1
|
Lin X, Liu W, Hu X, Liu Z, Wang F, Wang J. The role of polyphenols in modulating mitophagy: Implications for therapeutic interventions. Pharmacol Res 2024; 207:107324. [PMID: 39059613 DOI: 10.1016/j.phrs.2024.107324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
This review rigorously assesses the burgeoning research into the role of polyphenols in modulating mitophagy, an essential cellular mechanism for the targeted removal of impaired mitochondria. These natural compounds, known for their low toxicity, are underscored for their potential in therapeutic strategies against a diverse array of diseases, such as neurodegenerative, cardiovascular, and musculoskeletal disorders. The analysis penetrates deeply into the molecular mechanisms whereby polyphenols promote mitophagy, particularly by influencing crucial signaling pathways and transcriptional regulators, including the phosphatase and tensin homolog (PTEN) induced putative kinase 1 (PINK1)/parkin and forkhead box O3 (FOXO3a) pathways. Noteworthy discoveries include the neuroprotective properties of resveratrol and curcumin, which affect both autophagic pathways and mitochondrial dynamics, and the pioneering integration of polyphenols with other natural substances to amplify therapeutic effectiveness. Furthermore, the review confronts the issue of polyphenol bioavailability and emphasizes the imperative for clinical trials to corroborate their therapeutic viability. By delivering an exhaustive synthesis of contemporary insights and recent advancements in polyphenol and mitophagy research, this review endeavors to catalyze additional research and foster the creation of innovative therapeutic modalities that exploit the distinctive attributes of polyphenols to manage and prevent disease.
Collapse
Affiliation(s)
- Xinyu Lin
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wenkai Liu
- Deyang Sixth People's Hospital, Deyang 618000, China
| | - Xizhuo Hu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhiqiang Liu
- Deyang Sixth People's Hospital, Deyang 618000, China
| | - Fang Wang
- Chengdu First People's Hospital, Sichuan, China
| | - Jinlian Wang
- Traditional Chinese Medicine Hospital of Meishan, Meishan 620010, China.
| |
Collapse
|
2
|
Aragón-Vela J, Sánchez-Oliver AJ, Huertas JR, Casuso RA. Does curcumin improve liver enzymes levels in nonalcoholic fatty liver disease? A systematic review, meta-analysis, and meta-regression. Phytother Res 2024; 38:4261-4271. [PMID: 38965866 DOI: 10.1002/ptr.8274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/26/2024] [Accepted: 05/31/2024] [Indexed: 07/06/2024]
Abstract
The aim of this meta-analysis is to investigate the sources of heterogeneity in randomized clinical trials examining the effects of curcumin supplementation on liver aminotransferases in subjects with nonalcoholic fatty liver disease (NAFLD). We conducted a systematic search of the PubMed, SCOPUS, and Web of Science databases for randomized clinical trials and identified 15 studies (n = 835 subjects). We used random-effects models with DerSimonian-Laird methods to analyze the serum levels of alanine aminotransferase and aspartate aminotransferase enzymes. Our results indicate that curcumin did not affect serum alanine aminotransferase, but it did reduce aspartate aminotransferase levels. Notably, both outcomes showed high heterogeneity (p < 0.01). Subgroup analysis revealed that adding piperine to curcumin did not benefit aminotransferase levels in NAFLD patients. Additionally, we found a negative correlation between the duration of the intervention and the relative (mg/kg/day) curcumin dose with the reduction in liver aminotransferases. In summary, the sources of heterogeneity identified in our study are likely attributed to the duration of the intervention and the relative dose of curcumin. Consequently, longer trials utilizing high doses of curcumin could diminish the positive impact of curcumin in reducing serum levels of aminotransferases in patients with NAFLD.
Collapse
Affiliation(s)
- Jerónimo Aragón-Vela
- Department of Health Sciences, Area of Physiology, University of Jaen, Jaén, Spain
| | - Antonio J Sánchez-Oliver
- Departamento de Motricidad Humana y Rendimiento Deportivo, Facultad de Ciencias de la Educación, Universidad de Sevilla, Sevilla, Spain
| | - Jesús R Huertas
- Institutes of Nutrition and Food Technology, Department of Physiology, University of Granada, Granada, Spain
| | - Rafael A Casuso
- Department of Health Sciences, Universidad Loyola Andalucía, Córdoba, Spain
| |
Collapse
|
3
|
Ciubuc-Batcu MT, Stapelberg NJC, Headrick JP, Renshaw GMC. A mitochondrial nexus in major depressive disorder: Integration with the psycho-immune-neuroendocrine network. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166920. [PMID: 37913835 DOI: 10.1016/j.bbadis.2023.166920] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 11/03/2023]
Abstract
Nervous system processes, including cognition and affective state, fundamentally rely on mitochondria. Impaired mitochondrial function is evident in major depressive disorder (MDD), reflecting cumulative detrimental influences of both extrinsic and intrinsic stressors, genetic predisposition, and mutation. Glucocorticoid 'stress' pathways converge on mitochondria; oxidative and nitrosative stresses in MDD are largely mitochondrial in origin; both initiate cascades promoting mitochondrial DNA (mtDNA) damage with disruptions to mitochondrial biogenesis and tryptophan catabolism. Mitochondrial dysfunction facilitates proinflammatory dysbiosis while directly triggering immuno-inflammatory activation via released mtDNA, mitochondrial lipids and mitochondria associated membranes (MAMs), further disrupting mitochondrial function and mitochondrial quality control, promoting the accumulation of abnormal mitochondria (confirmed in autopsy studies). Established and putative mechanisms highlight a mitochondrial nexus within the psycho-immune neuroendocrine (PINE) network implicated in MDD. Whether lowering neuronal resilience and thresholds for disease, or linking mechanistic nodes within the MDD pathogenic network, impaired mitochondrial function emerges as an important risk, a functional biomarker, providing a therapeutic target in MDD. Several treatment modalities have been demonstrated to reset mitochondrial function, which could benefit those with MDD.
Collapse
Affiliation(s)
- M T Ciubuc-Batcu
- Griffith University School of Medicine and Dentistry, Australia; Gold Coast Health, Queensland, Australia
| | - N J C Stapelberg
- Bond University Faculty of Health Sciences and Medicine, Australia; Gold Coast Health, Queensland, Australia
| | - J P Headrick
- Griffith University School of Pharmacy and Medical Science, Australia
| | - G M C Renshaw
- Hypoxia and Ischemia Research Unit, Griffith University, School of Health Sciences and Social Work, Australia.
| |
Collapse
|
4
|
Zhang L, Lin H, Yang X, Shi J, Sheng X, Wang L, Li T, Quan H, Zhai X, Li W. Effects of dapagliflozin monotherapy and combined aerobic exercise on skeletal muscle mitochondrial quality control and insulin resistance in type 2 diabetes mellitus rats. Biomed Pharmacother 2023; 169:115852. [PMID: 37944441 DOI: 10.1016/j.biopha.2023.115852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/31/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a prevalent, chronic metabolic disease. Sodium-glucose cotransporter-2 (SGLT2) inhibitors and aerobic exercise (AE) have shown promise in mitigating insulin resistance (IR) and T2DM. This study investigated the effects of dapagliflozin (Dapa) monotherapy and combined AE on mitochondrial quality control (MQC) in skeletal muscle and IR in T2DM rats. T2DM rats, induced by a high-fat diet/streptozotocin model, were randomly assigned to the following groups: T2DM+vehicle group (DMV), T2DM rats treated with Dapa (DMDa, 10 mg/kg/d), T2DM rats subjected to combined Dapa treatment and AE (DMDa+AE), and the standard control group (CON). Blood and skeletal muscle samples were collected after 6 weeks of intragastric administration and treadmill exercise. The results showed that DMDa monotherapy could reduce the accumulation of white adipose tissue and skeletal muscle lipid droplets and improve HOMA-IR. While the combined AE led to further reductions in subcutaneous white adipose tissue and fasting glucose levels, it did not confer additional benefits in terms of HOMA-IR. Furthermore, Dapa monotherapy enhanced skeletal muscle mitochondrial biogenesis (PGC-1α, NRF1, TFAM, and COX IV), mitochondrial dynamics (OPA1, DRP1, and MFN2), and mitophagy (PGAM5 and PINK1) related protein levels. Nevertheless, the combination of Dapa with AE treatment did not yield an additive effect. In conclusion, this study highlights the potential of SGLT2 inhibitors, specifically Dapa, in ameliorating IR and maintaining MQC in skeletal muscle in rats with T2DM. However, combined AE did not produce an additive effect, indicating the need for further research.
Collapse
Affiliation(s)
- Liangzhi Zhang
- Exercise and Metabolism Research Center, College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Hengjun Lin
- Department of Colorectal anal Surgery, Jinhua People's Hospital, Jinhua, Zhejiang, China
| | - Xudong Yang
- Exercise and Metabolism Research Center, College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Jipeng Shi
- Exercise Capacity Assessment and Promotion Research Center, School of Physical Education, Northeast Normal University, Changchun, Jilin, China
| | - Xiusheng Sheng
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua Polytechnic, Jinhua, Zhejiang, China
| | - Lifeng Wang
- Exercise and Metabolism Research Center, College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Ting Li
- Exercise and Metabolism Research Center, College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Helong Quan
- Exercise Capacity Assessment and Promotion Research Center, School of Physical Education, Northeast Normal University, Changchun, Jilin, China.
| | - Xia Zhai
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua Polytechnic, Jinhua, Zhejiang, China.
| | - Wei Li
- Exercise and Metabolism Research Center, College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China.
| |
Collapse
|
5
|
The Effect of a Hydroxytyrosol-Rich, Olive-Derived Phytocomplex on Aerobic Exercise and Acute Recovery. Nutrients 2023; 15:nu15020421. [PMID: 36678293 PMCID: PMC9864860 DOI: 10.3390/nu15020421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
There is current scientific interest in naturally sourced phenolic compounds and their potential benefits to health, as well as the effective role polyphenols may provide in an exercise setting. This study investigated the chronic effects of supplementation with a biodynamic and organic olive fruit water phytocomplex (OliPhenolia® [OliP]), rich in hydroxytyrosol (HT), on submaximal and exhaustive exercise performance and respiratory markers of recovery. Twenty-nine recreationally active participants (42 ± 2 yrs; 71.1 ± 2.1 kg; 1.76 ± 0.02 m) consumed 2 × 28 mL∙d−1 of OliP or a taste- and appearance-matched placebo (PL) over 16 consecutive days. Participants completed a demanding, aerobic exercise protocol at ~75% maximal oxygen uptake (V˙O2max) for 65 min 24 h before sub- and maximal performance exercise tests prior to and following the 16-day consumption period. OliP reduced the time constant (τ) (p = 0.005) at the onset of exercise, running economy (p = 0.015) at lactate threshold 1 (LT1), as well as the rating of perceived exertion (p = 0.003) at lactate turnpoint (LT2). Additionally, OliP led to modest improvements in acute recovery based upon a shorter time to achieve 50% of the end of exercise V˙O2 value (p = 0.02). Whilst OliP increased time to exhaustion (+4.1 ± 1.8%), this was not significantly different to PL (p > 0.05). Phenolic compounds present in OliP, including HT and related metabolites, may provide benefits for aerobic exercise and acute recovery in recreationally active individuals. Further research is needed to determine whether dose-response or adjunct use of OliP alongside longer-term training programs can further modulate exercise-associated adaptations in recreationally active individuals, or indeed support athletic performance.
Collapse
|
6
|
Xiong Y, Xu J, Cao W, Zhang J, Feng Z, Cao K, Liu J. Hydroxytyrosol improves strenuous exercise-associated cardiac pathological changes via modulation of mitochondrial homeostasis. Food Funct 2022; 13:8676-8684. [PMID: 35904366 DOI: 10.1039/d2fo00839d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Strenuous exercise is reported to provoke deleterious consequences including cardiac impairments, while the detailed mechanisms and effective interventions remain limited. The current study aims to explore the profitable effects of hydroxytyrosol (HT), one of the most abundant polyphenols derived from olive oil, on strenuous exercise-induced pathological changes in the heart and its underlying mechanisms. Sprague-Dawley male rats at the age of 8-week-old were supplemented with 25 mg kg-1 day-1 of HT 45 min before the beginning of strenuous exercise for a total of 8 weeks. HT treatment obviously improved the heart weight and morphology with lowered serum cardiac hypertrophy markers as well as cardiac oxidative stress. Moreover, the down-regulated mitochondrial biogenesis pathway, impaired mitochondrial complex activity, dysregulated expression of mitochondrial dynamics-related proteins and activated apoptotic pathway induced by Exe were all improved by HT. In vitro, 10 μM HT effectively reduced the reactive oxygen species level, promoted mitochondrial biogenesis, and inhibited apoptosis and cardiomyocyte hypertrophy in an angiotensin II-induced cardiomyocyte hypertrophy model. In addition, knockdown of the peroxisome proliferator-activated receptor gamma coactivator-1 alpha, the key regulator of mitochondrial biogenesis, partially abolished the benefits of HT. Our results demonstrate that the disturbance of mitochondrial homeostasis plays a substantial role in strenuous exercise-induced pathological cardiac hypertrophy, and HT presents as an effective intervention strategy targeting mitochondrial homeostasis for cardiac health.
Collapse
Affiliation(s)
- Yue Xiong
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China.
| | - Jie Xu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China.
| | - Wenli Cao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China.
| | - Jiawei Zhang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China.
| | - Zhihui Feng
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266071, Shandong, China
| | - Ke Cao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China.
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China. .,School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266071, Shandong, China
| |
Collapse
|
7
|
Ignacio DL, Fortunato RS, Silvestre D, Matta L, de Vansconcelos AL, Carvalho DP, Galina A, Werneck-de-Castro JP, Cavalcanti-de-Albuquerque JP. Physical exercise improves mitochondrial function in ovariectomized rats. J Endocrinol 2022; 254:77-90. [PMID: 35635310 DOI: 10.1530/joe-22-0057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 05/30/2022] [Indexed: 11/08/2022]
Abstract
Estrogen deficiency causes metabolic disorders in humans and rodents, including in part due to changes in energy expenditure. We have shown previously that skeletal muscle mitochondrial function is compromised in ovariectomized (Ovx) rats. Since physical exercise is a powerful strategy to improve skeletal muscle mitochondrial content and function, we hypothesize that exercise training would counteract the deficiency-induced skeletal muscle mitochondrial dysfunction in Ovx rats. We report that exercised Ovx rats, at 60-65% of maximal exercise capacity for 8 weeks, exhibited less fat accumulation and body weight gain compared with sedentary controls. Treadmill exercise training decreased muscle lactate production, indicating a shift to mitochondrial oxidative metabolism. Furthermore, reduced soleus muscle mitochondrial oxygen consumption confirmed that estrogen deficiency is detrimental to mitochondrial function. However, exercise restored mitochondrial oxygen consumption in Ovx rats, achieving similar levels as in exercised control rats. Exercise-induced skeletal muscle peroxisome proliferator-activated receptor-γ coactivator-1α expression was similar in both groups. Therefore, the mechanisms by which exercise improves mitochondrial oxygen consumption appears to be different in Ovx-exercised and sham-exercised rats. While there was an increase in mitochondrial content in sham-exercised rats, demonstrated by a greater citrate synthase activity, no induction was observed in Ovx-exercised rats. Normalizing mitochondrial respiratory capacity by citrate synthase activity indicates a better oxidative phosphorylation efficiency in the Ovx-exercised group. In conclusion, physical exercise sustains mitochondrial function in ovarian hormone-deficient rats through a non-conventional mitochondrial content-independent manner.
Collapse
Affiliation(s)
- Daniele Leão Ignacio
- School of Physical Education and Sports, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Faculdades Integradas IESGO, Formosa, Goiás, Brazil
| | - Rodrigo Soares Fortunato
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Diego Silvestre
- School of Physical Education and Sports, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leonardo Matta
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Denise Pires Carvalho
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Antonio Galina
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - João Pedro Werneck-de-Castro
- School of Physical Education and Sports, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Division of Endocrinology, Diabetes and Metabolism, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | | |
Collapse
|
8
|
López-Cervantes SP, Sánchez NS, Calahorra M, Mena-Montes B, Pedraza-Vázquez G, Hernández-Álvarez D, Esparza-Perusquía M, Peña A, López-Díazguerrero NE, Alarcón-Aguilar A, Luna-López A, Flores-Herrera Ó, Königsberg M. Moderate exercise combined with metformin-treatment improves mitochondrial bioenergetics of the quadriceps muscle of old female Wistar rats. Arch Gerontol Geriatr 2022; 102:104717. [DOI: 10.1016/j.archger.2022.104717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/26/2022] [Accepted: 05/06/2022] [Indexed: 01/03/2023]
|
9
|
Cogliati S, Cabrera-Alarcón JL, Enriquez JA. Regulation and functional role of the electron transport chain supercomplexes. Biochem Soc Trans 2021; 49:2655-2668. [PMID: 34747989 PMCID: PMC8786287 DOI: 10.1042/bst20210460] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/12/2021] [Accepted: 10/21/2021] [Indexed: 12/17/2022]
Abstract
Mitochondria are one of the most exhaustively investigated organelles in the cell and most attention has been paid to the components of the mitochondrial electron transport chain (ETC) in the last 100 years. The ETC collects electrons from NADH or FADH2 and transfers them through a series of electron carriers within multiprotein respiratory complexes (complex I to IV) to oxygen, therefore generating an electrochemical gradient that can be used by the F1-F0-ATP synthase (also named complex V) in the mitochondrial inner membrane to synthesize ATP. The organization and function of the ETC is a continuous source of surprises. One of the latest is the discovery that the respiratory complexes can assemble to form a variety of larger structures called super-complexes (SCs). This opened an unexpected level of complexity in this well-known and fundamental biological process. This review will focus on the current evidence for the formation of different SCs and will explore how they modulate the ETC organization according to the metabolic state. Since the field is rapidly growing, we also comment on the experimental techniques used to describe these SC and hope that this overview may inspire new technologies that will help to advance the field.
Collapse
Affiliation(s)
- Sara Cogliati
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | | | - Jose Antonio Enriquez
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| |
Collapse
|
10
|
Casuso RA, Al Fazazi S, Plaza-Díaz J, Ruiz-Ojeda FJ, Rueda-Robles A, Aragón-Vela J, Huertas JR. Physiological Doses of Hydroxytyrosol Modulate Gene Expression in Skeletal Muscle of Exercised Rats. Life (Basel) 2021; 11:1393. [PMID: 34947924 PMCID: PMC8708182 DOI: 10.3390/life11121393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 11/25/2022] Open
Abstract
We tested whether physiological doses of hydroxytyrosol (HT) may alter the mRNA transcription of key metabolic genes in exercised skeletal muscle. Two groups of exercise-trained Wistar rats, HTlow and HTmid, were supplemented with 0.31 and 4.61 mg/kg/d of HT, respectively, for 10 weeks. Another two groups of rats were not supplemented with HT; one remained sedentary and the other one was exercised. After the experimental period, the soleus muscle was removed for qRT-PCR and western blot analysis. The consumption of 4.61 mg/kg/d of HT during exercise increased the mRNA expression of important metabolic proteins. Specifically, 4.61 mg/kg/d of HT may upregulate long-chain fatty acid oxidation, lactate, and glucose oxidation as well as mitochondrial Krebs cycle in trained skeletal muscle. However, a 4.61 mg/kg/d of HT may alter protein translation, as in spite of the increment showed by CD36 and GLUT4 at the mRNA level this was not translated to higher protein content.
Collapse
Affiliation(s)
- Rafael A. Casuso
- Department of Physiology, Campus University of Granada, 18071 Granada, Spain; (S.A.F.); (J.A.-V.)
- Center of Biomedical Research, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, 18071 Granada, Spain; (F.J.R.-O.); (A.R.-R.)
| | - Saad Al Fazazi
- Department of Physiology, Campus University of Granada, 18071 Granada, Spain; (S.A.F.); (J.A.-V.)
- Center of Biomedical Research, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, 18071 Granada, Spain; (F.J.R.-O.); (A.R.-R.)
| | - Julio Plaza-Díaz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain;
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| | - Francisco J. Ruiz-Ojeda
- Center of Biomedical Research, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, 18071 Granada, Spain; (F.J.R.-O.); (A.R.-R.)
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain;
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- RG Adipocytes and Metabolism, Helmholtz Diabetes Center at Helmholtz Center Munich, Institute for Diabetes and Obesity, Neuherberg, 85764 Munich, Germany
| | - Ascensión Rueda-Robles
- Center of Biomedical Research, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, 18071 Granada, Spain; (F.J.R.-O.); (A.R.-R.)
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain;
| | - Jerónimo Aragón-Vela
- Department of Physiology, Campus University of Granada, 18071 Granada, Spain; (S.A.F.); (J.A.-V.)
- Center of Biomedical Research, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, 18071 Granada, Spain; (F.J.R.-O.); (A.R.-R.)
| | - Jesús R. Huertas
- Department of Physiology, Campus University of Granada, 18071 Granada, Spain; (S.A.F.); (J.A.-V.)
- Center of Biomedical Research, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, 18071 Granada, Spain; (F.J.R.-O.); (A.R.-R.)
| |
Collapse
|
11
|
Mitochondrial respiratory supercomplexes in mammalian cells: structural versus functional role. J Mol Med (Berl) 2020; 99:57-73. [PMID: 33201259 DOI: 10.1007/s00109-020-02004-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/06/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023]
Abstract
Mitochondria are recognized as the main source of ATP to meet the energy demands of the cell. ATP production occurs by oxidative phosphorylation when electrons are transported through the electron transport chain (ETC) complexes and develop the proton motive force across the inner mitochondrial membrane that is used for ATP synthesis. Studies since the 1960s have been concentrated on the two models of structural organization of ETC complexes known as "solid-state" and "fluid-state" models. However, advanced new techniques such as blue-native gel electrophoresis, mass spectroscopy, and cryogenic electron microscopy for analysis of macromolecular protein complexes provided new data in favor of the solid-state model. According to this model, individual ETC complexes are assembled into macromolecular structures known as respiratory supercomplexes (SCs). A large number of studies over the last 20 years proposed the potential role of SCs to facilitate substrate channeling, maintain the integrity of individual ETC complexes, reduce electron leakage and production of reactive oxygen species, and prevent excessive and random aggregation of proteins in the inner mitochondrial membrane. However, many other studies have challenged the proposed functional role of SCs. Recently, a third model known as the "plasticity" model was proposed that partly reconciles both "solid-state" and "fluid-state" models. According to the "plasticity" model, respiratory SCs can co-exist with the individual ETC complexes. To date, the physiological role of SCs remains unknown, although several studies using tissue samples of patients or animal/cell models of human diseases revealed an associative link between functional changes and the disintegration of SC assembly. This review summarizes and discusses previous studies on the mechanisms and regulation of SC assembly under physiological and pathological conditions.
Collapse
|
12
|
Bottani E, Lamperti C, Prigione A, Tiranti V, Persico N, Brunetti D. Therapeutic Approaches to Treat Mitochondrial Diseases: "One-Size-Fits-All" and "Precision Medicine" Strategies. Pharmaceutics 2020; 12:E1083. [PMID: 33187380 PMCID: PMC7696526 DOI: 10.3390/pharmaceutics12111083] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022] Open
Abstract
Primary mitochondrial diseases (PMD) refer to a group of severe, often inherited genetic conditions due to mutations in the mitochondrial genome or in the nuclear genes encoding for proteins involved in oxidative phosphorylation (OXPHOS). The mutations hamper the last step of aerobic metabolism, affecting the primary source of cellular ATP synthesis. Mitochondrial diseases are characterized by extremely heterogeneous symptoms, ranging from organ-specific to multisystemic dysfunction with different clinical courses. The limited information of the natural history, the limitations of currently available preclinical models, coupled with the large variability of phenotypical presentations of PMD patients, have strongly penalized the development of effective therapies. However, new therapeutic strategies have been emerging, often with promising preclinical and clinical results. Here we review the state of the art on experimental treatments for mitochondrial diseases, presenting "one-size-fits-all" approaches and precision medicine strategies. Finally, we propose novel perspective therapeutic plans, either based on preclinical studies or currently used for other genetic or metabolic diseases that could be transferred to PMD.
Collapse
Affiliation(s)
- Emanuela Bottani
- Department of Diagnostics and Public Health, Section of Pharmacology, University of Verona, 37134 Verona, Italy
| | - Costanza Lamperti
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico C. Besta, 20126 Milan, Italy; (C.L.); (V.T.)
| | - Alessandro Prigione
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, University Clinic Düsseldorf (UKD), Heinrich Heine University (HHU), 40225 Dusseldorf, Germany;
| | - Valeria Tiranti
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico C. Besta, 20126 Milan, Italy; (C.L.); (V.T.)
| | - Nicola Persico
- Department of Clinical Science and Community Health, University of Milan, 20122 Milan, Italy;
- Fetal Medicine and Surgery Service, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Dario Brunetti
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico C. Besta, 20126 Milan, Italy; (C.L.); (V.T.)
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20129 Milan, Italy
| |
Collapse
|
13
|
Casuso RA, Huertas JR. The emerging role of skeletal muscle mitochondrial dynamics in exercise and ageing. Ageing Res Rev 2020; 58:101025. [PMID: 32018055 DOI: 10.1016/j.arr.2020.101025] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/24/2020] [Accepted: 01/28/2020] [Indexed: 12/27/2022]
Abstract
Mitochondria are the hub for energy production within living cells. They can undergo morphological changes in response to nutrient availability and cellular stress. Here, we review how exercise chronically and acutely affects mitochondrial dynamics. Moreover, we discuss whether mitochondrial dysfunction observed in elderly subjects is due to the ageing process per se or due to the associated sedentary state. Finally, we study how endurance exercise can improve mitochondrial dynamics in older subjects, thereby improving their overall health and likely limiting muscle waste.
Collapse
Affiliation(s)
- Rafael A Casuso
- Institute of Nutrition and Food Technology, Biomedical Research Centre, Department of Physiology, Faculty of Sport Sciences, University of Granada, Avda del conocimiento s/n. 18016 Armilla, Granada, Spain.
| | - Jesús R Huertas
- Institute of Nutrition and Food Technology, Biomedical Research Centre, Department of Physiology, Faculty of Sport Sciences, University of Granada, Avda del conocimiento s/n. 18016 Armilla, Granada, Spain
| |
Collapse
|
14
|
Rodríguez-Lara A, Mesa MD, Aragón-Vela J, Casuso RA, Vázquez CC, Zúñiga JM, Huertas JR. Acute/Subacute and Sub-Chronic Oral Toxicity of a Hidroxytyrosol-Rich Virgin Olive Oil Extract. Nutrients 2019; 11:nu11092133. [PMID: 31500145 PMCID: PMC6770357 DOI: 10.3390/nu11092133] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/23/2019] [Accepted: 08/30/2019] [Indexed: 12/28/2022] Open
Abstract
The objective of this study was to determine the acute (one single dose), subacute (14 days), and sub-chronic (90 days) toxicity of an aqueous virgin olive oil (VOO) extract rich in hydroxytyrosol in rats. For acute/subacute toxicity, rats were divided into three groups. The control group received distilled water (n = 9), another experimental group received a single dose of 300 mg/kg (n = 3), and a third group received one dose of 2000 mg/kg (n = 4) during 14 days. The sub-chronic study included 60rats distributed in three groups (n = 20: 10 males and 10 females) receiving daily different three doses of the VOO extract in the drinking water during 90 days: (1) 100 mg/kg, (2) 300 mg/kg, and (3) 1000 mg/kg. In parallel, a fourth additional group (n = 20: 10 males and 10 females) did not receive any extract (control group). Clinical signs, body weight, functional observations of sensory and motor reactivity, hematological and biochemical analyses, and macroscopic and microscopic histopathology were evaluated. No adverse effects were observed after the administration of the different doses of the hydroxytyrosol-rich VOO extract, which suggests that the enrichment of VOO in its phenolic compound is safe, and can be used as functional foods for the treatment of chronic degenerative diseases.
Collapse
Affiliation(s)
- Avilene Rodríguez-Lara
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center, University of Granada, Parque Tecnológico de la Salud, Avenida del Conocimiento s/n, 18016 Granada, Spain
| | - María Dolores Mesa
- Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center, University of Granada, Parque Tecnológico de la Salud, Avenida del Conocimiento s/n, 18016 Granada, Spain
- Ibs.GRANADA. Biosanitary Research Institute of Granada, Granada, Spain
| | - Jerónimo Aragón-Vela
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center, University of Granada, Parque Tecnológico de la Salud, Avenida del Conocimiento s/n, 18016 Granada, Spain
| | - Rafael A Casuso
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center, University of Granada, Parque Tecnológico de la Salud, Avenida del Conocimiento s/n, 18016 Granada, Spain
| | - Cristina Casals Vázquez
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center, University of Granada, Parque Tecnológico de la Salud, Avenida del Conocimiento s/n, 18016 Granada, Spain
| | - Jesús M Zúñiga
- Centro de Instrumentación Científica, University of Granada, 18016 Granada, Spain
| | - Jesús R Huertas
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center, University of Granada, Parque Tecnológico de la Salud, Avenida del Conocimiento s/n, 18016 Granada, Spain.
| |
Collapse
|