neuroinflammatory phenotype. Despite this, the NO-modified proteome of activated microglial EVs has not been investigated. This study aimed to identify the protein post-translational modifications NO signalling induces in neuroinflammation. EVs isolated from LPS-treated microglia underwent mass spectral surface imaging using time of flight-secondary ion mass spectrometry (ToF-SIMS), in addition to iodolabelling and comparative proteomic analysis to identify post-translation S-nitrosylation modifications. ToF-SIMS imaging successfully identified cysteine thiol side chains modified through NO signalling in the LPS treated microglial-derived EV proteins. In addition, the iodolabelling proteomic analysis revealed that the EVs from LPS-treated microglia carried S-nitrosylated proteins indicative of neuroinflammation. These included known NO-modified proteins and those associated with LPS-induced microglial activation that may play an essential role in neuroinflammatory communication. Together, these results show activated microglia can exert broad NO signalling changes through the selective packaging of EVs during neuroinflammation.
Collapse
Affiliation(s)
- Natasha Vassileff
- The Department of Biochemistry and Chemistry, La Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVictoriaAustralia
| | - Jereme G. Spiers
- The Department of Biochemistry and Chemistry, La Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVictoriaAustralia
- Clear Vision Research, Eccles Institute of Neuroscience, John Curtin School of Medical Research, College of Health and MedicineThe Australian National UniversityActonAustralia
- School of Medicine and Psychology, College of Health and MedicineThe Australian National UniversityActonAustralia
| | - Sarah E. Bamford
- Centre for Materials and Surface Science and Department of Mathematical and Physical SciencesLa Trobe UniversityBundooraVictoriaAustralia
| | - Rohan G. T. Lowe
- La Trobe University Proteomics and Metabolomics PlatformLa Trobe UniversityBundooraVictoriaAustralia
| | - Keshava K. Datta
- La Trobe University Proteomics and Metabolomics PlatformLa Trobe UniversityBundooraVictoriaAustralia
| | - Paul J. Pigram
- Centre for Materials and Surface Science and Department of Mathematical and Physical SciencesLa Trobe UniversityBundooraVictoriaAustralia
| | - Andrew F. Hill
- The Department of Biochemistry and Chemistry, La Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVictoriaAustralia
- Institute for Health and SportVictoria UniversityMelbourneAustralia
| |
Collapse
|
3
|
Chen B, Yu P, Chan WN, Xie F, Zhang Y, Liang L, Leung KT, Lo KW, Yu J, Tse GMK, Kang W, To KF. Cellular zinc metabolism and zinc signaling: from biological functions to diseases and therapeutic targets. Signal Transduct Target Ther 2024; 9:6. [PMID: 38169461 PMCID: PMC10761908 DOI: 10.1038/s41392-023-01679-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 09/15/2023] [Accepted: 10/10/2023] [Indexed: 01/05/2024] Open
Abstract
Zinc metabolism at the cellular level is critical for many biological processes in the body. A key observation is the disruption of cellular homeostasis, often coinciding with disease progression. As an essential factor in maintaining cellular equilibrium, cellular zinc has been increasingly spotlighted in the context of disease development. Extensive research suggests zinc's involvement in promoting malignancy and invasion in cancer cells, despite its low tissue concentration. This has led to a growing body of literature investigating zinc's cellular metabolism, particularly the functions of zinc transporters and storage mechanisms during cancer progression. Zinc transportation is under the control of two major transporter families: SLC30 (ZnT) for the excretion of zinc and SLC39 (ZIP) for the zinc intake. Additionally, the storage of this essential element is predominantly mediated by metallothioneins (MTs). This review consolidates knowledge on the critical functions of cellular zinc signaling and underscores potential molecular pathways linking zinc metabolism to disease progression, with a special focus on cancer. We also compile a summary of clinical trials involving zinc ions. Given the main localization of zinc transporters at the cell membrane, the potential for targeted therapies, including small molecules and monoclonal antibodies, offers promising avenues for future exploration.
Collapse
Affiliation(s)
- Bonan Chen
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Peiyao Yu
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Wai Nok Chan
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Fuda Xie
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Yigan Zhang
- Institute of Biomedical Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Li Liang
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Kam Tong Leung
- Department of Pediatrics, The Chinese University of Hong Kong, Hong Kong, China
| | - Kwok Wai Lo
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Jun Yu
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Gary M K Tse
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.
- CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
4
|
Chen P, Cheng H, Tian J, Pan H, Chen S, Ye X, Chen J. Photo-crosslinking modified sodium alginate hydrogel for targeting delivery potential by NO response. Int J Biol Macromol 2023; 253:126454. [PMID: 37619688 DOI: 10.1016/j.ijbiomac.2023.126454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/15/2023] [Accepted: 08/20/2023] [Indexed: 08/26/2023]
Abstract
In recent years, the incidence of inflammatory bowel disease has gradually increased. Traditional drugs can reduce inflammation, but cannot be targeting released and often require the coordination with delivery systems. However, a good targeting performance delivery system is still scarce currently. Inflammation can trigger oxidative stress, producing large amounts of oxides such as nitric oxide (NO). Based on this, the present experiment innovatively designed a hydrogel delivery system with NO response that could be inflammation targeting. The hydrogel is composed of sodium alginate modified with glycerol methacrylate, crosslinked with NO response agent by photo-crosslinking method, which have low swelling (37 %) and good mechanical properties with a stable structure even at 55 °C. The results of in vitro digestion also indicated that the hydrogel had a certain tolerance to gastrointestinal digestion. And in the NO environment, it was interestingly found that the structure and mechanical properties of the hydrogels changed significantly. Moreover, hydrogels have good biocompatibility, which ensures their safe use in vivo. In conclusion, this NO-responsive-based delivery system is feasible and provides a new approach for drugs and active factors targeting delivery in the future.
Collapse
Affiliation(s)
- Pin Chen
- College of Biosystems Engineering and Food Science, Ningbo Innovation Center, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Huan Cheng
- College of Biosystems Engineering and Food Science, Ningbo Innovation Center, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Zhejiang University, Hangzhou 310058, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China; Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China
| | - Jinhu Tian
- College of Biosystems Engineering and Food Science, Ningbo Innovation Center, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Zhejiang University, Hangzhou 310058, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China; Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China
| | - Haibo Pan
- College of Biosystems Engineering and Food Science, Ningbo Innovation Center, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China
| | - Shiguo Chen
- College of Biosystems Engineering and Food Science, Ningbo Innovation Center, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Zhejiang University, Hangzhou 310058, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China; Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, Ningbo Innovation Center, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Zhejiang University, Hangzhou 310058, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China; Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China.
| | - Jianle Chen
- College of Biosystems Engineering and Food Science, Ningbo Innovation Center, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Zhejiang University, Hangzhou 310058, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China; Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China.
| |
Collapse
|
5
|
Li Z, Chen K, Shao Q, Lu H, Zhang X, Pu Y, Sun X, He H, Cao L. Nanoparticulate MgH 2 ameliorates anxiety/depression-like behaviors in a mouse model of multiple sclerosis by regulating microglial polarization and oxidative stress. J Neuroinflammation 2023; 20:16. [PMID: 36710351 PMCID: PMC9885636 DOI: 10.1186/s12974-023-02696-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 01/11/2023] [Indexed: 01/31/2023] Open
Abstract
Multiple sclerosis (MS) is an autoimmune demyelinating disease of the central nervous system (CNS). Anxiety and depression are the most common psychiatric comorbidities of MS, which seriously affect patients' quality of life, treatment compliance, and prognosis. However, current treatments for anxiety and depression in MS show low therapeutic efficacy and significant side effects. In the present study, we explored the therapeutic effects of a novel low-toxic anti-inflammatory drug, nanoparticulate magnesium hydride (MgH2), on mood disorders of MS. We observed that anxiety/depression-like behaviors in experimental autoimmune encephalomyelitis (EAE) mice were alleviated by MgH2 treatment. In addition, disease severity and inflammatory demyelination were also diminished. Furthermore, we confirmed the suppressive effect of MgH2 on depression in the acute restraint stress model. Mechanistically, MgH2 may play a therapeutic role by promoting microglial M2 polarization, inhibiting microglial M1 polarization, and reducing oxidative stress and mitochondrial damage. Therefore, nanoparticulate MgH2 may be a promising therapeutic drug for psychiatric comorbidities of MS.
Collapse
Affiliation(s)
- Zhenghao Li
- grid.73113.370000 0004 0369 1660Institute of Neuroscience and Key Laboratory of Molecular Neurobiology of Military of Education, Naval Medical University, Shanghai, 200433 China
| | - Kefu Chen
- grid.73113.370000 0004 0369 1660Institute of Neuroscience and Key Laboratory of Molecular Neurobiology of Military of Education, Naval Medical University, Shanghai, 200433 China
| | - Qi Shao
- grid.73113.370000 0004 0369 1660Institute of Neuroscience and Key Laboratory of Molecular Neurobiology of Military of Education, Naval Medical University, Shanghai, 200433 China
| | - Hongtao Lu
- grid.73113.370000 0004 0369 1660Department of Naval Medicine, Naval Medical University, Shanghai, 200433 China
| | - Xin Zhang
- grid.73113.370000 0004 0369 1660Institute of Neuroscience and Key Laboratory of Molecular Neurobiology of Military of Education, Naval Medical University, Shanghai, 200433 China
| | - Yingyan Pu
- grid.73113.370000 0004 0369 1660Institute of Neuroscience and Key Laboratory of Molecular Neurobiology of Military of Education, Naval Medical University, Shanghai, 200433 China
| | - Xuejun Sun
- grid.73113.370000 0004 0369 1660Department of Naval Medicine, Naval Medical University, Shanghai, 200433 China ,grid.16821.3c0000 0004 0368 8293Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai, 200030 China
| | - Hua He
- grid.73113.370000 0004 0369 1660Department of Neurosurgery, Third Affiliated Hospital, Naval Medical University, Shanghai, 200438 China
| | - Li Cao
- grid.73113.370000 0004 0369 1660Institute of Neuroscience and Key Laboratory of Molecular Neurobiology of Military of Education, Naval Medical University, Shanghai, 200433 China
| |
Collapse
|
6
|
Anxiolytic and Antioxidant Effect of Phytoecdysteroids and Polyphenols from Chenopodium quinoa on an In Vivo Restraint Stress Model. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27249003. [PMID: 36558137 PMCID: PMC9785041 DOI: 10.3390/molecules27249003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
The variety of stressful conditions in daily human activity requires nutritional support with safe, specialized food products containing functional food ingredients (FFIs) enriched with biologically active plant substances with proven adaptogenic properties. In this in vivo study, by evaluating a set of physiological parameters and biochemical markers, we investigated the effectiveness of the developed FFIs from Chenopodium quinoa grains in stress conditions induced by daily episodes of immobilization for 36 days. The results of the evaluation of the anxiety-like functions, locomotor, and search activity of rats in the "open field" and "elevated plus maze" tests demonstrated the ability of FFIs to reduce stressful behavior induced by immobilization. The improvement in the long-term memory of animals treated with FFIs was noted in the passive avoidance test. Together with the hypolipidemic effect and compensation of transaminase levels, FFIs normalized the excretion of catecholamines in the urine and reduced the levels of malondialdehyde to values of the control group. According to the results of the assessment of FFI acute oral toxicity, the LD50 value exceeded 5000 mg/kg of body weight, which categorizes the FFIs under hazard class 5-substances with low hazard. The conducted experiment demonstrated the effectiveness of nutritional support with FFIs on the selected stress model. The positive safety profile of FFIs makes them reasonable to study on other stress models and to conduct clinical testing as part of specialized food products in various categories of people exposed to chronic stress.
Collapse
|
7
|
Birmann PT, Casaril AM, Zugno GP, Acosta GG, Severo Sabedra Sousa F, Collares T, Seixas FK, Jacob RG, Brüning CA, Savegnago L, Hartwig D. Flower essential oil of Tagetes minuta mitigates oxidative stress and restores BDNF-Akt/ERK2 signaling attenuating inflammation- and stress-induced depressive-like behavior in mice. Brain Res 2022; 1784:147845. [DOI: 10.1016/j.brainres.2022.147845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 02/06/2023]
|
8
|
Spero V, Paladini MS, Brivio P, Riva MA, Calabrese F, Molteni R. Altered responsiveness of the antioxidant system in chronically stressed animals: modulation by chronic lurasidone treatment. Psychopharmacology (Berl) 2022; 239:2547-2557. [PMID: 35459959 PMCID: PMC9294027 DOI: 10.1007/s00213-022-06140-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 04/04/2022] [Indexed: 11/29/2022]
Abstract
RATIONALE Although the occurrence of stressful events is very common during life, their impact may be different depending on the experience severity and duration. Specifically, acute challenges may trigger adaptive responses and even improve the individual's performance. However, such a physiological positive coping can only take place if the underlying molecular mechanisms are properly functioning. Indeed, if these systems are compromised by genetic factors or previous adverse conditions, the response set in motion by an acute challenge may be maladaptive and even cause the insurgence or the relapse of stress-related psychiatric disorders. OBJECTIVES On these bases, we evaluated in the rat brain the role of the antioxidant component of the redox machinery on the acute stress responsiveness and its modulation by potential detrimental or beneficial events. METHODS The expression of several antioxidant enzymes was assessed in different brain areas of adult male rats exposed to acute stress 3 weeks after a chronic immobilization paradigm with or without a concomitant treatment with the antipsychotic lurasidone. RESULTS The acute challenge was able to trigger a marked antioxidant response that, despite the washout period, was impaired by the previous adverse experience and restored by lurasidone in an anatomical-specific manner. CONCLUSIONS We found that a working antioxidant machinery takes part in acute stress response and may be differentially affected by other experiences. Given the essential role of stress responsiveness in almost every life process, the identification of the underlying mechanisms and their potential pharmacological modulation add further translational value to our data.
Collapse
Affiliation(s)
- Vittoria Spero
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Vanvitelli 32, 20129 Milan, Italy
| | - Maria Serena Paladini
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Vanvitelli 32, 20129 Milan, Italy ,Present Address: Department of Physical Therapy and Rehabilitation Science; Brain and Spinal Injury Center, University of California at San Francisco, San Francisco, CA USA
| | - Paola Brivio
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| | - Marco Andrea Riva
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| | - Francesca Calabrese
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133, Milan, Italy.
| | - Raffaella Molteni
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Vanvitelli 32, 20129 Milan, Italy
| |
Collapse
|
9
|
Hepatic Homeostasis of Metal Ions Following Acute Repeated Stress Exposure in Rats. Antioxidants (Basel) 2021; 11:antiox11010085. [PMID: 35052588 PMCID: PMC8773239 DOI: 10.3390/antiox11010085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 01/25/2023] Open
Abstract
Essential metals such as copper, iron, and zinc are cofactors in various biological processes including oxygen utilisation, cell growth, and biomolecular synthesis. The homeostasis of these essential metals is carefully controlled through a system of protein transporters involved in the uptake, storage, and secretion. Some metal ions can be transformed by processes including reduction/oxidation (redox) reactions, and correspondingly, the breakdown of metal ion homeostasis can lead to formation of reactive oxygen and nitrogen species. We have previously demonstrated rapid biochemical responses to stress involving alterations in the redox state to generate free radicals and the resultant oxidative stress. However, the effects of stress on redox-active metals including iron and copper and redox-inert zinc have not been well characterised. Therefore, this study aims to examine the changes in these essential metals following exposure to short-term repeated stress, and to further elucidate the alterations in metal homeostasis through expression analysis of different metal transporters. Outbred male Wistar rats were exposed to unrestrained (control), 1 day, or 3 days of 6 h restraint stress (n = 8 per group). After the respective stress treatment, blood and liver samples were collected for the analysis of biometal concentrations and relative gene expression of metal transporter and binding proteins. Exposure to repeated restraint stress was highly effective in causing hepatic redox imbalance. Stress was also shown to induce hepatic metal redistribution, while modulating the mRNA levels of key metal transporters. Overall, this study is the first to characterise the gene expression profile of metal homeostasis following stress and provide insight into the changes occurring prior to the onset of chronic stress conditions.
Collapse
|
10
|
Spiers JG, Steiger N, Khadka A, Juliani J, Hill AF, Lavidis NA, Anderson ST, Cortina Chen HJ. Repeated acute stress modulates hepatic inflammation and markers of macrophage polarisation in the rat. Biochimie 2021; 180:30-42. [PMID: 33122103 DOI: 10.1016/j.biochi.2020.10.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/29/2020] [Accepted: 10/24/2020] [Indexed: 12/24/2022]
Abstract
Bidirectional communication between the neuroendocrine stress and immune systems permits classically anti-inflammatory glucocorticoids to exert pro-inflammatory effects in specific cells and tissues. Liver macrophages/Kupffer cells play a crucial role in initiating inflammatory cascades mediated by the release of pro-inflammatory cytokines following tissue injury. However, the effects of repeated acute psychological stress on hepatic inflammatory phenotype and macrophage activation state remains poorly understood. We have utilised a model of repeated acute stress in rodents to observe the changes in hepatic inflammatory phenotype, including anti-inflammatory vitamin D status, in addition to examining markers of classically and alternatively-activated macrophages. Male Wistar rats were subjected to control conditions or 6 h of restraint stress applied for 1 or 3 days (n = 8 per group) after which plasma concentrations of stress hormone, enzymes associated with liver damage, and vitamin D status were examined, in addition to hepatic expression of pro- and anti-inflammatory markers. Stress increased glucocorticoids and active vitamin D levels in addition to expression of glucocorticoid alpha/beta receptor, whilst changes in circulating hepatic enzymes indicated sustained liver damage. A pro-inflammatory response was observed in liver tissues following stress, and inducible nitric oxide synthase being observed within hepatic macrophage/Kupffer cells. Together, this suggests that stress preferentially induces a pro-inflammatory response in the liver.
Collapse
Affiliation(s)
- Jereme G Spiers
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland, 4072, Australia; Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, 3083, Australia.
| | - Natasha Steiger
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Arun Khadka
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, 3083, Australia
| | - Juliani Juliani
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, 3083, Australia
| | - Andrew F Hill
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, 3083, Australia
| | - Nickolas A Lavidis
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Stephen T Anderson
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Hsiao-Jou Cortina Chen
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland, 4072, Australia; WT-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, United Kingdom.
| |
Collapse
|
11
|
García Bueno B, MacDowell K, Madrigal J, Leza J. Neuroinflammation and depression. THE NEUROSCIENCE OF DEPRESSION 2021:131-142. [DOI: 10.1016/b978-0-12-817933-8.00001-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
12
|
Zhao W, Zhang X, Zhang R, Zhang K, Li Y, Xu FJ. Self-Assembled Herbal Medicine Encapsulated by an Oxidation-Sensitive Supramolecular Hydrogel for Chronic Wound Treatment. ACS APPLIED MATERIALS & INTERFACES 2020; 12:56898-56907. [PMID: 33296174 DOI: 10.1021/acsami.0c19492] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Inflammation has been assumed to affect the pathology of wound healing and is associated with many nonhealing chronic wounds. Naturally derived herbal medicines with anti-inflammatory properties are of interest because of their effectiveness and affordability in clinical treatment. Herein, we report a supramolecular hydrogel comprising self-assembled natural herb rhein and an oxidative responsive cross-linked network based on ferrocene and β-cyclodextrin host-guest recognitions. Rhein can directly self-assemble into fibrils, exerting better anti-inflammation efficiency than its free drug form. The adaption of the supramolecular network can greatly improve the stability and retain the structural integrity of encapsulated self-assembled rhein. In addition, host-guest recognition confers dissolution of the hydrogel under oxidative stress, thereby delivering self-assembled rhein to the wound site and exerting better therapeutic efficiency. Evaluations in diabetic mice indicate that the resultant hydrogel promoted chronic wound healing by suppressing excess reactive oxygen species, facilitating the transition of the wound healing process, and restoring the normal wound-repair process. Therefore, the proposed hydrogel has a potential value as an herbal-based dressing for future clinical chronic wound management.
Collapse
Affiliation(s)
- Weiyi Zhao
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiang Zhang
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Rui Zhang
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Kai Zhang
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yang Li
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
13
|
Chen HJC, Yip T, Lee JK, Juliani J, Sernia C, Hill AF, Lavidis NA, Spiers JG. Restraint Stress Alters Expression of Glucocorticoid Bioavailability Mediators, Suppresses Nrf2, and Promotes Oxidative Stress in Liver Tissue. Antioxidants (Basel) 2020; 9:antiox9090853. [PMID: 32932938 PMCID: PMC7554900 DOI: 10.3390/antiox9090853] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 12/21/2022] Open
Abstract
Hepatic glutathione synthesis and antioxidant protection are critically important for efficient detoxification processes in response to metabolic challenges. However, this biosynthetic pathway, regulated by nuclear factor (erythroid-derived 2)-like 2 (Nrf2), previously demonstrated paradoxical repression following exposure to glucocorticoid stress hormones in cultured hepatic cells. Therefore, the present study used an in vivo model of sub-acute psychological stress to investigate the relationship between hepatic corticosteroid regulation and antioxidant systems. Male Wistar rats were kept under control conditions or subjected to six hours of restraint stress applied for 1 or 3 days (n = 8 per group) after which the liver was isolated for assays of oxidative/nitrosative status and expression of corticosteroid regulatory and Nrf2-antioxidant response element pathway members. A single stress exposure produced a significant increase in the expression of corticosterone reactivator, 11-beta-hydroxysteroid dehydrogenase 1 (11β-Hsd1), while the 11β-Hsd2 isozyme and corticosteroid-binding globulin were down-regulated following stress, indicative of an elevated availability of active corticosterone. Exposure to restraint significantly decreased hepatic concentrations of total cysteine thiols and the antioxidant reduced glutathione on Day 1 and increased 3-nitrotyrosinated and carbonylated proteins on Day 3, suggestive of oxidative/nitrosative stress in the liver following stress exposure. Conversely, there was a sustained down-regulation of Nrf2 mRNA and protein in addition to significant reductions in downstream glutamate-cysteine ligase catalytic subunit (Gclc), the rate-limiting enzyme in glutathione synthesis, on Day 1 and 3 of stress treatment. Interestingly, other antioxidant genes including superoxide dismutase 1 and 2, and glutathione peroxidase 4 were significantly up-regulated following an episode of restraint stress. In conclusion, the results of the present study indicate that increased expression of 11β-Hsd1, indicative of elevated tissue glucocorticoid concentrations, may impair the Nrf2-dependent antioxidant response.
Collapse
Affiliation(s)
- Hsiao-Jou Cortina Chen
- School of Biomedical Sciences, The University of Queensland, St Lucia 4072, Australia; (T.Y.); (J.K.L.); (C.S.); (N.A.L.)
- WT-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
- Correspondence: (H.-J.C.C.); (J.G.S.)
| | - Tsz Yip
- School of Biomedical Sciences, The University of Queensland, St Lucia 4072, Australia; (T.Y.); (J.K.L.); (C.S.); (N.A.L.)
| | - Johnny K. Lee
- School of Biomedical Sciences, The University of Queensland, St Lucia 4072, Australia; (T.Y.); (J.K.L.); (C.S.); (N.A.L.)
| | - Juliani Juliani
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora 3083, Australia; (J.J.); (A.F.H.)
| | - Conrad Sernia
- School of Biomedical Sciences, The University of Queensland, St Lucia 4072, Australia; (T.Y.); (J.K.L.); (C.S.); (N.A.L.)
| | - Andrew F. Hill
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora 3083, Australia; (J.J.); (A.F.H.)
| | - Nickolas A. Lavidis
- School of Biomedical Sciences, The University of Queensland, St Lucia 4072, Australia; (T.Y.); (J.K.L.); (C.S.); (N.A.L.)
| | - Jereme G. Spiers
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora 3083, Australia; (J.J.); (A.F.H.)
- Correspondence: (H.-J.C.C.); (J.G.S.)
| |
Collapse
|
14
|
Liu XY, Zhang YB, Yang XW, Yang YF, Xu W, Zhao W, Peng KF, Gong Y, Liu NF, Zhang P. Anti-Inflammatory Activity of Some Characteristic Constituents from the Vine Stems of Spatholobus suberectus. Molecules 2019; 24:molecules24203750. [PMID: 31627460 PMCID: PMC6832230 DOI: 10.3390/molecules24203750] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 10/13/2019] [Accepted: 10/14/2019] [Indexed: 12/13/2022] Open
Abstract
The dried vine stems of Spatholobus suberectus are commonly used in traditional Chinese medicine for treating gynecological and cardiovascular diseases. In this study, five new compounds named spasuberol A (2), homovanillyl-4-oxo-nonanoate (5), spasuberol C (6), spasuberoside A (14), and spasuberoside B (15), together with ten known compounds (1, 3, 4, 7–13), were isolated from the dried vine stems of S. suberectus. Their chemical structures were analyzed using spectroscopic assays. This is the first study interpreting the detailed structural information of 4. The anti-inflammatory activity of these compounds was evaluated by reducing nitric oxide overproduction in RAW264.7 macrophages stimulated by lipopolysaccharide. Compounds 1 and 8–10 showed strong inhibitory activity with half maximal inhibitory concentration (IC50) values of 5.69, 16.34, 16.87, and 6.78 μM, respectively, exhibiting higher activity than the positive drug l-N6-(1-iminoethyl)-lysine (l-NIL) with an IC50 value of 19.08 μM. The IC50 values of inhibitory activity of compounds 2 and 4–6 were 46.26, 40.05, 45.87, and 28.29 μM respectively, which were lower than l-NIL, but better than that of positive drug indomethacin with an IC50 value of 55.44 μM. Quantitative real-time polymerase chain reaction analysis revealed that assayed compounds with good anti-inflammatory activity, such as 1, 6, 9, and 10 at different concentrations, can reduce the messenger RNA (mRNA) expression of some pro-inflammatory cytokines such as tumor necrosis factor α (TNF-α), nitric oxide synthase (iNOS), and cyclooxygenase 2 (COX-2). The anti-inflammatory activity and the possible mechanism of the compounds mentioned in this paper were studied preliminarily.
Collapse
Affiliation(s)
- Xiao-Yan Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University Health Science Center, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing 100191, China.
| | - You-Bo Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University Health Science Center, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing 100191, China.
| | - Xiu-Wei Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University Health Science Center, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing 100191, China.
| | - Yan-Fang Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University Health Science Center, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing 100191, China.
| | - Wei Xu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University Health Science Center, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing 100191, China.
| | - Wei Zhao
- Zhuzhou Qianjin Pharmaceutical Co., Ltd., Zhuzhou 412000, China.
| | - Kai-Feng Peng
- Zhuzhou Qianjin Pharmaceutical Co., Ltd., Zhuzhou 412000, China.
| | - Yun Gong
- Zhuzhou Qianjin Pharmaceutical Co., Ltd., Zhuzhou 412000, China.
| | - Ni-Fu Liu
- Zhuzhou Qianjin Pharmaceutical Co., Ltd., Zhuzhou 412000, China.
| | - Peng Zhang
- Zhuzhou Qianjin Pharmaceutical Co., Ltd., Zhuzhou 412000, China.
| |
Collapse
|
15
|
Wohua Z, Weiming X. Glutaredoxin 2 (GRX2) deficiency exacerbates high fat diet (HFD)-induced insulin resistance, inflammation and mitochondrial dysfunction in brain injury: A mechanism involving GSK-3β. Biomed Pharmacother 2019; 118:108940. [DOI: 10.1016/j.biopha.2019.108940] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/29/2019] [Accepted: 04/29/2019] [Indexed: 12/28/2022] Open
|
16
|
Spiers JG, Chen HJC, Bourgognon JM, Steinert JR. Dysregulation of stress systems and nitric oxide signaling underlies neuronal dysfunction in Alzheimer's disease. Free Radic Biol Med 2019; 134:468-483. [PMID: 30716433 DOI: 10.1016/j.freeradbiomed.2019.01.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/19/2018] [Accepted: 01/21/2019] [Indexed: 12/12/2022]
Abstract
Stress is a multimodal response involving the coordination of numerous body systems in order to maximize the chance of survival. However, long term activation of the stress response results in neuronal oxidative stress via reactive oxygen and nitrogen species generation, contributing to the development of depression. Stress-induced depression shares a high comorbidity with other neurological conditions including Alzheimer's disease (AD) and dementia, often appearing as one of the earliest observable symptoms in these diseases. Furthermore, stress and/or depression appear to exacerbate cognitive impairment in the context of AD associated with dysfunctional catecholaminergic signaling. Given there are a number of homologous pathways involved in the pathophysiology of depression and AD, this article will highlight the mechanisms by which stress-induced perturbations in oxidative stress, and particularly NO signaling, contribute to neurodegeneration.
Collapse
Affiliation(s)
- Jereme G Spiers
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, 3083, Australia.
| | - Hsiao-Jou Cortina Chen
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | | | - Joern R Steinert
- Department of Neuroscience, Psychology and Behavior, University of Leicester, Leicester, LE1 9HN, United Kingdom.
| |
Collapse
|
17
|
Chen HJC, Lee JK, Yip T, Sernia C, Lavidis NA, Spiers JG. Changes in hippocampal inflammatory-related and redox enzyme genes in response to sub-acute restraint stress: Additional dataset. Data Brief 2018; 21:2627-2632. [PMID: 30761344 PMCID: PMC6290245 DOI: 10.1016/j.dib.2018.11.120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 11/22/2018] [Accepted: 11/23/2018] [Indexed: 11/05/2022] Open
Abstract
This data article presents complementary results pertaining to the research article entitled “Sub-acute restraint stress progressively increases oxidative/nitrosative stress and inflammatory markers while transiently upregulating antioxidant gene expression in the rat hippocampus” (Chen et al., 2018). The present article provides additional gene expression data of selected neuroinflammatory markers and regulatory enzymes involved in oxidation-reduction reactions. Male Wistar rats aged 7–8 weeks were exposed to control, 1, 2, or 3 episodes of 6-h restraint stress in the light cycle after which the whole brain was quickly removed and the hippocampus excised for relative gene expression analysis. Specifically, mRNA levels of inflammatory regulators including allograft inflammatory factor 1, class II major histocompatibility complex, integrin alpha M, interferon gamma, and prostaglandin-endoperoxide synthase 2 were analyzed by real-time PCR. The gene expression of redox regulatory enzymes including glutathione peroxidase 1, glutathione peroxidase 4, superoxide dismutase 1, superoxide dismutase 2, myeloperoxidase, and NADPH oxidase subunit P47phox were also determined. These data provide useful insights in the molecular basis of inflammatory and redox regulation in the hippocampus following a short term to repeated psychological challenge in rats.
Collapse
Affiliation(s)
- Hsiao-Jou Cortina Chen
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Johnny K Lee
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Tsz Yip
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Conrad Sernia
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Nickolas A Lavidis
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Jereme G Spiers
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3083, Australia
| |
Collapse
|