1
|
Ge Z, Qiu C, Zhou J, Yang Z, Jiang T, Yuan W, Yu L, Li J. Proteomic analysis of human Wharton's jelly mesenchymal stem/stromal cells and human amniotic epithelial stem cells: a comparison of therapeutic potential. Sci Rep 2024; 14:28061. [PMID: 39543366 PMCID: PMC11564572 DOI: 10.1038/s41598-024-79063-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024] Open
Abstract
Perinatal stem cells have prominent applications in cell therapy and regenerative medicine. Among them, human Wharton's jelly mesenchymal stem/stromal cells (hWJMSCs) and human amniotic epithelial stem cells (hAESCs) have been widely used. However, the distinction in the therapeutic potential of hWJMSCs and hAESCs is poorly understood. In this study, we reported the phenotypic differences between these two distinct cell types and provided the first systematic comparison of their therapeutic potential in terms of immunomodulation, extracellular matrix (ECM) remodelling, angiogenesis and antioxidative stress using proteomics. The results revealed that the two cell types presented different protein expression profiles and were both promising candidates for cell therapy. Both types of cells demonstrated angiogenic and antifibrotic potential, whereas hAESCs presented superior immunological tolerance and antioxidant properties, which were supported by a series of relevant in vitro assays. Our study provides clues for the selection of appropriate cell types for diverse indications in cell therapy, which contributes to the advancement of their clinical translation and application.
Collapse
Affiliation(s)
- Zhen Ge
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 310013, Zhejiang, China
| | - Chen Qiu
- Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine of Sir Run Run Shaw Hospital, Zhejiang University-Lishui Joint Innovation Center for Life and Health, Zhejiang University, Hangzhou, 310058, China
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, 314400, China
| | - Jiayi Zhou
- Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine of Sir Run Run Shaw Hospital, Zhejiang University-Lishui Joint Innovation Center for Life and Health, Zhejiang University, Hangzhou, 310058, China
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, 314400, China
| | - Zhuoheng Yang
- Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine of Sir Run Run Shaw Hospital, Zhejiang University-Lishui Joint Innovation Center for Life and Health, Zhejiang University, Hangzhou, 310058, China
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, 314400, China
| | - Tuoying Jiang
- Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine of Sir Run Run Shaw Hospital, Zhejiang University-Lishui Joint Innovation Center for Life and Health, Zhejiang University, Hangzhou, 310058, China
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, 314400, China
| | - Weixin Yuan
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, 314400, China
| | - Luyang Yu
- Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine of Sir Run Run Shaw Hospital, Zhejiang University-Lishui Joint Innovation Center for Life and Health, Zhejiang University, Hangzhou, 310058, China.
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, 314400, China.
| | - Jinying Li
- Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine of Sir Run Run Shaw Hospital, Zhejiang University-Lishui Joint Innovation Center for Life and Health, Zhejiang University, Hangzhou, 310058, China.
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, 314400, China.
| |
Collapse
|
2
|
Amorim FCM, Arisawa EÂL, Sant’anna LB, Rodrigues ABM, Costa DR. Estudo pré-clínico de queimaduras experimentais tratadas com fotobiomodulação e membrana amniótica humana, isoladas e associadas. Rev Lat Am Enfermagem 2023. [DOI: 10.1590/1518-8345.5552.3727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
Resumo Objetivo: avaliar o efeito da fotobiomodulação com laser de baixa intensidade 660 nm isoladamente ou associada à membrana amniótica humana no reparo de queimaduras de espessura parcial em ratos. Método: estudo experimental com 48 ratos Wistar machos, randomizados em quatro grupos: Controle, Membrana Amniótica Humana, Terapia a Laser de Baixa Intensidade e Terapia a Laser de Baixa Intensidade associado à Membrana Amniótica Humana. As características histopatológicas das amostras de pele foram analisadas aos 7 e 14 dias após a queimadura. Os dados obtidos foram submetidos aos testes de Kolmogorov-Smirnov e Mann Whitney. Resultados: a análise histológica das lesões por queimadura mostrou a diminuição da inflamação (p <0,0001) e aumento da proliferação de fibroblastos (p <0,0001), principalmente nos 7 dias em todos os tratamentos relacionados ao grupo controle. Aos 14 dias, a maior efetividade na aceleração do processo cicatricial foi significativa (p<0,0001) no grupo Terapia a Laser de Baixa Intensidade associado à Membrana Amniótica Humana. Conclusão: a associação das terapias de fotobiomodulação à membrana amniótica humana permitiu comprovar redução no tempo do processo cicatricial das lesões experimentais, estimulando sua proposição como protocolo de tratamento em queimaduras de espessura parcial.
Collapse
|
3
|
Amorim FCM, Arisawa EÂL, Sant’anna LB, Rodrigues ABM, Costa DR. Estudio preclínico de quemaduras experimentales tratadas con fotobiomodulación y membrana amniótica humana, solas y combinadas. Rev Lat Am Enfermagem 2023. [DOI: 10.1590/1518-8345.5552.3725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
Resumen Objetivo: evaluar el efecto de la fotobiomodulación con láser de baja intensidad 660 nm de sola o combinada con la membrana amniótica humana en la reparación de quemaduras de espesor parcial en ratas. Método: estudio experimental con 48 ratas Wistar macho, aleatorizadas en cuatro grupos: Control, Membrana Amniótica Humana, Terapia con Láser de Baja Intensidad y Terapia con Láser de Baja Intensidad combinada con la Membrana Amniótica Humana. Las características histopatológicas de las muestras de piel fueron analizadas a los 7 y 14 días después de la quemadura. Los datos obtenidos fueron sometidos a las pruebas de Kolmogorov-Smirnov y Mann-Whitney. Resultados: el análisis histológico de las lesiones por quemadura mostró una disminución de la inflamación (p <0,0001) y un aumento de la proliferación de fibroblastos (p <0,0001) principalmente a los 7 días en todos los tratamientos en comparación con el grupo control; a los 14 días, en el grupo de Terapia con Láser de Baja Intensidad combinada con la Membrana Amniótica Humana la mayor efectividad en la aceleración del proceso de cicatrización fue significativa (p<0,0001). Conclusión: la asociación de terapias de fotobiomodulación con la membrana amniótica humana permitió comprobar que hubo una reducción en el tiempo del proceso de cicatrización de lesiones experimentales, lo cual favorece que se proponga como protocolo de tratamiento en quemaduras de espesor parcial.
Collapse
|
4
|
Pizzuti V, Paris F, Marrazzo P, Bonsi L, Alviano F. Mitigating Oxidative Stress in Perinatal Cells: A Critical Step toward an Optimal Therapeutic Use in Regenerative Medicine. Biomolecules 2023; 13:971. [PMID: 37371551 DOI: 10.3390/biom13060971] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/26/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Oxidative stress (OS) occurs when the production of reactive oxygen species (ROS) is not balanced by the body's antioxidant defense system. OS can profoundly affect cellular health and function. ROS can have a profound negative impact on cells that undergo a predestined and time-regulated process of proliferation or differentiation, such as perinatal stem cells. Due to the large-scale employment of these immunotolerant stem cells in regenerative medicine, it is important to reduce OS to prevent them from losing function and increase their application in the regenerative medicine field. This goal can be achieved through a variety of strategies, such as the use of antioxidants and other compounds that can indirectly modulate the antioxidant defense system by enhancing cellular stress response pathways, including autophagy and mitochondrial function, thereby reducing ROS levels. This review aims to summarize information regarding OS mechanisms in perinatal stem cells and possible strategies for reducing their deleterious effects.
Collapse
Affiliation(s)
- Valeria Pizzuti
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Francesca Paris
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Pasquale Marrazzo
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Laura Bonsi
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Francesco Alviano
- Department of Biomedical and Neuromotor Science, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
5
|
Amorim FCM, Arisawa EÂL, Sant'anna LB, Rodrigues ABM, Costa DR. Preclinical study of experimental burns treated with photobiomodulation and Human Amniotic Membrane, both isolated and associated. Rev Lat Am Enfermagem 2023; 31:e3726. [PMID: 36888787 PMCID: PMC9991011 DOI: 10.1590/1518-8345.5552.3726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 07/08/2022] [Indexed: 03/08/2023] Open
Abstract
OBJECTIVE to evaluate the effect of photobiomodulation with low-level 660 nm laser alone or associated with Human Amniotic Membrane in the repair of partial-thickness burns in rats. METHOD an experimental study conducted with 48 male Wistar rats, randomized into four groups: Control, Human Amniotic Membrane, Low-Level Laser Therapy, and Low-Level Laser Therapy associated with Human Amniotic Membrane. The histopathological characteristics of the skin samples were analyzed 7 and 14 days after the burn. The data obtained were submitted to the Kolmogorov-Smirnov and Mann-Whitney tests. RESULTS the histological analysis of the burn injuries showed a decrease in inflammation (p<0.0001) and an increase in proliferation of fibroblasts (p<0.0001) mainly at 7 days in all treatments related to the control group. At 14 days, the greater effectiveness in accelerating the healing process was significant (p<0.0001) in the Low-Level Laser Therapy group associated with the Human Amniotic Membrane. CONCLUSION the association of photobiomodulation therapies with the Human Amniotic Membrane allowed verifying a reduction in the healing process time of the experimental lesions, stimulating its proposal as a treatment protocol in partial-thickness burns.
Collapse
Affiliation(s)
| | | | | | - Ana Beatriz Mendes Rodrigues
- Faculdade de Ciências da Saúde Pitágoras de Codó, Codó, MA, Brazil.,Universidade Federal do Piauí, Teresina, PI, Brazil
| | | |
Collapse
|
6
|
Qiu C, Ge Z, Cui W, Yu L, Li J. Human Amniotic Epithelial Stem Cells: A Promising Seed Cell for Clinical Applications. Int J Mol Sci 2020; 21:ijms21207730. [PMID: 33086620 PMCID: PMC7594030 DOI: 10.3390/ijms21207730] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023] Open
Abstract
Perinatal stem cells have been regarded as an attractive and available cell source for medical research and clinical trials in recent years. Multiple stem cell types have been identified in the human placenta. Recent advances in knowledge on placental stem cells have revealed that human amniotic epithelial stem cells (hAESCs) have obvious advantages and can be used as a novel potential cell source for cellular therapy and clinical application. hAESCs are known to possess stem-cell-like plasticity, immune-privilege, and paracrine properties. In addition, non-tumorigenicity and a lack of ethical concerns are two major advantages compared with embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). All of the characteristics mentioned above and other additional advantages, including easy accessibility and a non-invasive application procedure, make hAESCs a potential ideal cell type for use in both research and regenerative medicine in the near future. This review article summarizes current knowledge on the characteristics, therapeutic potential, clinical advances and future challenges of hAESCs in detail.
Collapse
Affiliation(s)
- Chen Qiu
- MOE Laboratory of Biosystems Homeostasis & Protection and College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (C.Q.); (W.C.)
| | - Zhen Ge
- Institute of Materia Medica, Hangzhou Medical College, Hangzhou 310013, China;
| | - Wenyu Cui
- MOE Laboratory of Biosystems Homeostasis & Protection and College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (C.Q.); (W.C.)
| | - Luyang Yu
- MOE Laboratory of Biosystems Homeostasis & Protection and College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (C.Q.); (W.C.)
- Correspondence: (L.Y.); (J.L.)
| | - Jinying Li
- MOE Laboratory of Biosystems Homeostasis & Protection and College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (C.Q.); (W.C.)
- Correspondence: (L.Y.); (J.L.)
| |
Collapse
|
7
|
Lavu N, Richardson L, Radnaa E, Kechichian T, Urrabaz-Garza R, Sheller-Miller S, Bonney E, Menon R. Oxidative stress-induced downregulation of glycogen synthase kinase 3 beta in fetal membranes promotes cellular senescence†. Biol Reprod 2020; 101:1018-1030. [PMID: 31292604 DOI: 10.1093/biolre/ioz119] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/30/2019] [Accepted: 07/08/2019] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE Oxidative stress (OS)-induced stress signaler p38 mitogen-activated protein kinase (p38MAPK) activation and fetal membrane senescence are associated with parturition. This study determined changes in glycogen synthase kinase 3 beta (GSK3β) and its regulation by p38MAPK in effecting senescence to further delineate the molecular mechanism involved in senescence. METHODS Primary human amnion epithelial cells and amnion mesenchymal cells were treated with cigarette smoke extract (CSE, OS inducer). Expression of total and phosphorylated GSK3β and p38MAPK, and that of GSK3β's downstream targets: beta-catenin (β-Cat) and nuclear factor erythroid 2-related factor 2 (Nrf2) (western blot analysis), cell cycle regulation and senescence (flow cytometry) were determined. The specificity of GSK3β and p38MAPK's mechanistic role was tested by co-treating cells with their respective inhibitors, CHIR99021 and SB203580. Exosomal secretion of β-Cat from OS-induced cells was confirmed by immunofluorescence confocal microscopy and western blot. RESULTS OS induced by CSE resulted in phosphorylation of GSK3β (inactivation) and p38MAPK (activation) that was associated with cell cycle arrest and senescence. Inhibitors to GSK3β and p38MAPK verified their roles. Glycogen synthase kinase 3 beta inactivation was associated with nuclear translocation of antioxidant Nrf2 and exosomal secretion of β-Cat. CONCLUSIONS OS-induced P-p38MAPK activation is associated with functional downregulation of GSK3β and arrest of cell cycle progression and senescence of amnion cells. Lack of nuclear translocation of β-Cat and its excretion via exosomes further supports the postulation that GSK3β down-regulation by p38MAPK may stop cell proliferation preceding cell senescence. A better understanding of molecular mechanisms of senescence will help develop therapeutic strategies to prevent preterm birth.
Collapse
Affiliation(s)
- Narmada Lavu
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA.,Department of Neuroscience, Cell Biology & Anatomy, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Lauren Richardson
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA.,Department of Neuroscience, Cell Biology & Anatomy, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Enkhtuya Radnaa
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Talar Kechichian
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Rheanna Urrabaz-Garza
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Samantha Sheller-Miller
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Elizabeth Bonney
- Department of Obstetrics and Gynecology, University of Vermont, Burlington, Vermont, USA
| | - Ramkumar Menon
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| |
Collapse
|