1
|
He Q, Jin H, Shen J. Kaempferol Extends Male Lifespan Under Blue Light Irradiation in Drosophila. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 117:e70001. [PMID: 39449366 DOI: 10.1002/arch.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/01/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024]
Abstract
Short-wavelength blue light is ubiquitous in daily life and has a lasting destructive influence. Its potential harm to biological health is significant. This study used Drosophila as a model organism to investigate the protective effects of kaempferol, a flavonoid, against the toxicity of blue light. It also examined its physiological effects on Drosophila under blue light irradiation. In this experiment, fruit flies were fed with three different concentrations of kaempferol solutions (0.1, 0.01, and 0.001 mol/L) dissolved in food. The survival rate and physiological indexes of Drosophila were investigated under blue light irradiation of 2500 lux. The results showed that 0.1 mol/L kaempferol increased the activity of male flies during the day and significantly extended the male survival time under blue light irradiation. However, the study found that kaempferol did not significantly prolong the survival time of Drosophila in the oxidative stress experiment, and no significant difference was observed in the feeding experiment. In summary, our research found that kaempferol, at the concentration of 0.1 mol/L, has a protective effect on Drosophila under blue light irradiation, potentially achieved through alterations in circadian rhythm.
Collapse
Affiliation(s)
- Qimeng He
- College of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou, Zhejiang, China
| | - Hui Jin
- College of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou, Zhejiang, China
| | - Jie Shen
- College of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Sánchez-Fernández C, Del Olmo-Aguado S, Artime E, Barros A, Fernández-Vega Cueto L, Merayo-Lloves J, Alcalde I. Immunocytochemical Analysis of Crocin against Oxidative Stress in Trigeminal Sensory Neurons Innervating the Cornea. Molecules 2024; 29:456. [PMID: 38257369 PMCID: PMC10818698 DOI: 10.3390/molecules29020456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/15/2023] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Corneal diseases are a major cause of vision loss, often associated with aging, trauma and disease. Damage to corneal sensory innervation leads to discomfort and pain. Environmental stressors, such as short-wavelength light, can induce oxidative stress that alters mitochondrial function and affects cell and tissue homeostasis, including corneal innervation. Cellular antioxidant mechanisms may attenuate oxidative stress. This study investigates crocin, a derivative of saffron, as a potential antioxidant therapy. In vitro rat trigeminal sensory ganglion neurons were exposed to both sodium azide and blue light overexposure as a model of oxidative damage. Crocin was used as a neuroprotective agent. Mitochondrial and cytoskeletal markers were studied by immunofluorescence analysis to determine oxidative damage and neuroprotection. In vivo corneal innervation degeneration was evaluated in cornea whole mount preparations using Sholl analyses. Blue light exposure induces oxidative stress that affects trigeminal neuron mitochondria and alters sensory axon dynamics in vitro, and it also affects corneal sensory innervation in an in vivo model. Our results show that crocin was effective in preserving mitochondrial function and protecting corneal sensory neurons from oxidative stress. Crocin appears to be a promising candidate for the neuroprotection of corneal innervation.
Collapse
Affiliation(s)
- Cristina Sánchez-Fernández
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, 33012 Oviedo, Spain; (C.S.-F.); (S.D.O.-A.); (E.A.); (A.B.); (L.F.-V.C.); (J.M.-L.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Susana Del Olmo-Aguado
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, 33012 Oviedo, Spain; (C.S.-F.); (S.D.O.-A.); (E.A.); (A.B.); (L.F.-V.C.); (J.M.-L.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Enol Artime
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, 33012 Oviedo, Spain; (C.S.-F.); (S.D.O.-A.); (E.A.); (A.B.); (L.F.-V.C.); (J.M.-L.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Alberto Barros
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, 33012 Oviedo, Spain; (C.S.-F.); (S.D.O.-A.); (E.A.); (A.B.); (L.F.-V.C.); (J.M.-L.)
| | - Luis Fernández-Vega Cueto
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, 33012 Oviedo, Spain; (C.S.-F.); (S.D.O.-A.); (E.A.); (A.B.); (L.F.-V.C.); (J.M.-L.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Jesús Merayo-Lloves
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, 33012 Oviedo, Spain; (C.S.-F.); (S.D.O.-A.); (E.A.); (A.B.); (L.F.-V.C.); (J.M.-L.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Ignacio Alcalde
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, 33012 Oviedo, Spain; (C.S.-F.); (S.D.O.-A.); (E.A.); (A.B.); (L.F.-V.C.); (J.M.-L.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| |
Collapse
|
3
|
Karasev MM, Verkhusha VV, Shcherbakova DM. Near-Infrared Optogenetic Module for Conditional Protein Splicing. J Mol Biol 2023; 435:168360. [PMID: 37949312 PMCID: PMC10842711 DOI: 10.1016/j.jmb.2023.168360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/29/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023]
Abstract
Optogenetics has emerged as a powerful tool for spatiotemporal control of biological processes. Near-infrared (NIR) light, with its low phototoxicity and deep tissue penetration, holds particular promise. However, the optogenetic control of polypeptide bond formation has not yet been developed. In this study, we introduce a NIR optogenetic module for conditional protein splicing (CPS) based on the gp41-1 intein. We optimized the module to minimize background signals in the darkness and to maximize the contrast between light and dark conditions. Next, we engineered a NIR CPS gene expression system based on the protein ligation of a transcription factor. We applied the NIR CPS for light-triggered protein cleavage to activate gasdermin D, a pore-forming protein that induces pyroptotic cell death. Our NIR CPS optogenetic module represents a promising tool for controlling molecular processes through covalent protein linkage and cleavage.
Collapse
Affiliation(s)
- Maksim M Karasev
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland
| | - Vladislav V Verkhusha
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland; Department of Genetics, and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Daria M Shcherbakova
- Department of Genetics, and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
4
|
Bonneau N, Potey A, Vitoux MA, Magny R, Guerin C, Baudouin C, Peyrin JM, Brignole-Baudouin F, Réaux-Le Goazigo A. Corneal neuroepithelial compartmentalized microfluidic chip model for evaluation of toxicity-induced dry eye. Ocul Surf 2023; 30:307-319. [PMID: 37984561 DOI: 10.1016/j.jtos.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/22/2023]
Abstract
Part of the lacrimal functional unit, the cornea protects the ocular surface from numerous environmental aggressions and xenobiotics. Toxicological evaluation of compounds remains a challenge due to complex interactions between corneal nerve endings and epithelial cells. To this day, models do not integrate the physiological specificity of corneal nerve endings and are insufficient for the detection of low toxic effects essential to anticipate Toxicity-Induced Dry Eye (TIDE). Using high-content imaging tool, we here characterize toxicity-induced cellular alterations using primary cultures of mouse trigeminal sensory neurons and corneal epithelial cells in a compartmentalized microfluidic chip. We validate this model through the analysis of benzalkonium chloride (BAC) toxicity, a well-known preservative in eyedrops, after a single (6h) or repeated (twice a day for 15 min over 5 days) topical 5.10-4% BAC applications on the corneal epithelial cells and nerve terminals. In combination with high-content image analysis, this advanced microfluidic protocol reveal specific and tiny changes in the epithelial cells and axonal network as well as in trigeminal cells, not directly exposed to BAC, with ATF3/6 stress markers and phospho-p44/42 cell activation marker. Altogether, this corneal neuroepithelial chip enables the evaluation of toxic effects of ocular xenobiotics, distinguishing the impact on corneal sensory innervation and epithelial cells. The combination of compartmentalized co-culture/high-content imaging/multiparameter analysis opens the way for the systematic analysis of toxicants but also neuroprotective compounds.
Collapse
Affiliation(s)
- Noémie Bonneau
- Sorbonne Université, INSERM, CNRS, IHU FOReSIGHT, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France; HORUS PHARMA, F-06200 Nice, France
| | - Anaïs Potey
- Sorbonne Université, INSERM, CNRS, IHU FOReSIGHT, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France
| | - Michael-Adrien Vitoux
- Sorbonne Université, INSERM, CNRS, IHU FOReSIGHT, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France
| | - Romain Magny
- Sorbonne Université, INSERM, CNRS, IHU FOReSIGHT, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France; UMR CNRS 8038 CiTCoM, Chimie Toxicologie Analytique et Cellulaire, Université de Paris, Faculté de Pharmacie, Paris, France
| | | | - Christophe Baudouin
- Sorbonne Université, INSERM, CNRS, IHU FOReSIGHT, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM-DGOS CIC 1423, IHU FOReSIGHT, 28 rue de Charenton, F-75012, Paris, France; Université Versailles-Saint-Quentin-en-Yvelines, Hôpital Ambroise Paré, APHP, F-92100, Boulogne-Billancourt, France
| | - Jean-Michel Peyrin
- Neurosciences Paris Seine, UMR8246, Inserm U1130, IBPS, UPMC, Sorbonne Université, 4 Place Jussieu, F-75005, Paris, France.
| | - Françoise Brignole-Baudouin
- Sorbonne Université, INSERM, CNRS, IHU FOReSIGHT, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM-DGOS CIC 1423, IHU FOReSIGHT, 28 rue de Charenton, F-75012, Paris, France; Université Paris Cité, Faculté de Pharmacie de Paris, F-75006, Paris, France.
| | - Annabelle Réaux-Le Goazigo
- Sorbonne Université, INSERM, CNRS, IHU FOReSIGHT, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France.
| |
Collapse
|
5
|
Han Z, Zhang Z, Liu K, Li Y, Xiao W, Liu J, Zhu X, Zheng C, Wu Q. Spectral optimization of trichromatic white LEDs based on age of lighting user and application scene. OPTICS EXPRESS 2023; 31:11624-11632. [PMID: 37155793 DOI: 10.1364/oe.485523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The optimization of trichromatic white light emitting diodes (LEDs) spectrum for application scenes related to the age of lighting users is proposed and demonstrated. Based on the spectral transmissivity of human eyes at different ages, the visual and non-visual responses of human eyes to different wavelengths of light, we have built the blue light hazards (BLH) and circadian action factor (CAF) related to the age of the lighting user. The BLH and CAF are used to evaluate the spectral combinations of high color rendering index (CRI) white LEDs obtained from different radiation flux ratios of red, green, and blue monochrome spectrum. The best spectra of white LEDs for lighting users at different ages in work and leisure scenes are achieved due to the optimization criterion of BLH proposed by us. This research provides a solution for intelligent health lighting design applicable to light users of different ages and application scenes.
Collapse
|
6
|
Zhang J, Liang Q, Li Y, Deng Z, Song G, Wang H, Yan M, Wang X. Integrated transcriptome and metabolome analyses shed light on the defense mechanisms in tomato plants after (E)-2-hexenal fumigation. Genomics 2023; 115:110592. [PMID: 36854356 DOI: 10.1016/j.ygeno.2023.110592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 02/27/2023]
Abstract
Tomato is a widely cultivated fruit and vegetable and is valued for its flavor, colour, and nutritional value. C6-aldehydes, such as (E)-2-hexenal, not only have antibacterial and antifungal properties but also function as signaling molecules that control the defense mechanisms of plants, including tomatoes. In this study, we used liquid chromatography-mass spectrometry (LC-MS) and RNA sequencing techniques to generate metabolome and transcriptome datasets that elucidate the molecular mechanisms regulating defense responses in tomato leaves exposed to (E)-2-hexenal. A total of 28.27 Gb of clean data were sequenced and assembled into 23,720 unigenes. In addition, a non-targeted metabolomics approach detected 739 metabolites. There were 233 significant differentially expressed genes (DEGs) (158 up-regulated, 75 down-regulated) and 154 differentially expressed metabolites (DEMs) (86 up-regulated, 69 down-regulated). Most nucleotides and amino acids (L-Phenylalanine, L-Asparagine, L-Histidine, L-Arginine, and L-Tyrosine) and their derivatives were enriched. The analyses revealed that mitogen-activated protein kinase (MPK), pathogenesis-related protein (PR), and endochitinase (CHIB) were primarily responsible for the adaptation of plant defense responses. Therefore, the extensive upregulation of these genes may be associated with the increased plant defense response. These findings help us comprehend the defense response of plants to (E)-2-hexenal and improve the resistance of horticultural plants.
Collapse
Affiliation(s)
- Jihong Zhang
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, College of Life Science, Hunan University of Science and Technology, Xiangtan 411201, China.
| | - Quanwu Liang
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, College of Life Science, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Yuqiong Li
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, College of Life Science, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Zhiping Deng
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310022, China
| | - Ge Song
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, College of Life Science, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Haihua Wang
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, College of Life Science, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Mingli Yan
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, College of Life Science, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Xuewen Wang
- Department of Genetics, University of Georgia, Athens GA30602, USA
| |
Collapse
|
7
|
VISUAL OPSINS: PHYSIOLOGICAL ALTERATION PROMOTED BY LED LIGHT. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2023. [DOI: 10.1016/j.jpap.2023.100163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
8
|
Zhang C, Xu L, Endo M, Kahyo T, Kikushima K, Horikawa M, Murakami M, Waliullah A, Hasan M, Sakamoto T, Takahashi Y, Aramaki S, Ozawa T, Setou M. Blue light alters cellular lipidome—Light-induced lipidomic changes can be modulated by optogenetically engineered cPLA2α. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2022. [DOI: 10.1016/j.jpap.2022.100150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
9
|
Rzhechitskiy Y, Gurkov A, Bolbat N, Shchapova E, Nazarova A, Timofeyev M, Borvinskaya E. Adipose Fin as a Natural “Optical Window” for Implantation of Fluorescent Sensors into Salmonid Fish. Animals (Basel) 2022; 12:ani12213042. [PMID: 36359166 PMCID: PMC9654777 DOI: 10.3390/ani12213042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Simple Summary Novel optical sensors require implantation into the most transparent organs in order to ensure the most reliable and rapid monitoring of animal health. Widely farmed salmonid fish, such as rainbow trout, have highly translucent adipose fin, which we tested here and showed its high potential as the implantation site for the fluorescent sensors. The filamentous sensors were convenient to inject into the fin, and their optical signal was easily detectable using a simple hand-held device even without immobilization of the fish. Responsiveness of the sensors inside the adipose fin to bodily changes was shown under induced acidosis of fish fluids. The obtained results characterize adipose fin as the favorable site for implantation of optical sensors into salmonids for real-time tracking animal physiological status in basic research and aquaculture. Abstract Implantable optical sensors are emerging tools that have the potential to enable constant real-time monitoring of various internal physiological parameters. Such a possibility will open new horizons for health control not only in medicine, but also in animal husbandry, including aquaculture. In this study, we analyze different organs of commonly farmed rainbow trout (Oncorhynchus mykiss) as implantation sites for fluorescent sensors and propose the adipose fin, lacking an endoskeleton, as the optimal choice. The fin is highly translucent due to significantly thinner dermis, which makes the detectable fluorescence of an implanted sensor operating at the visible light range by more than an order of magnitude higher relative to the skin. Compared to the proximal parts of ray fins, the adipose fin provides easy implantation and visualization of the sensor. Finally, we tested fluorescent pH sensors inside the adipose fin and demonstrated the possibility of acquiring their signal with a simple hand-held device and without fish anesthesia. All these features will most likely make the adipose fin the main “window” into the internal physiological processes of salmonid fish with the help of implantable optical sensors.
Collapse
Affiliation(s)
| | - Anton Gurkov
- Institute of Biology, Irkutsk State University, 664025 Irkutsk, Russia
- Baikal Research Centre, 664003 Irkutsk, Russia
| | - Nadezhda Bolbat
- Institute of Biology, Irkutsk State University, 664025 Irkutsk, Russia
| | - Ekaterina Shchapova
- Institute of Biology, Irkutsk State University, 664025 Irkutsk, Russia
- Baikal Research Centre, 664003 Irkutsk, Russia
| | - Anna Nazarova
- Institute of Biology, Irkutsk State University, 664025 Irkutsk, Russia
| | - Maxim Timofeyev
- Institute of Biology, Irkutsk State University, 664025 Irkutsk, Russia
| | - Ekaterina Borvinskaya
- Institute of Biology, Irkutsk State University, 664025 Irkutsk, Russia
- Correspondence:
| |
Collapse
|
10
|
Petukhova E, Ponomareva D, Rustler K, Koenig B, Bregestovski P. Action of the Photochrome Glyght on GABAergic Synaptic Transmission in Mouse Brain Slices. Int J Mol Sci 2022; 23:ijms231810553. [PMID: 36142469 PMCID: PMC9503965 DOI: 10.3390/ijms231810553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Glyght is a new photochromic compound described as an effective modulator of glycine receptors at heterologous expression, in brain slices and in zebrafish larvae. Glyght also caused weak inhibition of GABAA-mediated currents in a cell line expressing α1/β2/γ2 GABAA receptors. However, the effects of Glyght on GABAergic transmission in the brain have not been analysed, which does not allow a sufficiently comprehensive assessment of the effects of the compound on the nervous system. Therefore, in this study using whole-cell patch-clamp recording, we analysed the Glyght (100 µM) action on evoked GABAergic inhibitory postsynaptic currents (eIPSCs) in mice hippocampal slices. Two populations of cells were found: the first responded by reducing the GABAergic eIPSCs’ amplitude, whereas the second showed no sensitivity to the compound. Glyght did not affect the ionic currents’ amplitude induced by GABA application, suggesting the absence of action on postsynaptic GABA receptors. Additionally, Glyght had no impact on the paired-pulse modulation of GABAergic eIPSCs, indicating that Glyght does not modulate the neurotransmitter release mechanisms. In the presence of strychnine, an antagonist of glycine receptors, the Glyght effect on GABAergic synaptic transmission was absent. Our results suggest that Glyght can modulate GABAergic synaptic transmission via action on extrasynaptic glycine receptors.
Collapse
Affiliation(s)
- Elena Petukhova
- Institute of Neurosciences, Kazan State Medical University, 420111 Kazan, Russia
- OpenLab Gene and Cell Technologies, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Daria Ponomareva
- Institute of Neurosciences, Kazan State Medical University, 420111 Kazan, Russia
- Institut de Neurosciences des Systèmes, Aix-Marseille University, INSERM, INS, 13005 Marseille, France
- Department of Normal Physiology, Kazan State Medical University, 420111 Kazan, Russia
| | - Karin Rustler
- Faculty of Chemistry and Pharmacy, University of Regensburg, 93053 Regensburg, Germany
| | - Burkhard Koenig
- Faculty of Chemistry and Pharmacy, University of Regensburg, 93053 Regensburg, Germany
| | - Piotr Bregestovski
- Institute of Neurosciences, Kazan State Medical University, 420111 Kazan, Russia
- Institut de Neurosciences des Systèmes, Aix-Marseille University, INSERM, INS, 13005 Marseille, France
- Department of Normal Physiology, Kazan State Medical University, 420111 Kazan, Russia
- Correspondence:
| |
Collapse
|
11
|
Karasev MM, Baloban M, Verkhusha VV, Shcherbakova DM. Nuclear Localization Signals for Optimization of Genetically Encoded Tools in Neurons. Front Cell Dev Biol 2022; 10:931237. [PMID: 35927988 PMCID: PMC9344056 DOI: 10.3389/fcell.2022.931237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/24/2022] [Indexed: 12/15/2022] Open
Abstract
Nuclear transport in neurons differs from that in non-neuronal cells. Here we developed a non-opsin optogenetic tool (OT) for the nuclear export of a protein of interest induced by near-infrared (NIR) light. In darkness, nuclear import reverses the OT action. We used this tool for comparative analysis of nuclear transport dynamics mediated by nuclear localization signals (NLSs) with different importin specificities. We found that widely used KPNA2-binding NLSs, such as Myc and SV40, are suboptimal in neurons. We identified uncommon NLSs mediating fast nuclear import and demonstrated that the performance of the OT for nuclear export can be adjusted by varying NLSs. Using these NLSs, we optimized the NIR OT for light-controlled gene expression for lower background and higher contrast in neurons. The selected NLSs binding importins abundant in neurons could improve performance of genetically encoded tools in these cells, including OTs and gene-editing tools.
Collapse
Affiliation(s)
- Maksim M. Karasev
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mikhail Baloban
- Department of Genetics and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Vladislav V. Verkhusha
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Genetics and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Daria M. Shcherbakova
- Department of Genetics and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
12
|
Jiang Z, He J, Wang X, Zhu D, Li N, Ren L, Yang G. Nanomaterial-based cell sheet technology for regenerative medicine and tissue engineering. Colloids Surf B Biointerfaces 2022; 217:112661. [PMID: 35777168 DOI: 10.1016/j.colsurfb.2022.112661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/16/2022] [Accepted: 06/23/2022] [Indexed: 10/17/2022]
Abstract
Nanomaterial-based cell sheet technology has been reported to be an effective method in regenerative medicine and tissue engineering. Here, we summarized several types of nanomaterials used to harvest cell sheets. Currently, the technology is divided into four categories according to the mechanisms: light-induced cell sheet technology, thermo-responsive cell sheet technology, magnetic-controlled cell sheet technology, and reactive oxygen species (ROS)-induced cell sheet technology. Furthermore, some studies have been conducted to show that nanomaterial-based cell sheets produce satisfying outcomes in the regeneration of bone, skeletal muscle, cardiac tissue, and tendon, as well as angiogenesis and osseointegration. Nevertheless, some shortcomings still exist, such as comprehensive preparation, unclear safety, and cell quality. Thus, future studies should aim to produce more types of nanomaterials to solve this problem.
Collapse
Affiliation(s)
- Zhiwei Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Jin He
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Xueting Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Danji Zhu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Na Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Lingfei Ren
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Guoli Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China.
| |
Collapse
|
13
|
Cai W, Hamushan M, Zhang Y, Xu Z, Ren Z, Du J, Ju J, Cheng P, Tan M, Han P. Synergistic Effects of Photobiomodulation Therapy with Combined Wavelength on Diabetic Wound Healing In Vitro and In Vivo. Photobiomodul Photomed Laser Surg 2022; 40:13-24. [PMID: 34941461 DOI: 10.1089/photob.2021.0068] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Objective: The difficulty in chronic diabetic wound healing remains the focus of clinical research. Photobiomodulation therapy (PBMT) with different wavelengths could exert different effects on wound healing, but the effects of combined red and blue light (BL) remained unclear. Methods: Diabetic rat wound model and diabetic wounded endothelial cell model were established to observe possible effects of PBMT using combined wavelengths for wound healing. Cells and animals were separated into four groups exposed to red and/or BL. Cell viability, apoptosis, and migration, as well as the expression level of nitric oxide (NO), vascular endothelial growth factor, interleukin-6, and tumor necrosis factor-α were measured in vitro. Diabetic rats were evaluated for wound closure rates, collagen deposition, inflammation intensity, and density of neovascularization after light irradiation. Results: PBMT using combined wavelengths significantly sped up the healing process with increasing angiogenesis density, collagen deposition, and alleviating inflammation in vivo. Moreover, combined wavelength irradiation promoted cell proliferation and migration, and NO production, as well as reduced reactive oxygen species and inflammation in vitro. Conclusions: PBMT using combined wavelengths performed a synergistic effect for promoting diabetic wound healing and would be helpful to explore a more efficient pattern toward chronic wound healing.
Collapse
Affiliation(s)
- Weijie Cai
- Orthopedic Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Musha Hamushan
- Orthopedic Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yubo Zhang
- Orthopedic Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zhengyu Xu
- Orthopedic Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zun Ren
- Orthopedic Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jiafei Du
- Orthopedic Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jiaqi Ju
- College of Sciences, Shanghai Institute of Technology, Shanghai, China
| | - Pengfei Cheng
- Orthopedic Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Moyan Tan
- College of Sciences, Shanghai Institute of Technology, Shanghai, China
| | - Pei Han
- Orthopedic Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
14
|
Sharifi S, Sharifi H, Akbari A, Chodosh J. Systematic optimization of visible light-induced crosslinking conditions of gelatin methacryloyl (GelMA). Sci Rep 2021; 11:23276. [PMID: 34857867 PMCID: PMC8640009 DOI: 10.1038/s41598-021-02830-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 11/18/2021] [Indexed: 11/09/2022] Open
Abstract
Gelatin methacryloyl (GelMA) is one of the most widely used photo-crosslinkable biopolymers in tissue engineering. In in presence of an appropriate photoinitiator, the light activation triggers the crosslinking process, which provides shape fidelity and stability at physiological temperature. Although ultraviolet (UV) has been extensively explored for photo-crosslinking, its application has been linked to numerous biosafety concerns, originated from UV phototoxicity. Eosin Y, in combination with TEOA and VC, is a biosafe photoinitiation system that can be activated via visible light instead of UV and bypasses those biosafety concerns; however, the crosslinking system needs fine-tuning and optimization. In order to systematically optimize the crosslinking conditions, we herein independently varied the concentrations of Eosin Y [(EY)], triethanolamine (TEOA), vinyl caprolactam (VC), GelMA precursor, and crosslinking times and assessed the effect of those parameters on the properties the hydrogel. Our data showed that except EY, which exhibited an optimal concentration (~ 0.05 mM), increasing [TEOA], [VA], [GelMA], or crosslinking time improved mechanical (tensile strength/modulus and compressive modulus), adhesion (lap shear strength), swelling, biodegradation properties of the hydrogel. However, increasing the concentrations of crosslinking reagents ([TEOA], [VA], [GelMA]) reduced cell viability in 3-dimensional (3D) cell culture. This study enabled us to optimize the crosslinking conditions to improve the properties of the GelMA hydrogel and to generate a library of hydrogels with defined properties essential for different biomedical applications.
Collapse
Affiliation(s)
- Sina Sharifi
- Disruptive Technology Laboratory, Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear and Schepens Eye Research Institute, Boston, MA, USA.
| | - Hannah Sharifi
- Disruptive Technology Laboratory, Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear and Schepens Eye Research Institute, Boston, MA, USA
| | - Ali Akbari
- Solid Tumor Research Center, Research Institute for Cellular and Molecular Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - James Chodosh
- Disruptive Technology Laboratory, Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear and Schepens Eye Research Institute, Boston, MA, USA
| |
Collapse
|
15
|
Walsh KD, Burkhart EM, Nagai A, Aizawa Y, Kato TA. Cytotoxicity and genotoxicity of blue LED light and protective effects of AA2G in mammalian cells and associated DNA repair deficient cell lines. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2021; 872:503416. [PMID: 34798940 DOI: 10.1016/j.mrgentox.2021.503416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/29/2021] [Accepted: 10/03/2021] [Indexed: 10/20/2022]
Abstract
Light emitting diode (LED) devices emit narrow bands of the blue, green, and red light spectrum rather than the continuous spectrum emitted from sunlight and fluorescent light bulbs. LED devices have become considerably common in society, and the fluence of blue light from LED devices is more intense than other light sources. Previous studies presented that the blue light spectrum may harness potentially inimical genotoxicity. Therefore, the aim of this study was to investigate this potential cytotoxicity and genotoxicity, as well as identify the mechanism of the cellular effects induced by blue LED light exposure in mammalian cell lines with their DNA repair deficient mutants. Our results demonstrated that blue LED light induced both oxidative stress to cells and cytotoxic and genotoxic effects including reduction of clonogenicity, cell cycle arrest, induction of sister chromatid exchanges, endoreduplicated chromosomes, and increased frequency of HPRT locus mutations. In DNA repair deficient cells, particularly those involving double strand break repair deficiency, cells presented hypersensitivity to blue LED light exposure. Blue LED light also induced chromosome aberrations more in DNA repair deficient cells than wild type cells. The cytotoxicity of blue LED light was reduced by an effective antioxidant, ascorbic acid 2-glucoside, which can suppress blue LED light induced oxidative stress. These results indicated that prolonged, high intensity exposure to blue LED light induces genotoxic stress to cells, and oxidative stress induced by blue LED light is targeting DNA to induce these biological effects.
Collapse
Affiliation(s)
- Kade D Walsh
- Department of Environmental & Radiological Health Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Erica M Burkhart
- Department of Environmental & Radiological Health Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Atsushi Nagai
- Research & Development Department, Carlit Holdings Co., Ltd., Gunma, 377-0004, Japan
| | - Yasushi Aizawa
- Research & Development Department, Carlit Holdings Co., Ltd., Gunma, 377-0004, Japan
| | - Takamitsu A Kato
- Department of Environmental & Radiological Health Sciences, Colorado State University, Fort Collins, CO, 80523, USA.
| |
Collapse
|
16
|
Wei Z, Liu J, Xie H, Wang B, Wu J, Zhu Z. MiR-122-5p Mitigates Inflammation, Reactive Oxygen Species and SH-SY5Y Apoptosis by Targeting CPEB1 After Spinal Cord Injury Via the PI3K/AKT Signaling Pathway. Neurochem Res 2021; 46:992-1005. [PMID: 33528808 DOI: 10.1007/s11064-021-03232-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/07/2020] [Accepted: 01/05/2021] [Indexed: 01/01/2023]
Abstract
Spinal cord injury (SCI) is a threatening disease that lead to severe motor and sensory deficits. Previous research has revealed that miRNAs are involved in the pathogenesis of a variety of diseases. However, whether miR-122-5p was involved in SCI was rarely investigated. In our study, we intended to probe role of miR-122-5p in the regulation of inflammatory response, reactive oxygen species (ROS) and SH-SY5Y apoptosis. We found miR-122-5p was downregulated in SCI mouse model and LPS-induced SH-SY5Y cells. Moreover, miR-122-5p overexpression alleviated inflammatory response, ROS and SH-SY5Y apoptosis in SCI mice. In addition, miR-122-5p elevation also mitigated SCI in LPS-induced SH-SY5Y cells. Additionally, cytoplasmic polyadenylation element binding protein 1 (CPEB1) was verified to be a target of miR-122-5p. CPEB1 expression was upregulated in SCI mouse model and LPS-induced SH-SY5Y cells. CPEB1 expression was negatively related to miR-122-5p expression. Moreover, CPEB1 activated the PI3K/AKT signaling pathway in SH-SY5Y cells. Finally, CPEB1 elevation recovered the suppressive effect on inflammatory response, ROS and SH-SY5Y apoptosis in LPS-treated SH-SY5Y cells mediated by miR-122-5p upregulation and through the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Zijian Wei
- Department of Orthopaedics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211100, Jiangsu, China
- Department of Spine Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, Jiangsu, People's Republic of China
| | - Jun Liu
- Department of Orthopaedics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211100, Jiangsu, China
- Department of Orthopaedics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, China
| | - Hao Xie
- Department of Orthopaedics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211100, Jiangsu, China
| | - Binbin Wang
- Department of Orthopaedics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211100, Jiangsu, China
| | - Ji Wu
- Department of Orthopaedics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211100, Jiangsu, China
| | - Zezhang Zhu
- Department of Spine Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, Jiangsu, People's Republic of China.
- Department of Spine Surgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, No. 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
17
|
Jiang Z, Zhu D, Yu K, Xi Y, Wang X, Yang G. Recent advances in light-induced cell sheet technology. Acta Biomater 2021; 119:30-41. [PMID: 33144232 DOI: 10.1016/j.actbio.2020.10.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/29/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023]
Abstract
Various stimuli have been applied to harvest complete cell sheets, including temperature, magnetic, pH, and electrical stimuli. Cell sheet technology is a convenient and efficient approach with beneficial effects for tissue regeneration and cell therapy. Lights of different wavelengths, such as ultraviolet (UV), visible light, and near infrared ray (NIR) light, were confirmed to aid in fabricating a cell sheet. Changes in the wettability, potential, or water content of the culturing surfaces that occur under light illumination induce conformational changes in the adhesive proteins or collagens, which then leads to cell sheet detachment. However, the current approaches face several limitations, as few standards for safe light illumination have been proposed to date, and require a careful control of the wavelength, power, and irradiation time. Future studies should aim at generating new materials for culturing and releasing cell sheets rapidly and effectively.
Collapse
|
18
|
Jin M, Li X, Yan F, Chen W, Jiang L, Zhang X. The effects of low-color-temperature dual-primary-color light-emitting diodes on three kinds of retinal cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 214:112099. [PMID: 33285486 DOI: 10.1016/j.jphotobiol.2020.112099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 10/03/2020] [Accepted: 11/23/2020] [Indexed: 12/20/2022]
Abstract
Long-term illumination of the retina with blue-light-excited phosphor-converted light-emitting diodes (LEDs) may result in decreased retinal function, even if the levels of blue light emitted are low. New low-color-temperature dual-primary-color LEDs have been developed that are composed of only two LED chips: a red chip and a yellow chip. These LEDs are expected to become a new type of healthy lighting source because they do not emit blue light, they lack phosphor, and they solve the problem of low efficiency encountered with phosphor-converted low-color-temperature LEDs. Many studies have indicated that these new low-color-temperature LEDs are likely to have therapeutic effects. However, the biological safety of these LEDs needs to be explored before the therapeutic effects are explored. Therefore, this experiment was conducted to investigate the effects of the new low-color-temperature LEDs and fluorescent white LEDs on three types of retinal cells. We observed that the viability and numbers of retinal cells decreased gradually with increasing LED color temperature. The new low-color-temperature LEDs caused less death and adverse effects on proliferation than the fluorescent white LEDs. After irradiation with high-color-temperature LEDs, the expression of Zonula Occludens-1 (ZO-1) was decreased and discontinuous in ARPE-19 cells; the stress protein hemeoxygenase-1 (HO-1) was upregulated in R28 cells; and glial fibrillary acidic protein (GFAP) and vimentin were upregulated in rMC-1 cells. We therefore conclude that the new white LEDs cause almost no damage to retinal cells and reduce the potential human health risks of chronic exposure to fluorescent white LEDs.
Collapse
Affiliation(s)
- Ming Jin
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Clinical Research Center for Ophthalmic Disease, 463 Bayi Road, Nanchang, Jiangxi 330006, China
| | - Xiongfeng Li
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Clinical Research Center for Ophthalmic Disease, 463 Bayi Road, Nanchang, Jiangxi 330006, China
| | - Feng Yan
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Clinical Research Center for Ophthalmic Disease, 463 Bayi Road, Nanchang, Jiangxi 330006, China
| | - Weixin Chen
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Clinical Research Center for Ophthalmic Disease, 463 Bayi Road, Nanchang, Jiangxi 330006, China
| | - Lei Jiang
- Queen Mary School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi 330046, China
| | - Xu Zhang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Clinical Research Center for Ophthalmic Disease, 463 Bayi Road, Nanchang, Jiangxi 330006, China.
| |
Collapse
|
19
|
Ouyang X, Yang J, Hong Z, Wu Y, Xie Y, Wang G. Mechanisms of blue light-induced eye hazard and protective measures: a review. Biomed Pharmacother 2020; 130:110577. [PMID: 32763817 DOI: 10.1016/j.biopha.2020.110577] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/23/2020] [Accepted: 07/26/2020] [Indexed: 12/22/2022] Open
Abstract
The risk of blue light exposure to human health has attracted increased research attention. Blue light, with relatively high energy, can cause irreversible photochemical damage to eye tissue. Excessive exposure of the eye to blue light tends to cause a series of alterations, such as oxidative stress, mitochondrial apoptosis, inflammatory apoptosis, mitochondrial apoptosis and DNA damage, resulting in the development of dry eye disease, glaucoma, and keratitis. Accordingly, physical protection, chemical and pharmaceutical protective measures, gene therapy, and other methods are widely used in the clinical treatment of blue light hazard. We reviewed the studies on possible blue light-induced signaling pathways and mechanisms in the eye and summarized the therapeutic approaches to addressing blue light hazard.
Collapse
Affiliation(s)
- Xinli Ouyang
- Key Laboratory of Biological Medicines in Universities of Shandong Province, Weifang Medical University, Weifang, 261053, China
| | - Jing Yang
- Key Laboratory of Biological Medicines in Universities of Shandong Province, Weifang Medical University, Weifang, 261053, China
| | - Zexin Hong
- Key Laboratory of Biological Medicines in Universities of Shandong Province, Weifang Medical University, Weifang, 261053, China
| | - Yide Wu
- Key Laboratory of Biological Medicines in Universities of Shandong Province, Weifang Medical University, Weifang, 261053, China
| | - Yongfang Xie
- Key Laboratory of Biological Medicines in Universities of Shandong Province, Weifang Medical University, Weifang, 261053, China.
| | - Guohui Wang
- Key Laboratory of Biological Medicines in Universities of Shandong Province, Weifang Medical University, Weifang, 261053, China.
| |
Collapse
|
20
|
Blue Light-Induced Gene Expression Alterations in Cultured Neurons Are the Result of Phototoxic Interactions with Neuronal Culture Media. eNeuro 2020; 7:ENEURO.0386-19.2019. [PMID: 31879366 PMCID: PMC6946540 DOI: 10.1523/eneuro.0386-19.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/27/2019] [Accepted: 12/13/2019] [Indexed: 12/17/2022] Open
Abstract
Blue wavelength light is used as an optical actuator in numerous optogenetic technologies employed in neuronal systems. However, the potential side effects of blue light in neurons has not been thoroughly explored, and recent reports suggest that neuronal exposure to blue light can induce transcriptional alterations in vitro and in vivo. Here, we examined the effects of blue wavelength light in cultured primary rat cortical cells. Exposure to blue light (470 nm) resulted in upregulation of several immediate early genes (IEGs) traditionally used as markers of neuronal activity, including Fos and Fosb, but did not alter the expression of circadian clock genes Bmal1, Cry1, Cry2, Clock, or Per2. IEG expression was increased following 4 h of 5% duty cycle light exposure, and IEG induction was not dependent on light pulse width. Elevated levels of blue light exposure induced a loss of cell viability in vitro, suggestive of overt phototoxicity. Induction of IEGs by blue light was maintained in cortical cultures treated with AraC to block glial proliferation, indicating that induction occurred selectively in postmitotic neurons. Importantly, changes in gene expression induced by blue wavelength light were prevented when cultures were maintained in a photoinert media supplemented with a photostable neuronal supplement instead of commonly utilized neuronal culture media and supplements. Together, these findings suggest that light-induced gene expression alterations observed in vitro stem from a phototoxic interaction between commonly used media and neurons, and offer a solution to prevent this toxicity when using photoactivatable technology in vitro.
Collapse
|
21
|
Wang JL, Luo X, Liu L. Targeting CARD6 attenuates spinal cord injury (SCI) in mice through inhibiting apoptosis, inflammation and oxidative stress associated ROS production. Aging (Albany NY) 2019; 11:12213-12235. [PMID: 31841440 PMCID: PMC6949089 DOI: 10.18632/aging.102561] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 11/20/2019] [Indexed: 12/16/2022]
Abstract
Spinal cord injury (SCI) causes long-term and severe disability, influencing the quality of life and triggering serious socioeconomic consequences. Lack of effective pharmacotherapies for SCI is largely attributable to an incomplete understanding of its pathogenesis. Caspase recruitment domain family member 6 (CARD6) was initially suggested to be a protein playing significant role in NF-κB activation. However, the effects of CARD6 on SCI progression remain unknown. In this study, the wild type (CARD6+/+), CARD6 knockout (CARD6-/-) and CARD6 transgenic (TG) mice were subjected to a SCI model in vivo, and in vitro experiments were conducted by treating microglia cells with lipopolysaccharide (LPS). Here, we identified CARD6 as a suppressor of SCI in mice. CARD6 knockout significantly accelerated functional deficits, neuron death and glia activation, whereas CARD6 overexpression resulted in the opposite effects. Both in vivo and in vitro SCI models suggested that CARD6 knockout markedly promoted apoptosis by increasing Cyto-c release to cytosol from mitochondria and activating Caspase-3 signaling. In addition, CARD6 knockout mice exhibited stronger inflammatory response after SCI, as evidenced by the significantly elevated expression of pro-inflammatory cytokines TNF-α, IL-1β and IL-6, which was largely through enhancing the activation of NF-κB signaling.
Collapse
Affiliation(s)
- Jiang Lin Wang
- Department of Pain Management, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Xiao Luo
- Department of Pain Management, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| | - Li Liu
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| |
Collapse
|
22
|
Marek V, Reboussin E, Dégardin-Chicaud J, Charbonnier A, Domínguez-López A, Villette T, Denoyer A, Baudouin C, Réaux-Le Goazigo A, Mélik Parsadaniantz S. Implication of Melanopsin and Trigeminal Neural Pathways in Blue Light Photosensitivity in vivo. Front Neurosci 2019; 13:497. [PMID: 31178682 PMCID: PMC6543920 DOI: 10.3389/fnins.2019.00497] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 04/30/2019] [Indexed: 01/30/2023] Open
Abstract
Photophobia may arise from various causes and frequently accompanies numerous ocular diseases. In modern highly illuminated world, complaints about greater photosensitivity to blue light increasingly appear. However, the pathophysiology of photophobia is still debated. In the present work, we investigated in vivo the role of various neural pathways potentially implicated in blue-light aversion. Moreover, we studied the light-induced neuroinflammatory processes on the ocular surface and in the trigeminal pathways. Adult male C57BL/6J mice were exposed either to blue (400-500 nm) or to yellow (530-710 nm) LED light (3 h, 6 mW/cm2). Photosensitivity was measured as the time spent in dark or illuminated parts of the cage. Pharmacological treatments were applied: topical instillation of atropine, pilocarpine or oxybuprocaine, intravitreal injection of lidocaine, norepinephrine or "blocker" of the visual photoreceptor transmission, and intraperitoneal injection of a melanopsin antagonist. Clinical evaluations (ocular surface state, corneal mechanical sensitivity and tear quantity) were performed directly after exposure to light and after 3 days of recovery in standard light conditions. Trigeminal ganglia (TGs), brainstems and retinas were dissected out and conditioned for analyses. Mice demonstrated strong aversion to blue but not to yellow light. The only drug that significantly decreased the blue-light aversion was the intraperitoneally injected melanopsin antagonist. After blue-light exposure, dry-eye-related inflammatory signs were observed, notably after 3 days of recovery. In the retina, we observed the increased immunoreactivity for GFAP, ATF3, and Iba1; these data were corroborated by RT-qPCR. Moreover, retinal visual and non-visual photopigments distribution was altered. In the trigeminal pathway, we detected the increased mRNA expression of cFOS and ATF3 as well as alterations in cytokines' levels. Thus, the wavelength-dependent light aversion was mainly mediated by melanopsin-containing cells, most likely in the retina. Other potential pathways of light reception were also discussed. The phototoxic message was transmitted to the trigeminal system, inducing both inflammation at the ocular surface and stress in the retina. Further investigations of retina-TG connections are needed.
Collapse
Affiliation(s)
- Veronika Marek
- R&D, Essilor International, Paris, France
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Paris, France
| | - Elodie Reboussin
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Paris, France
| | - Julie Dégardin-Chicaud
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Paris, France
| | - Angéline Charbonnier
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Paris, France
| | - Alfredo Domínguez-López
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Paris, France
| | | | - Alexandre Denoyer
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Paris, France
- Centre Hospitalier Nationale d’Ophtalmologie des Quinze-Vingts, Paris, France
- CHU Robert Debré, Université Reims Champagne-Ardenne, Reims, France
| | - Christophe Baudouin
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Paris, France
- Centre Hospitalier Nationale d’Ophtalmologie des Quinze-Vingts, Paris, France
- Versailles Saint-Quentin-en-Yvelines Université, Versailles, France
| | - Annabelle Réaux-Le Goazigo
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Paris, France
| | - Stéphane Mélik Parsadaniantz
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Paris, France
| |
Collapse
|