1
|
Miklosic G, Bektas EI, Hangartner A, Pavan M, Garofolin G, Galesso D, Beninatto R, D'Este M. Radical-free photopolymerizable composites of hyaluronic acid and gelatin for tissue engineering. Acta Biomater 2025:S1742-7061(25)00188-6. [PMID: 40081553 DOI: 10.1016/j.actbio.2025.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/24/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
Photopolymerization is widely used in tissue engineering and biofabrication to pattern specific geometries and modulate physical properties. Commonly employed photochemistries rely on a photoinitiator that generates reactive free radicals when exposed to light, which can lead to cytotoxic effects due to interactions with biomolecules and cellular components. To mitigate these issues, we have developed hyaluronic acid and gelatin derivatives of umbelliferone, which can form dimers thanks to cyclobutene ring formation when exposed to long-wavelength UV light (365 nm). These reactions occur efficiently with reduced cytotoxicity and without the need of a photoinitiator. Ligation to the biopolymers was carried out with the incorporation of a triethylene glycol or n-octyl linker that enhances the conformational flexibility of umbelliferone and contributes to improve the rheological properties. By heat annealing these derivatives, we produced double network hydrogels with various compositions. We assessed their physical properties using rheological and uniaxial compression tests, evaluated their cytocompatibility by encapsulating articular chondrocytes, and conducted preliminary printability tests to determine their suitability for injection and extrusion-based biofabrication. The materials exhibited good cytocompatibility and cell adhesion, were successfully extrudable using a pneumatic bioprinter while maintaining cell viability and were compatible with regulatory-approved steam sterilization. Due to their unique properties, these umbelliferone derivatives are well-suited for tissue engineering and biofabrication applications, offering crucial advantages for future clinical translation. STATEMENT OF SIGNIFICANCE: This study introduces a method for preparing novel bioinks from coumarin derivatives of hyaluronic acid and gelatin, key biopolymers in tissue engineering. These derivatives enable photoinitiator-free photocrosslinking without generating free radicals, thereby reducing cytotoxic risks and facilitating easier clinical translation compared to existing approaches. They are compatible with steam sterilization and show promise for extrusion-based techniques like bioprinting and injectability. Through mechanical characterization and biological assessments, the interactions between the biopolymers at different ratios and their effect on encapsulated cells were studied, providing insights for optimizing future tissue engineering applications.
Collapse
Affiliation(s)
- Gregor Miklosic
- AO Research Institute Davos, 7270 Davos, Switzerland; Institute for Biomechanics, ETH Zürich, 8092 Zürich, Switzerland
| | | | | | - Mauro Pavan
- Fidia Farmaceutici S.p.A., 35031 Abano Terme, Italy
| | | | | | | | - Matteo D'Este
- AO Research Institute Davos, 7270 Davos, Switzerland.
| |
Collapse
|
2
|
Quintero-Ruiz N, Corradi C, Moreno NC, de Souza TA, Menck CFM. UVA-light-induced mutagenesis in the exome of human nucleotide excision repair-deficient cells. Photochem Photobiol Sci 2025; 24:429-449. [PMID: 40063310 DOI: 10.1007/s43630-025-00697-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 02/23/2025] [Indexed: 04/05/2025]
Abstract
Skin cancer is associated with genetic mutations caused by sunlight exposure, primarily through ultraviolet (UV) radiation that damages DNA. While UVA is less energetic, it is the predominant solar UV component reaching the Earth's surface. However, the mechanisms of UVA-induced mutagenesis and its role in skin cancer development remain poorly understood. This study employed whole exome sequencing of clones from human XP-C cells, which lack nucleotide excision repair (NER), to characterize somatic mutations induced by UVA exposure. DNA sequence analysis of UVA-irradiated XP-C cells revealed a marked increase in mutation frequency across nearly all types of base substitutions, with particular enrichment in C > T transitions within the CCN and TCN trinucleotide context-potential sites for pyrimidine dimer formation. The C > T mutation primarily occurred at the 3' base of the 5'TC dimer, and an enrichment of CC > TT tandem mutations. We also identified the SBS7b COSMIC mutational signature within irradiated cells, which has been associated with tumors in sun-exposed skin. C > A transversions, often linked to oxidized guanine, were the second most frequently induced mutation, although a specific context for this base substitution was not identified. Moreover, C > T mutations were significantly increased in unirradiated XP-C compared to NER-proficient cells, which may be caused by unrepaired spontaneous DNA damage. Thus, this study indicates that pyrimidine dimers are the primary lesions contributing to UVA-induced mutagenesis in NER-deficient human cells and demonstrates that UVA generates mutational signatures similar to those of UVB irradiation.
Collapse
Affiliation(s)
- Nathalia Quintero-Ruiz
- Institute of Biomedical Sciences (Department of Microbiology), University of Sao Paulo, Sao Paulo, SP, Brazil
- Faculty of Applied Science, Campinas University, Limeira, SP, Brazil
| | - Camila Corradi
- Institute of Biomedical Sciences (Department of Microbiology), University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Natália Cestari Moreno
- Institute of Biomedical Sciences (Department of Microbiology), University of Sao Paulo, Sao Paulo, SP, Brazil
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - Tiago Antonio de Souza
- Institute of Biomedical Sciences (Department of Microbiology), University of Sao Paulo, Sao Paulo, SP, Brazil
- Tau GC Bioinformatics, São Paulo, SP, Brazil
| | | |
Collapse
|
3
|
Ahuja R, Imran S, Swaroop DKJ, Gupta S, Verma KK, Sharma N, Bhari N. Evaluation of Photoaging and Sun Protection Behavior in Children With Xeroderma Pigmentosum, Group C: A Prospective Analysis. Pediatr Dermatol 2024. [PMID: 39731425 DOI: 10.1111/pde.15848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/25/2024] [Accepted: 11/30/2024] [Indexed: 12/29/2024]
Abstract
Thirteen children with xeroderma pigmentosum variant C were evaluated using the Dermoscopic Photoaging Assessment Scale (DPAS), the Glogau scale, and the Sun Protection Behavior Scale (SPBS). Most patients exhibited signs of epidermal photoaging, with pigmentary and vascular changes and poor sun protection behavior (mean SPBS score: 18.92 ± 5.69). The mean DPAS score of 13.15 correlated with the Glogau scale and ocular severity score. Sun protection behavior improved significantly at 6 months after repeated reinforcement of sun protection measures (35 ± 5.68).
Collapse
Affiliation(s)
- Rhea Ahuja
- Department of Dermatology and Venereology and Ophthalmology, All India Institute of Medical Sciences, New Delhi, India
| | - Shafaque Imran
- Department of Dermatology and Venereology and Ophthalmology, All India Institute of Medical Sciences, New Delhi, India
| | - Devesh Kumar Jag Swaroop
- Department of Dermatology and Venereology and Ophthalmology, All India Institute of Medical Sciences, New Delhi, India
| | - Somesh Gupta
- Department of Dermatology and Venereology and Ophthalmology, All India Institute of Medical Sciences, New Delhi, India
| | - Kaushal K Verma
- Department of Dermatology and Venereology and Ophthalmology, All India Institute of Medical Sciences, New Delhi, India
| | - Namrata Sharma
- Department of Dermatology and Venereology and Ophthalmology, All India Institute of Medical Sciences, New Delhi, India
| | - Neetu Bhari
- Department of Dermatology and Venereology and Ophthalmology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
4
|
Cadet J, Angelov D, Di Mascio P, Wagner JR. Contribution of oxidation reactions to photo-induced damage to cellular DNA. Photochem Photobiol 2024; 100:1157-1185. [PMID: 38970297 DOI: 10.1111/php.13990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 07/08/2024]
Abstract
This review article is aimed at providing updated information on the contribution of immediate and delayed oxidative reactions to the photo-induced damage to cellular DNA/skin under exposure to UVB/UVA radiations and visible light. Low-intensity UVC and UVB radiations that operate predominantly through direct excitation of the nucleobases are very poor oxidizing agents giving rise to very low amounts of 8-oxo-7,8-dihydroguanine and DNA strand breaks with respect to the overwhelming bipyrimidine dimeric photoproducts. The importance of these two classes of oxidatively generated damage to DNA significantly increases together with a smaller contribution of oxidized pyrimidine bases upon UVA irradiation. This is rationalized in terms of sensitized photooxidation reactions predominantly mediated by singlet oxygen together with a small contribution of hydroxyl radical that appear to also be implicated in the photodynamic effects of the blue light component of visible light. Chemiexcitation-mediated formation of "dark" cyclobutane pyrimidine dimers in UVA-irradiated melanocytes is a recent major discovery that implicates in the initial stage, a delayed generation of reactive oxygen and nitrogen species giving rise to triplet excited carbonyl intermediate and possibly singlet oxygen. High-intensity UVC nanosecond laser radiation constitutes a suitable source of light to generate pyrimidine and purine radical cations in cellular DNA via efficient biphotonic ionization.
Collapse
Affiliation(s)
- Jean Cadet
- Département de Médecine nucléaire et Radiobiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Dimitar Angelov
- Laboratoire de Biologie et de Modélisation de la Cellule LMBC, Ecole Normale Supérieure de Lyon, CNRS, Université de Lyon, Lyon, France
- Izmir Biomedicine and Genome Center IBG, Dokuz Eylul University, Balçova, Izmir, Turkey
| | - Paolo Di Mascio
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - J Richard Wagner
- Département de Médecine nucléaire et Radiobiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
5
|
Tonolli PN, Baptista MS. An important step towards the comprehensive sun protection: Blue-light exposure inhibits DNA repair in reconstituted human skin and a broadband sunscreen avoids this inhibition. Photochem Photobiol 2024; 100:1527-1530. [PMID: 38828502 DOI: 10.1111/php.13979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/16/2024] [Accepted: 05/19/2024] [Indexed: 06/05/2024]
Abstract
The field of sun protection is quickly changing and the research article by Douki et al., published in the current issue of Photochemistry and Photobiology, reported key experimental data that will certainly help the development of better sun care products. Mutagenic photoproducts (CPDs, cyclobutane pyrimidine dimers and 6-4PPs, pyrimidine-6-4-pyrimidone photoproducts) were formed in the reconstructed human epidermis (RHE) by UVB (312 nm) irradiation, and their concentrations were detected by HPLC-MS/MS as a function of time after the UVB treatment. RHE had been previously exposed or not (control) to blue light (427 nm). Both CPDs and 6-4PPs were shown to last longer in blue-light irradiated RHE, proving the inhibition of the DNA repair by blue light exposure. This is a highly relevant information because sunscreens allow people to enjoy longer periods under the sun and consequently, to endure very high doses of blue light. The work also reported results obtained with RHEs previously treated with a sunscreen formulation containing a broadband filter that offers blue-light protection. Interestingly, authors observed that the DNA repair was not significantly inhibited in RHE previously treated with the sunscreen offering broadband protection. Readers will find a scientifically sound proof of the importance of blue-light protection in sun care products.
Collapse
Affiliation(s)
- Paulo Newton Tonolli
- Department of Microbiologia, Universidade de São Paulo, Instituto de Ciências Biomédicas, São Paulo, Brazil
| | - Mauricio S Baptista
- Departamento de Bioquimica, Universidade de São Paulo, Instituto de Quimica, São Paulo, Brazil
| |
Collapse
|
6
|
Rodrigues RB, de Oliveira MM, Garcia FP, Ueda-Nakamura T, de Oliveira Silva S, Nakamura CV. Dithiothreitol reduces oxidative stress and necrosis caused by ultraviolet A radiation in L929 fibroblasts. Photochem Photobiol Sci 2024; 23:271-284. [PMID: 38305951 DOI: 10.1007/s43630-023-00516-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/23/2023] [Indexed: 02/03/2024]
Abstract
Ultraviolet A (UVA) radiation, present in sunlight, can induce cell redox imbalance leading to cellular damage and even cell death, compromising skin health. Here, we evaluated the in vitro antioxidant and photochemoprotective effect of dithiothreitol (DTT). DTT neutralized the free radicals 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS·+), 2,2-diphenyl-1-picrylhydrazyl (DPPH·), and superoxide anion (O2·-) in in vitro assays, as well as the ferric ion (Fe3+) in the ferric reducing antioxidant power (FRAP) assay. We also evaluated the effect of DTT pre-treatment in L929 dermal fibroblasts and DTT (50 and 100 µM) led to greater cell viability following UVA-irradiation compared to cells that were untreated. Furthermore, the pre-treatment of cells with DTT prevented the increase of intracellular reactive oxygen species (ROS) production, including hydrogen peroxide (H2O2), lipid peroxidation, and DNA condensation, as well as the decrease in mitochondrial membrane potential (Δψm), that occurred following irradiation in untreated cells. The endogenous antioxidant system of cells was also improved in irradiated cells that were DTT pre-treated compared to the untreated cells, as the activity of the superoxide dismutase (SOD) and catalase (CAT) enzymes remained as high as non-irradiated cells, while the activity levels were depleted in the untreated irradiated cells. Furthermore, DTT reduced necrosis in UVA-irradiated fibroblasts. Together, these results showed that DTT may have promising use in the prevention of skin photoaging and photodamage induced by UVA, as it provided photochemoprotection against the harmful effects of this radiation, reducing oxidative stress and cell death, due mainly to its antioxidant capacity.
Collapse
Affiliation(s)
- Renata Bufollo Rodrigues
- Biological Sciences Post-graduation Program, Maringá State University, Av. Colombo, n. 5790, Zona 7, Maringá, Paraná, CEP 87020-900, Brazil
| | | | - Francielle Pelegrin Garcia
- Biological Sciences Post-graduation Program, Maringá State University, Av. Colombo, n. 5790, Zona 7, Maringá, Paraná, CEP 87020-900, Brazil
| | - Tânia Ueda-Nakamura
- Pharmaceutical Sciences Post-graduation Program, Maringá State University, Maringá, Brazil
| | | | - Celso Vataru Nakamura
- Biological Sciences Post-graduation Program, Maringá State University, Av. Colombo, n. 5790, Zona 7, Maringá, Paraná, CEP 87020-900, Brazil.
- Pharmaceutical Sciences Post-graduation Program, Maringá State University, Maringá, Brazil.
| |
Collapse
|
7
|
Fatima N, Yaqoob S, Rana S, Hameed A, Mirza MR, Jabeen A. In vitro photoprotective potential of aryl-sandwiched (thio)semicarbazones against UVA mediated cellular and DNA damage. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 251:112841. [PMID: 38194816 DOI: 10.1016/j.jphotobiol.2024.112841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/01/2023] [Accepted: 01/03/2024] [Indexed: 01/11/2024]
Abstract
The most prevalent solar ultraviolet radiation is ultraviolet-A (UVA) radiation. It is the inducer of reactive oxygen species (ROS), a potent mediator of inflammation and photocarcinogenesis. Regular application of sunscreens containing UVA filters is an effective preventive measure in mitigating the risk associated with the formation of dermal carcinoma. Therefore, the development of new photoprotective agents is of great need. The current work examined the in vitro photoprotection of the aryl-linked (thio)semicarbazone derivatives against UVA-mediated DNA damage, inflammation, reactive nitrogen species (RNS), and ROS. Except for the inflammatory cytokine assay, which was carried out on the human monocytic leukemia (THP-1) cell line, all tests were conducted on the human dermal fibroblast (BJ) cell line. In comparison to benzophenone (reference compound), the compound (2Z, 2'Z)-2,2'-(1,3-Phenylenebis (methanylylidene)) bis (hydrazine-1-carbothioamide) (DD-21) demonstrated considerable protection against UVA-induced damage. Compared to the UVA-irradiated control, DD-21 significantly decreased the levels of nitric oxide (NO) and ROS (p < 0.001). In the presence of DD-21, the release of UVA-induced pro-inflammatory cytokines, tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), was also significantly reduced (p < 0.05). Moreover, it was observed that DD-21 protected the cells from UVA-mediated DNA strand breaks and also inhibited the formation of cyclobutane pyrimidine dimers (CPDs) upon comparison to the UVA-exposed control cells (p < 0.001). In conclusion, the findings of this study revealed that DD-21 exhibits remarkable photoprotective properties, thus demonstrating its potential as a candidate UVA filter.
Collapse
Affiliation(s)
- Noor Fatima
- Molecular Biology and Human Genetics Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi 75270, Pakistan
| | - Sana Yaqoob
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Sobia Rana
- Molecular Biology and Human Genetics Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi 75270, Pakistan.
| | - Abdul Hameed
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan; Department of Chemistry, University of Sahiwal, Sahiwal, Pakistan
| | - Munazza Raza Mirza
- Molecular Biology and Human Genetics Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi 75270, Pakistan
| | - Almas Jabeen
- Molecular Biology and Human Genetics Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
8
|
Menck CFM, Galhardo RS, Quinet A. The accurate bypass of pyrimidine dimers by DNA polymerase eta contributes to ultraviolet-induced mutagenesis. Mutat Res 2024; 828:111840. [PMID: 37984186 DOI: 10.1016/j.mrfmmm.2023.111840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 10/23/2023] [Accepted: 11/02/2023] [Indexed: 11/22/2023]
Abstract
Human xeroderma pigmentosum variant (XP-V) patients are mutated in the POLH gene, responsible for encoding the translesion synthesis (TLS) DNA polymerase eta (Pol eta). These patients suffer from a high frequency of skin tumors. Despite several decades of research, studies on Pol eta still offer an intriguing paradox: How does this error-prone polymerase suppress mutations? This review examines recent evidence suggesting that cyclobutane pyrimidine dimers (CPDs) are instructional for Pol eta. Consequently, it can accurately replicate these lesions, and the mutagenic effects induced by UV radiation stem from the deamination of C-containing CPDs. In this model, the deamination of C (forming a U) within CPDs leads to the correct insertion of an A opposite to the deaminated C (or U)-containing dimers. This intricate process results in C>T transitions, which represent the most prevalent mutations detected in skin cancers. Finally, the delayed replication in XP-V cells amplifies the process of C-deamination in CPDs and increases the burden of C>T mutations prevalent in XP-V tumors through the activity of backup TLS polymerases.
Collapse
Affiliation(s)
- C F M Menck
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil.
| | - R S Galhardo
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - A Quinet
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRS/iRCM/IBFJ, F-92265 Fontenay-aux-Roses, France; Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRS/iRCM/IBFJ, F-92265 Fontenay-aux-Roses, France
| |
Collapse
|
9
|
Feltes BC, Menck CFM. Current state of knowledge of human DNA polymerase eta protein structure and disease-causing mutations. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2022; 790:108436. [PMID: 35952573 DOI: 10.1016/j.mrrev.2022.108436] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 06/29/2022] [Accepted: 07/31/2022] [Indexed: 01/01/2023]
Abstract
POLη, encoded by the POLH gene, is a crucial protein for replicating damaged DNA and the most studied specialized translesion synthesis polymerases. Mutations in POLη are associated with cancer and the human syndrome xeroderma pigmentosum variant, which is characterized by extreme photosensitivity and an increased likelihood of developing skin cancers. The myriad of structural information about POLη is vast, covering dozens of different mutants, numerous crucial residues, domains, and posttranslational modifications that are essential for protein function within cells. Since POLη is key vital enzyme for cell survival, and mutations in this protein are related to aggressive diseases, understanding its structure is crucial for biomedical sciences, primarily due to its similarities with other Y-family polymerases and its potential as a targeted therapy-drug for tumors. This work provides an up-to-date review on structural aspects of the human POLη: from basic knowledge about critical residues and protein domains to its mutant variants, posttranslational modifications, and our current understanding of therapeutic molecules that target POLη. Thus, this review provides lessons about POLη's structure and gathers critical discussions and hypotheses that may contribute to understanding this protein's vital roles within the cells.
Collapse
Affiliation(s)
- Bruno César Feltes
- Department of Theoretical Informatics, Institute of Informatics, Department of Theoretical Informatics, Federal University of Rio Grande do Sul, Porto Alegre, RS Brazil; Department of Genetics, Institute of Bioscience, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Department of Biophysics, Institute of Bioscience, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | |
Collapse
|
10
|
Latancia MT, Moreno NC, Leandro GS, Ribeiro VC, de Souza I, Vieira WKM, Bastos AU, Hoch NC, Rocha CRR, Menck CFM. DNA polymerase eta protects human cells against DNA damage induced by the tumor chemotherapeutic temozolomide. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 878:503498. [PMID: 35649682 DOI: 10.1016/j.mrgentox.2022.503498] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/24/2022] [Accepted: 05/02/2022] [Indexed: 11/16/2022]
Abstract
Human DNA polymerases can bypass DNA lesions performing translesion synthesis (TLS), a mechanism of DNA damage tolerance. Tumor cells use this mechanism to survive lesions caused by specific chemotherapeutic agents, resulting in treatment relapse. Moreover, TLS polymerases are error-prone and, thus, can lead to mutagenesis, increasing the resistance potential of tumor cells. DNA polymerase eta (pol eta) - a key protein from this group - is responsible for protecting against sunlight-induced tumors. Xeroderma Pigmentosum Variant (XP-V) patients are deficient in pol eta activity, which leads to symptoms related to higher sensitivity and increased incidence of skin cancer. Temozolomide (TMZ) is a chemotherapeutic agent used in glioblastoma and melanoma treatment. TMZ damages cells' genomes, but little is known about the role of TLS in TMZ-induced DNA lesions. This work investigates the effects of TMZ treatment in human XP-V cells, which lack pol eta, and in its complemented counterpart (XP-V comp). Interestingly, TMZ reduces the viability of XP-V cells compared to TLS proficient control cells. Furthermore, XP-V cells treated with TMZ presented increased phosphorylation of H2AX, forming γH2AX, compared to control cells. However, cell cycle assays indicate that XP-V cells treated with TMZ replicate damaged DNA and pass-through S-phase, arresting in the G2/M-phase. DNA fiber assay also fails to show any specific effect of TMZ-induced DNA damage blocking DNA elongation in pol eta deficient cells. These results show that pol eta plays a role in protecting human cells from TMZ-induced DNA damage, but this can be different from its canonical TLS mechanism. The new role opens novel therapeutic possibilities of using pol eta as a target to improve the efficacy of TMZ-based therapies against cancer.
Collapse
Affiliation(s)
- Marcela T Latancia
- Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Natália C Moreno
- Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, SP, Brazil; Instituto de Química, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Giovana S Leandro
- Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | | | - Izadora de Souza
- Departamento de Clínica e Oncologia Experimental, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | | | - André Uchimura Bastos
- Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Nicolas Carlos Hoch
- Instituto de Química, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Clarissa R R Rocha
- Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, SP, Brazil; Departamento de Clínica e Oncologia Experimental, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Carlos F M Menck
- Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, SP, Brazil.
| |
Collapse
|
11
|
Freire TS, Mori MP, Miranda JNFA, Muta LYM, Machado FT, Moreno NC, Souza-Pinto NC. Increased H2O2 levels and p53 stabilization lead to mitochondrial dysfunction in XPC-deficient cells. Carcinogenesis 2021; 42:1380-1389. [PMID: 34447990 DOI: 10.1093/carcin/bgab079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 08/07/2021] [Accepted: 08/26/2021] [Indexed: 11/13/2022] Open
Abstract
XPC deficiency is associated with mitochondrial dysfunction, increased mitochondrial H2O2 production and sensitivity to the Complex III inhibitor antimycin A (AA), through a yet unclear mechanism. We found an imbalanced expression of several proteins that participate in important mitochondrial function and increased expression and phosphorylation of the tumor suppressor p53 in Xeroderma pigmentosum complementation group C (XP-C) (XPC-null) cells compared with an isogenic line corrected in locus with wild-type XPC (XPC-wt). Interestingly, inhibition of p53 nuclear import reversed the overexpression of mitochondrial proteins, whereas AA treatment increased p53 expression more strongly in the XP-C cells. However, inhibition of p53 substantially increased XP-C cellular sensitivity to AA treatment, suggesting that p53 is a critical factor mediating the cellular response to mitochondrial stress. On the other hand, treatment with the antioxidant N-acetylcysteine increased glutathione concentration and decreased basal H2O2 production, p53 levels and sensitivity to AA treatment in the XPC-null back to the levels found in XPC-wt cells. Thus, the results suggest a critical role for mitochondrially generated H2O2 in the regulation of p53 expression, which in turn modulates XP-C sensitivity to agents that cause mitochondrial stress.
Collapse
Affiliation(s)
- T S Freire
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil
| | - M P Mori
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil
| | - J N F A Miranda
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil
| | - L Y M Muta
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil
| | - F T Machado
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil
| | - N C Moreno
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil
| | | |
Collapse
|
12
|
Douki T. Wavelengths and temporal effects on the response of mammalian cells to UV radiation: Limitations of action spectra illustrated by genotoxicity. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 217:112169. [PMID: 33713895 DOI: 10.1016/j.jphotobiol.2021.112169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 01/17/2023]
Abstract
All photobiological events depend on the wavelength of the incident radiation. In real-life situations and in the vast majority of laboratory experiments, exposure always involves sources with various emission spectra spreading over a wide wavelength range. Action spectra are often used to describe the efficiency of a process at different wavelengths and to predict the effects of a given light source by summation of the individual effects at each wavelength. However, a full understanding of the biological effects of complex sources requires more than considering these concomitant events at each specific wavelength. Indeed, photons of different energies may not have additive but synergistic or inhibitory effects on photochemical processes and cellular responses. The evolution of a photobiological response with post-irradiation time must also be considered. These two aspects may represent some limitations to the use of action spectra. The present review, focused on mammalian cells, illustrates the concept of action spectrum and discusses its drawbacks using theoretical considerations and examples taken from the literature. Emphasis is placed on genotoxicity for which wavelength effects have been extensively studied. Other effects of UV exposure are also mentioned.
Collapse
Affiliation(s)
- Thierry Douki
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, F-38000 Grenoble, France.
| |
Collapse
|
13
|
Karisma VW, Wu W, Lei M, Liu H, Nisar MF, Lloyd MD, Pourzand C, Zhong JL. UVA-Triggered Drug Release and Photo-Protection of Skin. Front Cell Dev Biol 2021; 9:598717. [PMID: 33644041 PMCID: PMC7905215 DOI: 10.3389/fcell.2021.598717] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 01/13/2021] [Indexed: 12/11/2022] Open
Abstract
Light has attracted special attention as a stimulus for triggered drug delivery systems (DDS) due to its intrinsic features of being spatially and temporally tunable. Ultraviolet A (UVA) radiation has recently been used as a source of external light stimuli to control the release of drugs using a "switch on- switch off" procedure. This review discusses the promising potential of UVA radiation as the light source of choice for photo-controlled drug release from a range of photo-responsive and photolabile nanostructures via photo-isomerization, photo-cleavage, photo-crosslinking, and photo-induced rearrangement. In addition to its clinical use, we will also provide here an overview of the recent UVA-responsive drug release approaches that are developed for phototherapy and skin photoprotection.
Collapse
Affiliation(s)
- Vega Widya Karisma
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China
| | - Wei Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China
| | - Mingxing Lei
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China
| | - Huawen Liu
- Three Gorges Central Hospital, Chongqing, China
| | - Muhammad Farrukh Nisar
- Department of Physiology and Biochemistry, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur, Pakistan
| | - Matthew D. Lloyd
- Drug and Target Discovery, Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom
| | - Charareh Pourzand
- Medicines Design, Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom
- Medicines Development, Centre for Therapeutic Innovation, University of Bath, Bath, United Kingdom
| | - Julia Li Zhong
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China
| |
Collapse
|
14
|
Zhao J, Zhu R, Zhang X, Zhang B, Liu Y, Li Y, Wang W, Phillips DL. A photoenhanced oxidation of amino acids and the cross-linking of lysozyme mediated by tetrazolium salts. Phys Chem Chem Phys 2021; 23:3761-3770. [PMID: 33538741 DOI: 10.1039/d0cp04887a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tetrazolium salts (TZs) are pervasively utilized as precursors in the dye industry, colorimetric probes in enzyme assays and for exploring nanomaterial toxicity, but its own toxicity is not investigated enough so far. Using femtosecond transient absorption spectroscopy, nanosecond pulse radiolysis (ns-PRL), western blotting and UV-vis absorption spectroscopy, here we characterized a neutral tetrazolinyl radical (with the same maximum absorption at 420 nm and different lifetimes of 5.0 and 9.0 μs for two selected TZs), the key intermediate of TZs reduction, and noticed TZs-formazan production under UV light irradiation accompanied by 41% increase in the cross-linking of lysozyme (Lyso, model protein) compared to TZs-free sample, which uncovered the photoenhanced oxidation of TZs towards Lyso. The ns-PRL in a reductive atmosphere simulated the electron/proton donors of amino acid residues in Lyso upon photoexcitation and revealed the reduction mechanism of TZs, as that first followed one-electron-transfer and then probably proton-coupled electron transfer. This is the first time to report on the photoenhanced oxidation mechanism of TZs, which would provide new insights into the applications of TZs in cell biology, "click" chemistry and nanotoxicology.
Collapse
Affiliation(s)
- Jianfeng Zhao
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 11111, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
15
|
de Oliveira Alves N, Martins Pereira G, Di Domenico M, Costanzo G, Benevenuto S, de Oliveira Fonoff AM, de Souza Xavier Costa N, Ribeiro Júnior G, Satoru Kajitani G, Cestari Moreno N, Fotoran W, Iannicelli Torres J, de Andrade JB, Matera Veras M, Artaxo P, Menck CFM, de Castro Vasconcellos P, Saldiva P. Inflammation response, oxidative stress and DNA damage caused by urban air pollution exposure increase in the lack of DNA repair XPC protein. ENVIRONMENT INTERNATIONAL 2020; 145:106150. [PMID: 33039876 DOI: 10.1016/j.envint.2020.106150] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 08/19/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023]
Abstract
Air pollution represents a considerable threat to health worldwide. The São Paulo Metropolitan area, in Brazil, has a unique composition of atmospheric pollutants with a population of nearly 20 million people and 9 million passenger cars. It is long known that exposure to particulate matter less than 2.5 µm (PM2.5) can cause various health effects such as DNA damage. One of the most versatile defense mechanisms against the accumulation of DNA damage is the nucleotide excision repair (NER), which includes XPC protein. However, the mechanisms by which NER protects against adverse health effects related to air pollution are largely unknown. We hypothesized that reduction of XPC activity may contribute to inflammation response, oxidative stress and DNA damage after PM2.5 exposure. To address these important questions, XPC knockout and wild type mice were exposed to PM2.5 using the Harvard Ambient Particle concentrator. Results from one-single exposure have shown a significant increase in the levels of anti-ICAM, IL-1β, and TNF-α in the polluted group when compared to the filtered air group. Continued chronic PM2.5 exposure increased levels of carbonylated proteins, especially in the lung of XPC mice, probably as a consequence of oxidative stress. As a response to DNA damage, XPC mice lungs exhibit increased γ-H2AX, followed by severe atypical hyperplasia. Emissions from vehicles are composed of hazardous substances, with polycyclic aromatic hydrocarbons (PAHs) and metals being most frequently cited as the major contributors to negative health impacts. This analysis showed that benzo[b]fluoranthene, 2-nitrofluorene and 9,10-anthraquinone were the most abundant PAHs and derivatives. Taken together, these findings demonstrate the participation of XPC protein, and NER pathway, in the protection of mice against the carcinogenic potential of air pollution. This implicates that DNA is damaged directly (forming adducts) or indirectly (Reactive Oxygen Species) by the various compounds detected in urban PM2.5.
Collapse
Affiliation(s)
| | | | - Marlise Di Domenico
- Department of Pathology, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Giovanna Costanzo
- Department of Pathology, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Sarah Benevenuto
- Department of Surgery, Sector of Anatomy, Faculty of Veterinary Medicine and Animal Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | | | - Gustavo Satoru Kajitani
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Natália Cestari Moreno
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Wesley Fotoran
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | - Mariana Matera Veras
- Department of Pathology, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Paulo Artaxo
- Institute of Physics, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | - Paulo Saldiva
- Department of Pathology, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
16
|
Paiva JP, Diniz RR, Leitão AC, Cabral LM, Fortunato RS, Santos BAMC, de Pádula M. Insights and controversies on sunscreen safety. Crit Rev Toxicol 2020; 50:707-723. [PMID: 33064037 DOI: 10.1080/10408444.2020.1826899] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Although sunlight provides several benefits, ultraviolet (UV) radiation plays an important role in the development of various skin damages such as erythema, photoaging, and photocarcinogenesis. Despite cells having endogenous defense systems, damaged DNA may not be efficiently repaired at chronic exposure. In this sense, it is necessary to use artificial defense strategies such as sunscreen formulations. UV filters should scatter, reflect, or absorb solar UV radiation in order to prevent direct or indirect DNA lesions. However, the safety of UV filters is a matter of concern due to several controversies reported in literature, such as endocrine alterations, allergies, increased oxidative stress, phototoxic events, among others. Despite these controversies, the way in which sunscreens are tested is essential to ensure safety. Sunscreen regulation includes mandatory test for phototoxicity, but photogenotoxicity testing is not recommended as a part of the standard photosafety testing program. Although available photobiological tests are still the first approach to assess photosafety, they are limited. Some existing tests do not always provide reliable results, mainly due to limitations regarding the nature of the assessed phototoxic effect, cell UV sensitivity, and the irradiation protocols. These aspects bring queries regarding the safety of sunscreen wide use and suggest the demand for the development of robust and efficient in vitro screening tests to overcome the existing limitations. In this way, Saccharomyces cerevisiae has stood out as a promising model to fill the gaps in photobiology and to complete the mandatory tests enabling a more extensive and robust photosafety assessment.
Collapse
Affiliation(s)
- Juliana P Paiva
- Laboratório de Microbiologia Industrial e Avaliação Genotóxica (LAMIAG), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raiane R Diniz
- Laboratório de Microbiologia Industrial e Avaliação Genotóxica (LAMIAG), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratório de Tecnologia Industrial Farmacêutica (LabTIF), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alvaro C Leitão
- Laboratório de Radiobiologia Molecular (Radmol), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lucio M Cabral
- Laboratório de Tecnologia Industrial Farmacêutica (LabTIF), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo S Fortunato
- Laboratório de Fisiologia e Sinalização Redox, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bianca A M C Santos
- Laboratório de Planejamento Farmacêutico e Simulação Computacional (LaPFarSC), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo de Pádula
- Laboratório de Microbiologia Industrial e Avaliação Genotóxica (LAMIAG), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
17
|
Carlos JAEG, Lima K, Coelho-Silva JL, de Melo Alves-Paiva R, Moreno NC, Vicari HP, de Souza Santos FP, Hamerschlak N, Costa-Lotufo LV, Traina F, Machado-Neto JA. Reversine exerts cytotoxic effects through multiple cell death mechanisms in acute lymphoblastic leukemia. Cell Oncol (Dordr) 2020; 43:1191-1201. [PMID: 32857324 DOI: 10.1007/s13402-020-00551-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2020] [Indexed: 12/17/2022] Open
Abstract
PURPOSE Acute lymphoblastic leukemia (ALL) is an aggressive hematological cancer with limited therapeutic options for adult patients. Aurora kinases have drawn attention as potential targets in hematological neoplasms due to their high expression and biological functions. Aurora kinase A (AURKA) and AURKB are essential for a successful mitosis, acting in spindle mitotic organization and cytokinesis. Reversine is a synthetic purine analog that acts as a multi-kinase inhibitor with anti-neoplastic activity by targeting AURKA and AURKB. METHODS ALL patient gene expression data were retrieved from the Amazonia! DATABASE For functional assays, Jurkat (T-ALL) and Namalwa (B-ALL) cells were exposed to increasing concentrations of reversine and submitted to various cellular and molecular assays. RESULTS We found that AURKB expression was higher in ALL patient samples compared to normal lymphocytes (p < 0.0001). The ALL cell lines tested displayed aberrant AURKA and AURKB expression. In Jurkat and Namalwa cells, reversine reduced cell viability in a dose- and time-dependent manner (p < 0.05). Reversine also significantly reduced the viability of primary ALL cells. Reversine induced apoptosis and autophagy, and reduced cell proliferation in both cell lines (p < 0.05). Mitotic catastrophe markers, including cell cycle arrest at G2/M, increased cell size and DNA damage, were observed upon reversine exposure. Short- and long-term treatment with reversine inhibited autonomous clonogenicity (p < 0.05). At the molecular level, reversine reduced AURKB activity, induced SQSTM1/p62 consumption, and increased LC3BII and γ-H2AX levels. In Namalwa cells, reversine modulated 25 out of 84 autophagy-related genes, including BCL2, BAD, ULK1, ATG10, IRGM and MAP1LC3B, which indicates that reversine acts by initiating and sustaining autophagy signals in ALL cells. CONCLUSIONS From our data we conclude that reversine reduces the viability of ALL cells by triggering multiple cell death mechanisms, including apoptosis, mitotic catastrophe, and autophagy. Our findings highlight reversine as a potential anticancer agent for ALL.
Collapse
Affiliation(s)
- Jorge Antonio Elias Godoy Carlos
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524, São Paulo, SP, CEP 05508-900, Brazil
| | - Keli Lima
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524, São Paulo, SP, CEP 05508-900, Brazil
| | - Juan Luiz Coelho-Silva
- Department of Medical Images, Hematology and Clinical Oncology, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto, São Paulo, SP, Brazil
| | | | - Natália Cestari Moreno
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Hugo Passos Vicari
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524, São Paulo, SP, CEP 05508-900, Brazil
| | | | - Nelson Hamerschlak
- Einstein's Teaching and Research Institute, Albert Einstein Hospital, São Paulo, SP, Brazil
| | - Leticia Veras Costa-Lotufo
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524, São Paulo, SP, CEP 05508-900, Brazil
| | - Fabiola Traina
- Department of Medical Images, Hematology and Clinical Oncology, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto, São Paulo, SP, Brazil
| | - João Agostinho Machado-Neto
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524, São Paulo, SP, CEP 05508-900, Brazil.
| |
Collapse
|
18
|
Fuentes-León F, Peres de Oliveira A, Quintero-Ruiz N, Munford V, Satoru Kajitani G, Coimbra Brum A, Schuch AP, Colepicolo P, Sánchez-Lamar A, Menck CFM. DNA Damage Induced by Late Spring Sunlight in Antarctica. Photochem Photobiol 2020; 96:1215-1220. [PMID: 32614978 DOI: 10.1111/php.13307] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/27/2020] [Indexed: 12/12/2022]
Abstract
Sunlight ultraviolet (UV) radiation constitutes an important environmental genotoxic agent that organisms are exposed to, as it can damage DNA directly, generating pyrimidine dimers, and indirectly, generating oxidized bases and single-strand breaks (SSBs). These lesions can lead to mutations, triggering skin and eye disorders, including carcinogenesis and photoaging. Stratospheric ozone layer depletion, particularly in the Antarctic continent, predicts an uncertain scenario of UV incidence on the Earth in the next decades. This research evaluates the DNA damage caused by environmental exposure to late spring sunlight in the Antarctic Peninsula, where the ozone layer hole is more pronounced. These experiments were performed at the Brazilian Comandante Ferraz Antarctic Station, at King's George Island, South Shetlands Islands. For comparison, tropical regions were also analyzed. Samples of plasmid DNA were exposed to sunlight. Cyclobutane pyrimidine dimers (CPDs), oxidized base damage and SSBs were detected using specific enzymes. In addition, an immunological approach was used to detect CPDs. The results reveal high levels of DNA damage induced by exposure under the Antarctic sunlight, inversely correlated with ozone layer thickness, confirming the high impact of ozone layer depletion on the DNA damaging action of sunlight in Antarctica.
Collapse
Affiliation(s)
- Fabiana Fuentes-León
- Depto. de Biología Vegetal, Facultad de Biología, Universidad de La Habana, La Habana, Cuba.,Depto. de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Andressa Peres de Oliveira
- Depto. de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Nathalia Quintero-Ruiz
- Depto. de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Veridiana Munford
- Depto. de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Gustavo Satoru Kajitani
- Depto. de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | - André Passaglia Schuch
- Depto. de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Pio Colepicolo
- Depto. de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Angel Sánchez-Lamar
- Depto. de Biología Vegetal, Facultad de Biología, Universidad de La Habana, La Habana, Cuba
| | | |
Collapse
|
19
|
Lerner LK, Moreno NC, Rocha CRR, Munford V, Santos V, Soltys DT, Garcia CCM, Sarasin A, Menck CFM. XPD/ERCC2 mutations interfere in cellular responses to oxidative stress. Mutagenesis 2020; 34:341-354. [PMID: 31348825 DOI: 10.1093/mutage/gez020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 07/10/2019] [Indexed: 01/28/2023] Open
Abstract
Nucleotide excision repair (NER) is a conserved, flexible mechanism responsible for the removal of bulky, helix-distorting DNA lesions, like ultraviolet damage or cisplatin adducts, but its role in the repair of lesions generated by oxidative stress is still not clear. The helicase XPD/ERCC2, one of the two helicases of the transcription complex IIH, together with XPB, participates both in NER and in RNA pol II-driven transcription. In this work, we investigated the responses of distinct XPD-mutated cell lines to the oxidative stress generated by photoactivated methylene blue (MB) and KBrO3 treatments. The studied cells are derived from patients with XPD mutations but expressing different clinical phenotypes, including xeroderma pigmentosum (XP), XP and Cockayne syndrome (XP-D/CS) and trichothiodystrophy (TTD). We show by different approaches that all XPD-mutated cell lines tested were sensitive to oxidative stress, with those from TTD patients being the most sensitive. Host cell reactivation (HCR) assays showed that XP-D/CS and TTD cells have severely impaired repair capacity of oxidised lesions in plasmid DNA, and alkaline comet assays demonstrated the induction of significantly higher amounts of DNA strand breaks after treatment with photoactivated MB in these cells compared to wild-type cells. All XPD-mutated cells presented strong S/G2 arrest and persistent γ-H2AX staining after photoactivated MB treatment. Taken together, these results indicate that XPD participates in the repair of lesions induced by the redox process, and that XPD mutations lead to differences in the response to oxidatively induced damage.
Collapse
Affiliation(s)
- Leticia K Lerner
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Natália C Moreno
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Clarissa R R Rocha
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Veridiana Munford
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Valquíria Santos
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Daniela T Soltys
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Camila C M Garcia
- Department of Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
| | - Alain Sarasin
- CNRS-UMR8200, Institut Gustave Roussy, Université Paris-Sud, Villejuif, France
| | - Carlos F M Menck
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
20
|
Moreno NC, de Souza TA, Garcia CCM, Ruiz NQ, Corradi C, Castro LP, Munford V, Ienne S, Alexandrov LB, Menck CFM. Whole-exome sequencing reveals the impact of UVA light mutagenesis in xeroderma pigmentosum variant human cells. Nucleic Acids Res 2020; 48:1941-1953. [PMID: 31853541 PMCID: PMC7038989 DOI: 10.1093/nar/gkz1182] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/26/2019] [Accepted: 12/11/2019] [Indexed: 12/31/2022] Open
Abstract
UVA-induced mutagenesis was investigated in human pol eta-deficient (XP-V) cells through whole-exome sequencing. In UVA-irradiated cells, the increase in the mutation frequency in deficient cells included a remarkable contribution of C>T transitions, mainly at potential pyrimidine dimer sites. A strong contribution of C>A transversions, potentially due to oxidized bases, was also observed in non-irradiated XP-V cells, indicating that basal mutagenesis caused by oxidative stress may be related to internal tumours in XP-V patients. The low levels of mutations involving T induced by UVA indicate that pol eta is not responsible for correctly replicating T-containing pyrimidine dimers, a phenomenon known as the ‘A-rule’. Moreover, the mutation signature profile of UVA-irradiated XP-V cells is highly similar to the human skin cancer profile, revealing how studies involving cells deficient in DNA damage processing may be useful to understand the mechanisms of environmentally induced carcinogenesis.
Collapse
Affiliation(s)
- Natália Cestari Moreno
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Tiago Antonio de Souza
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | | | - Nathalia Quintero Ruiz
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Camila Corradi
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Ligia Pereira Castro
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Veridiana Munford
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Susan Ienne
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Ludmil B Alexandrov
- Department of Cellular and Molecular Medicine and Department of Bioengineering and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|
21
|
Kumar N, Moreno NC, Feltes BC, Menck CF, Houten BV. Cooperation and interplay between base and nucleotide excision repair pathways: From DNA lesions to proteins. Genet Mol Biol 2020; 43:e20190104. [PMID: 32141475 PMCID: PMC7198027 DOI: 10.1590/1678-4685-gmb-2019-0104] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/25/2019] [Indexed: 02/06/2023] Open
Abstract
Base and nucleotide excision repair (BER and NER) pathways are normally associated with removal of specific types of DNA damage: small base modifications (such as those induced by DNA oxidation) and bulky DNA lesions (such as those induced by ultraviolet or chemical carcinogens), respectively. However, growing evidence indicates that this scenario is much more complex and these pathways exchange proteins and cooperate with each other in the repair of specific lesions. In this review, we highlight studies discussing the involvement of NER in the repair of DNA damage induced by oxidative stress, and BER participating in the removal of bulky adducts on DNA. Adding to this complexity, UVA light experiments revealed that oxidative stress also causes protein oxidation, directly affecting proteins involved in both NER and BER. This reduces the cell’s ability to repair DNA damage with deleterious implications to the cells, such as mutagenesis and cell death, and to the organisms, such as cancer and aging. Finally, an interactome of NER and BER proteins is presented, showing the strong connection between these pathways, indicating that further investigation may reveal new functions shared by them, and their cooperation in maintaining genome stability.
Collapse
Affiliation(s)
- Namrata Kumar
- University of Pittsburgh, School of Medicine, Department of Microbiology and Molecular Genetics, Pittsburgh, PA, USA.,University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Natália C Moreno
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Bruno C Feltes
- Universidade Federal do Rio Grande do Sul, Instituto de Informática, Porto Alegre, RS, Brazil
| | - Carlos Fm Menck
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Bennett Van Houten
- University of Pittsburgh, School of Medicine, Department of Microbiology and Molecular Genetics, Pittsburgh, PA, USA.,University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,University of Pittsburgh, School of Medicine, Department of Pharmacology and Chemical Biology, Pittsburgh, PA, USA
| |
Collapse
|
22
|
White PA, Long AS, Johnson GE. Quantitative Interpretation of Genetic Toxicity Dose-Response Data for Risk Assessment and Regulatory Decision-Making: Current Status and Emerging Priorities. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:66-83. [PMID: 31794061 DOI: 10.1002/em.22351] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 11/27/2019] [Accepted: 11/30/2019] [Indexed: 06/10/2023]
Abstract
The screen-and-bin approach for interpretation of genotoxicity data is predicated on three false assumptions: that genotoxicants are rare, that genotoxicity dose-response functions do not contain a low-dose region mechanistically characterized by zero-order kinetics, and that genotoxicity is not a bona fide toxicological endpoint. Consequently, there is a need to develop and implement quantitative methods to interpret genotoxicity dose-response data for risk assessment and regulatory decision-making. Standardized methods to analyze dose-response data, and determine point-of-departure (PoD) metrics, have been established; the most robust PoD is the benchmark dose (BMD). However, there are no standards for regulatory interpretation of mutagenicity BMDs. Although 5-10% is often used as a critical effect size (CES) for BMD determination, values for genotoxicity endpoints have not been established. The use of BMDs to determine health-based guidance values (HBGVs) requires assessment factors (AFs) to account for interspecies differences and variability in human sensitivity. Default AFs used for other endpoints may not be appropriate for interpretation of in vivo mutagenicity BMDs. Analyses of published dose-response data showing the effects of compensatory pathway deficiency indicate that AFs for sensitivity differences should be in the range of 2-20. Additional analyses indicate that the AF to compensate for short treatment durations should be in the range of 5-15. Future work should use available data to empirically determine endpoint-specific CES values; similarly, to determine AF values for BMD adjustment. Future work should also evaluate the ability to use in vitro dose-response data for risk assessment, and the utility of probabilistic methods for determination of mutagenicity HBGVs. Environ. Mol. Mutagen. 61:66-83, 2020. © 2019 Her Majesty the Queen in Right of Canada.
Collapse
Affiliation(s)
- Paul A White
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Alexandra S Long
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - George E Johnson
- Swansea University Medical School, Swansea, Wales, United Kingdom
| |
Collapse
|
23
|
Martens MC, Emmert S, Boeckmann L. Sunlight, Vitamin D, and Xeroderma Pigmentosum. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1268:319-331. [PMID: 32918226 DOI: 10.1007/978-3-030-46227-7_16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Sunlight, in particular UV-B radiation, is an important factor for endogenous vitamin D production as 80-90% of the required vitamin D needs to be photosynthesized in the skin. The active form of vitamin D, vitamin D3 or calcitriol, binds to the ligand-activated transcription factor vitamin D receptor (VDR) for genomic and non-genomic effects. Recently, calcitriol and analogs have been shown to have antiproliferative effects in mouse and human BCC and SCC cell lines in vitro. As UV radiation plays a critical role in the photosynthesis of vitamin D, stringent sun protection, as recommended for xeroderma pigmentosum (XP) patients, may impact their vitamin D levels.XP is a rare autosomal recessive disorder with a worldwide prevalence of 1 in 1,000,000. XP can be divided into seven different complementation groups: XP-A to XP-G. The complementation groups correspond with the underlying gene defect. Defects in these genes lead to a defective nucleotide excision repair (NER), which is necessary to remove UV-induced DNA damage such as the UV photoproducts cyclobutane pyrimidine dimers (CPD) and 6-4 pyrimidine-pyrimidone (6-4 PP) dimer. Additionally, a variant form with a mutation in the translational polymerase η gene (PolH), also called XP variant (XPV), exists. Patients with XPV show a defect in translesion synthesis. Due to their inability to repair UV-induced lesions, XP patients exhibit an increased risk for UV-induced nonmelanoma skin cancer (NMSC) such as basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) as well as melanoma. Although no curative therapy for XP exists today, numerous options for the treatment and prophylaxis of skin cancer have become available.
Collapse
Affiliation(s)
- Marie Christine Martens
- Clinic and Policlinic of Dermatology and Venerology, University Medical Center Rostock, Rostock, Germany
| | - Steffen Emmert
- Clinic and Policlinic of Dermatology and Venerology, University Medical Center Rostock, Rostock, Germany
| | - Lars Boeckmann
- Clinic and Policlinic of Dermatology and Venerology, University Medical Center Rostock, Rostock, Germany.
| |
Collapse
|
24
|
Silva MM, Rocha CRR, Kinker GS, Pelegrini AL, Menck CFM. The balance between NRF2/GSH antioxidant mediated pathway and DNA repair modulates cisplatin resistance in lung cancer cells. Sci Rep 2019; 9:17639. [PMID: 31776385 PMCID: PMC6881285 DOI: 10.1038/s41598-019-54065-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 09/23/2019] [Indexed: 12/14/2022] Open
Abstract
Lung cancer patients face a dismal prognosis mainly due to the low efficacy of current available treatments. Cisplatin is the first-line chemotherapy treatment for those patients, however, resistance to this drug is a common and yet not fully understood phenomenon. Aiming to shed new light into this puzzle, we used established normal and malignant lung cell lines displaying different sensitivity towards cisplatin treatment. We observed a negative correlation between cell viability and DNA damage induction upon cisplatin treatment. Interestingly, drug sensitivity in those cell lines was not due to either difference on DNA repair capacity, or in the amount of membrane ion channel commonly used for cisplatin uptake. Also, we noted that glutathione intracellular levels, and expression and activity of the transcription factor nuclear factor erythroid 2-related factor 2 (NRF2) were determinant for cisplatin cytotoxicity. Remarkably, analysis of gene expression in non-small cell lung cancer patients of the TCGA data bank revealed that there is a significant lower overall survival rate in the subset of patients bearing tumors with unbalanced levels of NRF2/KEAP1 and, as consequence, increased expression of NRF2 target genes. Thus, the results indicate that NRF2 and glutathione levels figure as important cisplatin resistance biomarkers in lung cancer.
Collapse
Affiliation(s)
- Matheus Molina Silva
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Clarissa Ribeiro Reily Rocha
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Department of Experimental and Clinical Oncology, Federal University of São Paulo, São Paulo, Brazil
| | - Gabriela Sarti Kinker
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Alessandra Luiza Pelegrini
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|