1
|
Kang KA, Piao MJ, Fernando PDSM, Herath HMUL, Yi JM, Choi YH, Hyun YM, Zhang K, Park CO, Hyun JW. Particulate matter stimulates the NADPH oxidase system via AhR-mediated epigenetic modifications. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123675. [PMID: 38447650 DOI: 10.1016/j.envpol.2024.123675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/05/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024]
Abstract
Stimulation of human keratinocytes with particulate matter 2.5 (PM2.5) elicits complex signaling events, including a rise in the generation of reactive oxygen species (ROS). However, the mechanisms underlying PM2.5-induced ROS production remain unknown. Here, we show that PM2.5-induced ROS production in human keratinocytes is mediated via the NADPH oxidase (NOXs) system and the Ca2+ signaling pathway. PM2.5 treatment increased the expression of NOX1, NOX4, and a calcium-sensitive NOX, dual oxidase 1 (DUOX1), in human epidermal keratinocyte cell line. PM2.5 bound to aryl hydrocarbon receptor (AhR), and this complex bound to promoter regions of NOX1 and DUOX1, suggesting that AhR acted as a transcription factor of NOX1 and DUOX1. PM2.5 increased the transcription of DUOX1 via epigenetic modification. Moreover, a link between DNA demethylase and histone methyltransferase with the promoter regions of DUOX1 led to an elevation in the expression of DUOX1 mRNA. Interestingly, PM2.5 increased NOX4 expression and promoted the interaction of NOX4 and Ca2+ channels within the cytoplasmic membrane or endoplasmic reticulum, leading to Ca2+ release. The increase in intracellular Ca2+ concentration activated DUOX1, responsible for ROS production. Our findings provide evidence for a PM2.5-mediated ROS-generating system network, in which increased NOX1, NOX4, and DUOX1 expression serves as a ROS signal through AhR and Ca2+ activation.
Collapse
Affiliation(s)
- Kyoung Ah Kang
- Department of Biochemistry, College of Medicine, and Jeju Research Center for Natural Medicine, Jeju National University, Jeju, 63243, South Korea
| | - Mei Jing Piao
- Department of Biochemistry, College of Medicine, and Jeju Research Center for Natural Medicine, Jeju National University, Jeju, 63243, South Korea
| | | | | | - Joo Mi Yi
- Department of Microbiology and Immunology, Inje University College of Medicine, Busan, 47392, South Korea
| | - Yung Hyun Choi
- Department of Biochemistry, College of Oriental Medicine, Dongeui University, Busan, 47340, South Korea
| | - Young-Min Hyun
- Department of Anatomy, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Kelun Zhang
- Department of Dermatology, and Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Chang Ook Park
- Department of Dermatology, and Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Jin Won Hyun
- Department of Biochemistry, College of Medicine, and Jeju Research Center for Natural Medicine, Jeju National University, Jeju, 63243, South Korea.
| |
Collapse
|
2
|
Jung SH, Lee W, Park SH, Lee KY, Choi YJ, Choi S, Kang D, Kim S, Chang TS, Hong SS, Lee BH. Diclofenac impairs autophagic flux via oxidative stress and lysosomal dysfunction: Implications for hepatotoxicity. Redox Biol 2020; 37:101751. [PMID: 33080439 PMCID: PMC7575798 DOI: 10.1016/j.redox.2020.101751] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/24/2020] [Accepted: 10/02/2020] [Indexed: 12/17/2022] Open
Abstract
Treatment with nonsteroidal anti-inflammatory drugs (NSAIDs) is associated with various side effects, including cardiovascular and hepatic disorders. Studies suggest that mitochondrial damage and oxidative stress are important mediators of toxicity, yet the underlying mechanisms are poorly understood. In this study, we identified that some NSAIDs, including diclofenac, inhibit autophagic flux in hepatocytes. Further detailed studies demonstrated that diclofenac induced a reactive oxygen species (ROS)-dependent increase in lysosomal pH, attenuated cathepsin activity and blocked autophagosome-lysosome fusion. The reactivation of lysosomal function by treatment with clioquinol or transfection with the transcription factor EB restored lysosomal pH and thus autophagic flux. The production of mitochondrial ROS is critical for this process since scavenging ROS reversed lysosomal dysfunction and activated autophagic flux. The compromised lysosomal activity induced by diclofenac also inhibited the fusion with and degradation of mitochondria by mitophagy. Diclofenac-induced cell death and hepatotoxicity were effectively protected by rapamycin. Thus, we demonstrated that diclofenac induces the intracellular ROS production and lysosomal dysfunction that lead to the suppression of autophagy. Impaired autophagy fails to maintain mitochondrial integrity and aggravates the cellular ROS burden, which leads to diclofenac-induced hepatotoxicity.
Collapse
Affiliation(s)
- Seung-Hwan Jung
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - Wonseok Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - Seung-Hyun Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - Kang-Yo Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - You-Jin Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - Soohee Choi
- Department of Life Science, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, Republic of Korea
| | - Dongmin Kang
- Department of Life Science, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, Republic of Korea
| | - Sinri Kim
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, Republic of Korea
| | - Tong-Shin Chang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - Soon-Sun Hong
- Department of Biomedical Sciences, College of Medicine, Inha University, Sinheung-dong, Jung-gu, Incheon, 400-712, Republic of Korea
| | - Byung-Hoon Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea.
| |
Collapse
|
3
|
The Role of Hydrogen Peroxide and Peroxiredoxins throughout the Cell Cycle. Antioxidants (Basel) 2020; 9:antiox9040280. [PMID: 32224940 PMCID: PMC7222192 DOI: 10.3390/antiox9040280] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 01/22/2023] Open
Abstract
Hydrogen peroxide (H2O2) is an oxidizing agent that induces cellular damage at inappropriate concentrations and gives rise to an arrest during cell cycle progression, causing cell death. Recent evidence indicates that H2O2 also acts as a promoter for cell cycle progression by oxidizing specific thiol proteins. The intracellular concentration of H2O2 is regulated tightly, enabling its use as a cellular signaling molecule while minimizing its potential to cause cellular damage. Peroxiredoxins (Prxs) have peroxidase activity toward H2O2, organic hydroperoxides, and peroxynitrite for protecting cells from oxidative stress. They are suggested to work as signaling mediators, allowing the local accumulation of H2O2 by inactivating their peroxidase activity uniquely compared with other antioxidant proteins such as catalase and glutathione peroxidase. Given that Prxs are highly sensitive to oxidation by H2O2, they act as sensors and transducers of H2O2 signaling via transferring their oxidation state to effector proteins. The concentrations of intracellular H2O2 increase as the cell cycle progresses from G1 to mitosis. Here, we summarize the roles of Prxs with regard to the regulation of cell cycle-dependent kinase activity and anaphase-promoting complex/cyclosome in terms of changes in H2O2 levels. Protection of the cell from unwanted progression of the cell cycle is suggested to be a role of Prx. We discuss the possible roles of Prxs to control H2O2 levels.
Collapse
|
4
|
Hwang I, Uddin MJ, Pak ES, Kang H, Jin EJ, Jo S, Kang D, Lee H, Ha H. The impaired redox balance in peroxisomes of catalase knockout mice accelerates nonalcoholic fatty liver disease through endoplasmic reticulum stress. Free Radic Biol Med 2020; 148:22-32. [PMID: 31877356 DOI: 10.1016/j.freeradbiomed.2019.12.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 11/29/2019] [Accepted: 12/20/2019] [Indexed: 12/21/2022]
Abstract
Peroxisomes are essential organelles for maintaining the homeostasis of lipids and reactive oxygen species (ROS). While oxidative stress-induced endoplasmic reticulum (ER) stress plays an important role in nonalcoholic fatty liver disease (NAFLD), the role of peroxisomes in ROS-mediated ER stress in the development of NAFLD remains elusive. We investigated whether an impaired peroxisomal redox state accelerates NAFLD by activating ER stress by inhibiting catalase, an antioxidant expressed exclusively in peroxisomes. Wild-type (WT) and catalase knockout (CKO) mice were fed either a normal diet or a high-fat diet (HFD) for 11 weeks. HFD-induced phenotype changes and liver injury accompanied by ER stress and peroxisomal dysfunction were accelerated in CKO mice compared to WT mice. Interestingly, these changes were also significantly increased in CKO mice fed a normal diet. Inhibition of catalase by 3-aminotriazole in hepatocytes resulted in the following effects: (i) increased peroxisomal H2O2 levels as measured by a peroxisome-targeted H2O2 probe (HyPer-P); (ii) elevated intracellular ROS; (iii) decreased peroxisomal biogenesis; (iv) activated ER stress; (v) induced lipogenic genes and neutral lipid accumulation; and (vi) suppressed insulin signaling cascade associated with JNK activation. N-acetylcysteine or 4-phenylbutyric acid effectively prevented those alterations. These results suggest that a redox imbalance in peroxisomes perturbs cellular metabolism through the activation of ER stress in the liver.
Collapse
Affiliation(s)
- Inah Hwang
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| | - Md Jamal Uddin
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| | - Eun Seon Pak
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| | - Hyeji Kang
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| | - Eun-Jung Jin
- Department of Biological Sciences, College of Natural Sciences, Wonkwang University, Iksan, Chunbuk, 54538, Republic of Korea
| | - Suin Jo
- Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Dongmin Kang
- Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Hyukjin Lee
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| | - Hunjoo Ha
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea.
| |
Collapse
|
5
|
The Great Escape: how phosphatidylinositol 4-kinases and PI4P promote vesicle exit from the Golgi (and drive cancer). Biochem J 2019; 476:2321-2346. [DOI: 10.1042/bcj20180622] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/06/2019] [Accepted: 08/12/2019] [Indexed: 12/13/2022]
Abstract
Abstract
Phosphatidylinositol 4-phosphate (PI4P) is a membrane glycerophospholipid and a major regulator of the characteristic appearance of the Golgi complex as well as its vesicular trafficking, signalling and metabolic functions. Phosphatidylinositol 4-kinases, and in particular the PI4KIIIβ isoform, act in concert with PI4P to recruit macromolecular complexes to initiate the biogenesis of trafficking vesicles for several Golgi exit routes. Dysregulation of Golgi PI4P metabolism and the PI4P protein interactome features in many cancers and is often associated with tumour progression and a poor prognosis. Increased expression of PI4P-binding proteins, such as GOLPH3 or PITPNC1, induces a malignant secretory phenotype and the release of proteins that can remodel the extracellular matrix, promote angiogenesis and enhance cell motility. Aberrant Golgi PI4P metabolism can also result in the impaired post-translational modification of proteins required for focal adhesion formation and cell–matrix interactions, thereby potentiating the development of aggressive metastatic and invasive tumours. Altered expression of the Golgi-targeted PI 4-kinases, PI4KIIIβ, PI4KIIα and PI4KIIβ, or the PI4P phosphate Sac1, can also modulate oncogenic signalling through effects on TGN-endosomal trafficking. A Golgi trafficking role for a PIP 5-kinase has been recently described, which indicates that PI4P is not the only functionally important phosphoinositide at this subcellular location. This review charts new developments in our understanding of phosphatidylinositol 4-kinase function at the Golgi and how PI4P-dependent trafficking can be deregulated in malignant disease.
Collapse
|
6
|
Little AC, Hristova M, van Lith L, Schiffers C, Dustin CM, Habibovic A, Danyal K, Heppner DE, Lin MCJ, van der Velden J, Janssen-Heininger YM, van der Vliet A. Dysregulated Redox Regulation Contributes to Nuclear EGFR Localization and Pathogenicity in Lung Cancer. Sci Rep 2019; 9:4844. [PMID: 30890751 PMCID: PMC6425021 DOI: 10.1038/s41598-019-41395-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 03/01/2019] [Indexed: 12/14/2022] Open
Abstract
Lung cancers are frequently characterized by inappropriate activation of epidermal growth factor receptor (EGFR)-dependent signaling and epigenetic silencing of the NADPH oxidase (NOX) enzyme DUOX1, both potentially contributing to worse prognosis. Based on previous findings linking DUOX1 with redox-dependent EGFR activation, the present studies were designed to evaluate whether DUOX1 silencing in lung cancers may be responsible for altered EGFR regulation. In contrast to normal epithelial cells, EGF stimulation of lung cancer cell lines that lack DUOX1 promotes EGF-induced EGFR internalization and nuclear localization, associated with induction of EGFR-regulated genes and related tumorigenic outcomes. Each of these outcomes could be reversed by overexpression of DUOX1 or enhanced by shRNA-dependent DUOX1 silencing. EGF-induced nuclear EGFR localization in DUOX1-deficient lung cancer cells was associated with altered dynamics of cysteine oxidation of EGFR, and an overall reduction of EGFR cysteines. These various outcomes could also be attenuated by silencing of glutathione S-transferase P1 (GSTP1), a mediator of metabolic alterations and drug resistance in various cancers, and a regulator of cysteine oxidation. Collectively, our findings indicate DUOX1 deficiency in lung cancers promotes dysregulated EGFR signaling and enhanced GSTP1-mediated turnover of EGFR cysteine oxidation, which result in enhanced nuclear EGFR localization and tumorigenic properties.
Collapse
Affiliation(s)
- Andrew C Little
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT, 05405, USA.,Rogel Cancer Center, Department of Internal Medicine Hematology-Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Milena Hristova
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Loes van Lith
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Caspar Schiffers
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Christopher M Dustin
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Aida Habibovic
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Karamatullah Danyal
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - David E Heppner
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT, 05405, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA. Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Miao-Chong J Lin
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Jos van der Velden
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Yvonne M Janssen-Heininger
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT, 05405, USA.
| |
Collapse
|