1
|
Wang K, Hu Y, Wu Y, Xu J, Zhao Y, Yang J, Li X. The Therapeutic Potential of Gut-Microbiota-Derived Metabolite 4-Phenylbutyric Acid in Escherichia coli-Induced Colitis. Int J Mol Sci 2025; 26:1974. [PMID: 40076603 PMCID: PMC11901052 DOI: 10.3390/ijms26051974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/16/2025] [Accepted: 01/18/2025] [Indexed: 03/14/2025] Open
Abstract
Pathogenic Escherichia coli (E. coli) is a widely distributed pathogen that can cause varying degrees of zoonotic diseases, and infected animals often experience intestinal inflammation accompanied by diarrhea and dysbiosis. Previously, for the first time, we isolated Escherichia coli primarily of type B2 from a large-scale dairy farm in Yunnan, China. The 16s rRNA sequencing showed significant differences in the gut microbiota of calves infected with B2 E. coli, with higher abundance of harmful bacteria and lower abundance of beneficial bacteria compared with healthy calves. The metabolomics indicated that the concentrations of oxoadipic acid, 16-oxopalmitate, oerillyl alcohol, palmitoleic acid, and 4-phenylbutyrate (4-PBA) were significantly higher in the healthy group than in the infected group. The mouse model was established to assess the regulatory effect of 4-PBA on E. coli-induced colitis. Both oral administration of 4-PBA and fecal microbiota transplantation (FMT) had strong resistance to E. coli infection, improved survival rate and body weight, reduced intestinal tissue damage, decreased the levels of pro-inflammatory cytokines (TNF-α, IL-6, and IL-1β), and restrained TLR4/MyD88/NF-κB pathway. Our study demonstrated that 4-PBA could relieve E. coli-induced colitis by improving gut microbiota structure and inhibiting the expression of pro-inflammatory cytokines through the TLR4/MyD88/NF-κB pathway. The present finding reveals the therapeutic potential of the gut-microbiota-derived metabolite 4-PBA for the treatment of colitis caused by E. coli.
Collapse
Affiliation(s)
| | | | | | | | | | - Jing Yang
- College of Veterinary Medicine, Yunnan Agricultural University, No. 452 Fengyuan Road, Panlong District, Kunming 650201, China; (K.W.); (Y.H.); (Y.W.); (J.X.); (Y.Z.)
| | - Xiaobing Li
- College of Veterinary Medicine, Yunnan Agricultural University, No. 452 Fengyuan Road, Panlong District, Kunming 650201, China; (K.W.); (Y.H.); (Y.W.); (J.X.); (Y.Z.)
| |
Collapse
|
2
|
Macauslane KL, Pegg CL, Short KR, Schulz BL. Modulation of endoplasmic reticulum stress response pathways by respiratory viruses. Crit Rev Microbiol 2024; 50:750-768. [PMID: 37934111 DOI: 10.1080/1040841x.2023.2274840] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/04/2023] [Accepted: 10/15/2023] [Indexed: 11/08/2023]
Abstract
Acute respiratory infections (ARIs) are amongst the leading causes of death and disability, and the greatest burden of disease impacts children, pregnant women, and the elderly. Respiratory viruses account for the majority of ARIs. The unfolded protein response (UPR) is a host homeostatic defence mechanism primarily activated in response to aberrant endoplasmic reticulum (ER) resident protein accumulation in cell stresses including viral infection. The UPR has been implicated in the pathogenesis of several respiratory diseases, as the respiratory system is particularly vulnerable to chronic and acute activation of the ER stress response pathway. Many respiratory viruses therefore employ strategies to modulate the UPR during infection, with varying effects on the host and the pathogens. Here, we review the specific means by which respiratory viruses affect the host UPR, particularly in association with the high production of viral glycoproteins, and the impact of UPR activation and subversion on viral replication and disease pathogenesis. We further review the activation of UPR in common co-morbidities of ARIs and discuss the therapeutic potential of modulating the UPR in virally induced respiratory diseases.
Collapse
Affiliation(s)
- Kyle L Macauslane
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Cassandra L Pegg
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Kirsty R Short
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Benjamin L Schulz
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| |
Collapse
|
3
|
Cao J, Wen Z, Zhang Y, Zhang B, Chen Y, Xing G, Wu Y, Zhou Z, Liu X, Hou S. Effects of DHAV-3 infection on innate immunity, antioxidant capacity, and lipid metabolism in ducks with different DHAV-3 susceptibilities. Poult Sci 2024; 103:103374. [PMID: 38295495 PMCID: PMC10844866 DOI: 10.1016/j.psj.2023.103374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/07/2023] [Accepted: 12/07/2023] [Indexed: 02/02/2024] Open
Abstract
The aim of the experiment was to evaluate the status of innate immunity, oxidative status and lipid accumulation in ducklings exhibiting varying susceptibilities to DHAV-3 infection. In the experiment, ducklings with different DHAV-3 susceptibilities were used. Samples were collected at 6, 12, 15, and 24 h post infection (hpi), with 5 samples per time point. Plasma biochemistry, antioxidant enzyme activities, lipid content of liver and kidney were detected in the experiment. Elevated plasma level of total bilirubin, direct bilirubin, and creatinine indicated the injury of liver and kidney in susceptible ducklings (P < 0.05). The histopathological sections showed the injury in kidney. During the infection time, there was an increase in the concentrations of reactive oxygen species and oxidative damage markers (malondialdehyde and nitric oxide) in plasma of susceptible ducklings, particularly at 24 hpi (P < 0.05). Compared with the resistant ducklings, DHAV-3 infection resulted in a significant increase in the plasma total triglyceride (TG) level and a decrease in glucose level in susceptible ducklings. Gene expression of the innate immune response was both investigated in liver and kidney. In resistant ducklings, the expressions levels of pattern recognition receptors RIG-I, MDA5 remained constant. In contrast, the gene expressions peaked at 24 hpi in the susceptible ducklings. DHAV-3 infection promoted the expression of IFN, IL6, IL12β, caspase-8 or caspase-9 in both liver and kidney of susceptible ducklings. In conclusion, DHAV-3 infection led to the mobilization of antioxidant defenses, alterations in lipid metabolism, and oxidative stress in susceptible ducklings during DHAV-3 infection.
Collapse
Affiliation(s)
- Junting Cao
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhiguo Wen
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yunsheng Zhang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bo Zhang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ying Chen
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Guangnan Xing
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yongbao Wu
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhengkui Zhou
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaolin Liu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Shuisheng Hou
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
4
|
Wang W, Bi Z, Liu Y, Xia X, Qian J, Tan Y, Zhao J, Song S. The H protein of attenuated canine distemper virus is degraded via endoplasmic reticulum-associated protein degradation. Front Vet Sci 2023; 10:1214318. [PMID: 37483299 PMCID: PMC10359071 DOI: 10.3389/fvets.2023.1214318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 06/16/2023] [Indexed: 07/25/2023] Open
Abstract
Canine distemper (CD) caused by canine distemper virus (CDV) is considered a highly contagious and acutely febrile disease in various animals around the world. Endoplasmic reticulum-associated protein degradation (ERAD) is an important biological effect induced by endoplasmic reticulum (ER) stress (ERS) for the degradation of unfolded/misfolded proteins in the ER of cells. CDV H glycoprotein is translocated into the ER for post-translational modifications. The effects of CDV H and ER on each other are unclear. In this study, we found that CDV H protein induced ERS through the PERK-mediated signaling pathway. The inhibition of ERS by 4-Phenylbutyric acid (4-PBA) increased the H protein amounts of an attenuated CDV, which was reduced by dithiothreitol (DTT)-induced ERS. Further, the H protein levels were increased when ERAD was inhibited by using Eeyarestatin I or interfering E3 ligase Hrd1 in ERAD, suggesting that the attenuated CDV H protein is degraded via ERAD. ERAD involved ubiquitin-dependent proteasome degradation (UPD) and/or autophagic-lysosome degradation (ALD). The attenuated CDV H protein was ubiquitinated and significantly increased after treatment with UPD inhibitor MG132 but not ALD inhibitor chloroquine (CQ), suggesting that ERAD degrading the attenuated CDV H protein selectively depends on UPD. Moreover, the inhibition of the degradation of CDV H protein with 4-PBA or MG132 treatment increased viral replication, whereas treatment with DTT promoting degradation of H protein was found to reduce viral replication. These findings suggest that the degradation of CDV H protein via ERAD negatively affects viral replication and provide a new idea for developing CDV prevention and control strategies.
Collapse
Affiliation(s)
- Wenjie Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, National Center for Engineering Research of Veterinary Bio-Products, Nanjing, Jiangsu, China
| | - Zhenwei Bi
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, National Center for Engineering Research of Veterinary Bio-Products, Nanjing, Jiangsu, China
| | - Yakun Liu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Xingxia Xia
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, National Center for Engineering Research of Veterinary Bio-Products, Nanjing, Jiangsu, China
| | - Jing Qian
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, National Center for Engineering Research of Veterinary Bio-Products, Nanjing, Jiangsu, China
| | - Yeping Tan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, National Center for Engineering Research of Veterinary Bio-Products, Nanjing, Jiangsu, China
| | - Jianjun Zhao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Suquan Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
5
|
Wang S, Yang K, Li C, Liu W, Gao T, Yuan F, Guo R, Liu Z, Tan Y, Hu X, Tian Y, Zhou D. 4-Phenyl-butyric Acid Inhibits Japanese Encephalitis Virus Replication via Inhibiting Endoplasmic Reticulum Stress Response. Viruses 2023; 15:v15020534. [PMID: 36851748 PMCID: PMC9962822 DOI: 10.3390/v15020534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/02/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023] Open
Abstract
Japanese encephalitis virus (JEV) infection causes host endoplasmic reticulum stress (ERS) reaction, and then induces cell apoptosis through the UPR pathway, invading the central nervous system and causing an inflammation storm. The endoplasmic reticulum stress inhibitor, 4-phenyl-butyric acid (4-PBA), has an inhibitory effect on the replication of flavivirus. Here, we studied the effect of 4-PBA on JEV infection both in vitro and vivo. The results showed that 4-PBA treatment could significantly decrease the titer of JEV, inhibit the expression of the JEV NS3 protein (in vitro, p < 0.01) and reduce the positive rate of the JEV E protein (in vivo, p < 0.001). Compared to the control group, 4-PBA treatment can restore the weight of JEV-infected mice, decrease the level of IL-1β in serum and alleviate the abnormalities in brain tissue structure. Endoplasmic reticulum stress test found that the expression level of GRP78 was much lower and activation levels of PERK and IRE1 pathways were reduced in the 4-PBA treatment group. Furthermore, 4-PBA inhibited the UPR pathway activated by NS3, NS4b and NS5 RdRp. The above results indicated that 4-PBA could block JEV replication and inhibit ER stress caused by JEV. Interestingly, 4-PBA could reduce the expression of NS5 by inhibiting transcription (p < 0.001), but had no effect on the expression of NS3 and NS4b. This result may indicate that 4-PBA has antiviral activity independent of the UPR pathway. In summary, the effect of 4-PBA on JEV infection is related to the inhibition of ER stress, and it may be a promising drug for the treatment of Japanese encephalitis.
Collapse
|
6
|
Metabolic reprogramming and alteration of the redox state in hyper-productive MDCK cells for influenza a virus production. Biologicals 2022; 80:35-42. [PMID: 36114098 DOI: 10.1016/j.biologicals.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022] Open
Abstract
Influenza is a global public health issue leading to widespread morbidity and mortality with devastating economic loss annually. Madin-Darby Canine Kidney (MDCK) cell line has been a major cell line for influenza vaccine applications. Though many details of the host metabolic responses upon influenza A virus (IAV) infection have been documented, little is known about the metabolic reprogramming features of a hyper-productive host for IAV vaccine production. In this study, a MDCK cell clone H1 was shown to have a particular high productivity of 30 × 103 virions/cell. The glucose and amino acid metabolism of H1 were evaluated, indicating that the high producer had a particular metabolic reprogramming phenotype compared to its parental cell line (P): elevated glucose uptake, superior tricarboxylic acid cycle flux, moderate amino acid consumption, and better regulation of reactive oxygen species. Combined with the stronger mitochondrial function and mild antiviral and inflammatory responses characterized previously, our results indicated that the high producer had a sufficient intracellular energy supply, and balanced substrate distribution for IAV and host protein synthesis as well as the intracellular redox status. Understanding of these metabolic alterations paves the way for the rational cell line development and reasonable process optimization for high-yield influenza vaccine production.
Collapse
|
7
|
Wang L, Cao Z, Wang Z, Guo J, Wen J. Reactive oxygen species associated immunoregulation post influenza virus infection. Front Immunol 2022; 13:927593. [PMID: 35967412 PMCID: PMC9373727 DOI: 10.3389/fimmu.2022.927593] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
An appropriate level of reactive oxygen species (ROS) is necessary for cell proliferation, signaling transduction, and apoptosis due to their highly reactive character. ROS are generated through multiple metabolic pathways under a fine-tuned control between oxidant and antioxidant signaling. A growing number of evidence has proved their highly relevant role in modulating inflammation during influenza virus infection. As a network of biological process for protecting organism from invasion of pathogens, immune system can react and fight back through either innate immune system or adaptive immune system, or both. Herein, we provide a review about the mechanisms of ROS generation when encounter influenza virus infection, and how the imbalanced level of ROS influences the replication of virus. We also summarize the pathways used by both the innate and adaptive immune system to sense and attack the invaded virus and abnormal levels of ROS. We further review the limitation of current strategies and discuss the direction of future work.
Collapse
Affiliation(s)
- Lan Wang
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, United States,UCLA Acquired Immune Deficiency Syndrome (AIDS) Institute, University of California Los Angeles (UCLA), Los Angeles, CA, United States
| | - Zheng Cao
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles (UCLA), Los Angeles, CA, United States
| | - Zi Wang
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles (UCLA), Los Angeles, CA, United States
| | - Jimin Guo
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, United States,UCLA Acquired Immune Deficiency Syndrome (AIDS) Institute, University of California Los Angeles (UCLA), Los Angeles, CA, United States
| | - Jing Wen
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, United States,UCLA Acquired Immune Deficiency Syndrome (AIDS) Institute, University of California Los Angeles (UCLA), Los Angeles, CA, United States,*Correspondence: Jing Wen,
| |
Collapse
|
8
|
Spliced or Unspliced, That Is the Question: The Biological Roles of XBP1 Isoforms in Pathophysiology. Int J Mol Sci 2022; 23:ijms23052746. [PMID: 35269888 PMCID: PMC8910952 DOI: 10.3390/ijms23052746] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 02/27/2022] [Accepted: 02/27/2022] [Indexed: 01/27/2023] Open
Abstract
X-box binding protein 1 (XBP1) is a member of the CREB/ATF basic region leucine zipper family transcribed as the unspliced isoform (XBP1-u), which, upon exposure to endoplasmic reticulum stress, is spliced into its spliced isoform (XBP1-s). XBP1-s interacts with the cAMP response element of major histocompatibility complex class II gene and plays critical role in unfolded protein response (UPR) by regulating the transcriptional activity of genes involved in UPR. XBP1-s is also involved in other physiological pathways, including lipid metabolism, insulin metabolism, and differentiation of immune cells. Its aberrant expression is closely related to inflammation, neurodegenerative disease, viral infection, and is crucial for promoting tumor progression and drug resistance. Meanwhile, recent studies reported that the function of XBP1-u has been underestimated, as it is not merely a precursor of XBP1-s. Instead, XBP-1u is a critical factor involved in various biological pathways including autophagy and tumorigenesis through post-translational regulation. Herein, we summarize recent research on the biological functions of both XBP1-u and XBP1-s, as well as their relation to diseases.
Collapse
|
9
|
Zhang Y, Huang S, Yang G, Zou L, Huang X, Liu S. The Role of miRNAs during Endoplasmic Reticulum Stress Induced Apoptosis in Digestive Cancer. J Cancer 2021; 12:6787-6795. [PMID: 34659567 PMCID: PMC8517994 DOI: 10.7150/jca.62352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/18/2021] [Indexed: 11/10/2022] Open
Abstract
Digestive cancer is one of the leading causes of cancer mortality in the world. Despite a number of studies being conducted, the exact mechanism for treating digestive cancer has not yet been fully understood. To survive, digestive cancer cells are subjected to various internal and external adverse factors, such as hypoxia, nutritional deficiencies or drug toxicity, resulting in accumulation of misfolded and unfolded protein in endoplasmic reticulum (ER) lumen further leading to ER stress and the unfolded protein response (UPR). During the last years, studies on the relationship between ER stress and microRNAs (miRNAs) has burst on the scene. miRNAs are non-coding RNAs with a length of 21~22nucleotides involved in post-transcriptional regulation of gene expression, which could be regarded as oncomiRs (tumor inducers) and tumor suppressors regulating cancer cell proliferation, invasion, and apoptosis by differently affecting the expression of genes related to cancer cell signaling. Therefore, investigating the interaction between ER stress and miRNAs is crucial for developing effective cancer treatment and prevention strategies. In this review, we mainly discuss miRNAs focusing on its regulation, role in ER stress induced apoptosis in Digestive cancer, expound the underlying mechanism, thus provides a theoretical foundation for finding new therapeutic targets of digestive cancer.
Collapse
Affiliation(s)
- Yujing Zhang
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, 410081, China.,Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Normal University, Changsha, 410081, China
| | - Shuai Huang
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, 410081, China.,Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Normal University, Changsha, 410081, China
| | - Gang Yang
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, 410081, China.,Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Normal University, Changsha, 410081, China
| | - Lianhong Zou
- Hunan Provincial Institute of Emergency Medicine, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, 410015, China
| | - Xin Huang
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, 410081, China.,Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Normal University, Changsha, 410081, China
| | - Sulai Liu
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, 410015, China
| |
Collapse
|
10
|
Han Y, Yuan M, Guo YS, Shen XY, Gao ZK, Bi X. Mechanism of Endoplasmic Reticulum Stress in Cerebral Ischemia. Front Cell Neurosci 2021; 15:704334. [PMID: 34408630 PMCID: PMC8365026 DOI: 10.3389/fncel.2021.704334] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/09/2021] [Indexed: 12/25/2022] Open
Abstract
Endoplasmic reticulum (ER) is the main organelle for protein synthesis, trafficking and maintaining intracellular Ca2+ homeostasis. The stress response of ER results from the disruption of ER homeostasis in neurological disorders. Among these disorders, cerebral ischemia is a prevalent reason of death and disability in the world. ER stress stemed from ischemic injury initiates unfolded protein response (UPR) regarded as a protection mechanism. Important, disruption of Ca2+ homeostasis resulted from cytosolic Ca2+ overload and depletion of Ca2+ in the lumen of the ER could be a trigger of ER stress and the misfolded protein synthesis. Brain cells including neurons, glial cells and endothelial cells are involved in the complex pathophysiology of ischemic stroke. This is generally important for protein underfolding, but even more for cytosolic Ca2+ overload. Mild ER stress promotes cells to break away from danger signals and enter the adaptive procedure with the activation of pro-survival mechanism to rescue ischemic injury, while chronic ER stress generally serves as a detrimental role on nerve cells via triggering diverse pro-apoptotic mechanism. What’s more, the determination of some proteins in UPR during cerebral ischemia to cell fate may have two diametrically opposed results which involves in a specialized set of inflammatory and apoptotic signaling pathways. A reasonable understanding and exploration of the underlying molecular mechanism related to ER stress and cerebral ischemia is a prerequisite for a major breakthrough in stroke treatment in the future. This review focuses on recent findings of the ER stress as well as the progress research of mechanism in ischemic stroke prognosis provide a new treatment idea for recovery of cerebral ischemia.
Collapse
Affiliation(s)
- Yu Han
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China.,Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Mei Yuan
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China.,Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Yi-Sha Guo
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China.,Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Xin-Ya Shen
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China.,Shanghai University of Medicine and Health Sciences Affiliated Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhen-Kun Gao
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China.,Shanghai University of Medicine and Health Sciences Affiliated Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xia Bi
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| |
Collapse
|
11
|
Nakada EM, Sun R, Fujii U, Martin JG. The Impact of Endoplasmic Reticulum-Associated Protein Modifications, Folding and Degradation on Lung Structure and Function. Front Physiol 2021; 12:665622. [PMID: 34122136 PMCID: PMC8188853 DOI: 10.3389/fphys.2021.665622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/23/2021] [Indexed: 12/15/2022] Open
Abstract
The accumulation of unfolded/misfolded proteins in the endoplasmic reticulum (ER) causes ER stress and induces the unfolded protein response (UPR) and other mechanisms to restore ER homeostasis, including translational shutdown, increased targeting of mRNAs for degradation by the IRE1-dependent decay pathway, selective translation of proteins that contribute to the protein folding capacity of the ER, and activation of the ER-associated degradation machinery. When ER stress is excessive or prolonged and these mechanisms fail to restore proteostasis, the UPR triggers the cell to undergo apoptosis. This review also examines the overlooked role of post-translational modifications and their roles in protein processing and effects on ER stress and the UPR. Finally, these effects are examined in the context of lung structure, function, and disease.
Collapse
Affiliation(s)
- Emily M. Nakada
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre (RI-MUHC), McGill University, Montreal, QC, Canada
- McGill University, Montreal, QC, Canada
| | - Rui Sun
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre (RI-MUHC), McGill University, Montreal, QC, Canada
- McGill University, Montreal, QC, Canada
| | - Utako Fujii
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre (RI-MUHC), McGill University, Montreal, QC, Canada
- McGill University, Montreal, QC, Canada
| | - James G. Martin
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre (RI-MUHC), McGill University, Montreal, QC, Canada
- McGill University, Montreal, QC, Canada
| |
Collapse
|
12
|
Tang Y, Yang G, Li Y, Wang M, Li G, Hu Y. Protective effects of SP600125 on mice infected with H1N1 influenza A virus. Arch Virol 2021; 166:2151-2158. [PMID: 34014386 PMCID: PMC8134817 DOI: 10.1007/s00705-021-05103-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 03/07/2021] [Indexed: 11/30/2022]
Abstract
Influenza A virus (IAV) can cause high morbidity and mortality globally every year. Myriad host kinases and their related signaling pathways are involved in IAV infection, and the important role of the c-Jun N-terminal kinase signaling pathway during infection has been demonstrated. SP600125, an inhibitor of c-Jun N-terminal kinase, was found in our previous study to suppress IAV replication in vitro. In this study, we established a mouse model of H1N1 IAV infection and treated the mice with SP600125 to study its protective effect. The results showed that SP600125 treatment reduced the pulmonary inflammatory response, lung injury, and pulmonary viral load and increased the survival rate of H1N1-infected mice. Our data confirm the crucial role of c-Jun N terminal kinase in H1N1 virus replication and inflammatory responses in vivo. Hence, we speculate that SP600125 has a potential antiviral therapeutic benefit against IAV infection.
Collapse
Affiliation(s)
- Yuling Tang
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, People's Republic of China
| | - Guanghui Yang
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, People's Republic of China
| | - Yuxiang Li
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, People's Republic of China
| | - Ming Wang
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, People's Republic of China
| | - Gebin Li
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, People's Republic of China.
| | - Yanxin Hu
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, People's Republic of China.
| |
Collapse
|
13
|
Elias T, Lee LH, Rossi M, Caruso F, Adams SD. In Vitro Analysis of the Antioxidant and Antiviral Activity of Embelin against Herpes Simplex Virus-1. Microorganisms 2021; 9:434. [PMID: 33669814 PMCID: PMC7922599 DOI: 10.3390/microorganisms9020434] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 12/16/2022] Open
Abstract
Herpes simplex virus-1 (HSV-1) causes a wide range of infections from mild to life-threatening in the human population. There are effective treatments for HSV-1 infections that are limited due HSV-1 latency and development of resistance to current therapeutics. The goal of this study was to investigate the antioxidant and antiviral effects of embelin on HSV-1 in cultured Vero cells. Oxidative stress was verified by an extensive production of a reactive oxygen species (ROS) H2O2. Vero cells were infected with a recombinant strain of HSV-1 and antiviral assays, time course attachment, penetration, and post penetration assays, confocal microscopy, qPCR, and antioxidant assays were conducted. Our results lead to the conclusion that embelin is noncytotoxic at concentrations tested ranging from 20 to 70 µM. Treatment of HSV-1 virions with embelin resulted in 98.7-100% inhibition and affected the early stage of HSV-1 infection of Vero cells, by inhibiting the attachment and penetration of HSV-1 virions to host cells. Treatment of virions with concentrations of embelin ranging from 35 to 60 µM significantly reduced the production of H2O2. In conclusion, embelin reduces oxidative damage caused by HSV-1 infection and is an effective antiviral to reduce the infection of HSV-1 in cultured Vero cells. Further studies are needed to explore the possibility of embelin as a medicinal agent.
Collapse
Affiliation(s)
- Tony Elias
- Department of Biology, Montclair State University, Montclair, NJ 07043, USA; (T.E.); (L.H.L.)
| | - Lee H. Lee
- Department of Biology, Montclair State University, Montclair, NJ 07043, USA; (T.E.); (L.H.L.)
| | - Miriam Rossi
- Department of Chemistry, Vassar College, Poughkeepsie, NY 12604, USA; (M.R.); (F.C.)
| | - Francesco Caruso
- Department of Chemistry, Vassar College, Poughkeepsie, NY 12604, USA; (M.R.); (F.C.)
| | - Sandra D. Adams
- Department of Biology, Montclair State University, Montclair, NJ 07043, USA; (T.E.); (L.H.L.)
| |
Collapse
|
14
|
Jung HJ, Park SH, Cho KM, Jung KI, Cho D, Kim TS. Threonyl-tRNA Synthetase Promotes T Helper Type 1 Cell Responses by Inducing Dendritic Cell Maturation and IL-12 Production via an NF-κB Pathway. Front Immunol 2020; 11:571959. [PMID: 33178197 PMCID: PMC7592646 DOI: 10.3389/fimmu.2020.571959] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/18/2020] [Indexed: 12/24/2022] Open
Abstract
Threonyl-tRNA synthetase (TRS) is an aminoacyl-tRNA synthetase that catalyzes the aminoacylation of tRNA by transferring threonine. In addition to an essential role in translation, TRS was extracellularly detected in autoimmune diseases and also exhibited pro-angiogenetic activity. TRS is reported to be secreted into the extracellular space when vascular endothelial cells encounter tumor necrosis factor-α. As T helper (Th) type 1 response and IFN-γ levels are associated with autoimmunity and angiogenesis, in this study, we investigated the effects of TRS on dendritic cell (DC) activation and CD4 T cell polarization. TRS-treated DCs exhibited up-regulated expression of activation-related cell-surface molecules, including CD40, CD80, CD86, and MHC class II. Treatment of DCs with TRS resulted in a significant increase of IL-12 production. TRS triggered nuclear translocation of the NF-κB p65 subunit along with the degradation of IκB proteins and the phosphorylation of MAPKs in DCs. Additionally, MAPK inhibitors markedly recovered the degradation of IκB proteins and the increased IL-12 production in TRS-treated DCs, suggesting the involvement of MAPKs as the upstream regulators of NF-κB in TRS-induced DC maturation and activation. Importantly, TRS-stimulated DCs significantly increased the populations of IFN-γ+CD4 T cells, and the levels of IFN-γ when co-cultured with CD4+ T cells. The addition of a neutralizing anti-IL-12 mAb to the cell cultures of TRS-treated DCs and CD4+ T cells resulted in decreased IFN-γ production, indicating that TRS-stimulated DCs may enhance the Th1 response through DC-derived IL-12. Injection of OT-II mice with OVA-pulsed, TRS-treated DCs also enhanced Ag-specific Th1 responses in vivo. Importantly, injection with TRS-treated DC exhibited increased populations of IFN-γ+-CD4+ and -CD8+ T cells as well as secretion level of IFN-γ, resulting in viral clearance and increased survival periods in mice infected with influenza A virus (IAV), as the Th1 response is associated with the enhanced cellular immunity, including anti-viral activity. Taken together, these results indicate that TRS promotes the maturation and activation of DCs, DC-mediated Th1 responses, and anti-viral effect on IAV infection.
Collapse
Affiliation(s)
- Hak-Jun Jung
- Department of Life Science, College of Life Science and Biotechnology, Korea University, Seoul, South Korea
| | - Su-Ho Park
- Department of Life Science, College of Life Science and Biotechnology, Korea University, Seoul, South Korea
| | - Kyung-Min Cho
- Department of Life Science, College of Life Science and Biotechnology, Korea University, Seoul, South Korea
| | - Kwang Il Jung
- Department of Life Science, College of Life Science and Biotechnology, Korea University, Seoul, South Korea
| | - Daeho Cho
- Institute of Convergence Science, Korea University, Seoul, South Korea
| | - Tae Sung Kim
- Department of Life Science, College of Life Science and Biotechnology, Korea University, Seoul, South Korea
| |
Collapse
|
15
|
Chen KK, Minakuchi M, Wuputra K, Ku CC, Pan JB, Kuo KK, Lin YC, Saito S, Lin CS, Yokoyama KK. Redox control in the pathophysiology of influenza virus infection. BMC Microbiol 2020; 20:214. [PMID: 32689931 PMCID: PMC7370268 DOI: 10.1186/s12866-020-01890-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 07/01/2020] [Indexed: 01/07/2023] Open
Abstract
Triggered in response to external and internal ligands in cells and animals, redox homeostasis is transmitted via signal molecules involved in defense redox mechanisms through networks of cell proliferation, differentiation, intracellular detoxification, bacterial infection, and immune reactions. Cellular oxidation is not necessarily harmful per se, but its effects depend on the balance between the peroxidation and antioxidation cascades, which can vary according to the stimulus and serve to maintain oxygen homeostasis. The reactive oxygen species (ROS) that are generated during influenza virus (IV) infection have critical effects on both the virus and host cells. In this review, we outline the link between viral infection and redox control using IV infection as an example. We discuss the current state of knowledge on the molecular relationship between cellular oxidation mediated by ROS accumulation and the diversity of IV infection. We also summarize the potential anti-IV agents available currently that act by targeting redox biology/pathophysiology.
Collapse
Affiliation(s)
- Ker-Kong Chen
- School of Dentistry, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Department of Densitory, Kaohisung University Hospital, Kaohisung, 807, Taiwan
| | - Moeko Minakuchi
- Waseda Research Institute for Science and Engineering, Waseca University, Shinjuku, Tokyo, 162-8480, Japan
| | - Kenly Wuputra
- Graduate Institute of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd., San-Ming District, Kaohsiung, 80807, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Chia-Chen Ku
- Graduate Institute of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd., San-Ming District, Kaohsiung, 80807, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Jia-Bin Pan
- Graduate Institute of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd., San-Ming District, Kaohsiung, 80807, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Kung-Kai Kuo
- Department Surgery, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
| | - Ying-Chu Lin
- School of Dentistry, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Shigeo Saito
- Waseda Research Institute for Science and Engineering, Waseca University, Shinjuku, Tokyo, 162-8480, Japan
- Saito Laboratory of Cell Technology Institute, Yalta, Tochigi, 329-1471, Japan
| | - Chang-Shen Lin
- Graduate Institute of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd., San-Ming District, Kaohsiung, 80807, Taiwan.
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan.
| | - Kazunari K Yokoyama
- Waseda Research Institute for Science and Engineering, Waseca University, Shinjuku, Tokyo, 162-8480, Japan.
- Graduate Institute of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd., San-Ming District, Kaohsiung, 80807, Taiwan.
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan.
| |
Collapse
|
16
|
Ren S, Ding C, Sun Y. Morphology Remodeling and Selective Autophagy of Intracellular Organelles during Viral Infections. Int J Mol Sci 2020; 21:ijms21103689. [PMID: 32456258 PMCID: PMC7279407 DOI: 10.3390/ijms21103689] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/14/2020] [Accepted: 05/21/2020] [Indexed: 12/17/2022] Open
Abstract
Viruses have evolved different strategies to hijack subcellular organelles during their life cycle to produce robust infectious progeny. Successful viral reproduction requires the precise assembly of progeny virions from viral genomes, structural proteins, and membrane components. Such spatial and temporal separation of assembly reactions depends on accurate coordination among intracellular compartmentalization in multiple organelles. Here, we overview the rearrangement and morphology remodeling of virus-triggered intracellular organelles. Focus is given to the quality control of intracellular organelles, the hijacking of the modified organelle membranes by viruses, morphology remodeling for viral replication, and degradation of intracellular organelles by virus-triggered selective autophagy. Understanding the functional reprogram and morphological remodeling in the virus-organelle interplay can provide new insights into the development of broad-spectrum antiviral strategies.
Collapse
Affiliation(s)
- Shanhui Ren
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute. Chinese Academy of Agricultural Science, Shanghai 200241, China;
| | - Chan Ding
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute. Chinese Academy of Agricultural Science, Shanghai 200241, China;
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Correspondence: (C.D.); (Y.S.); Tel.: +86-21-34293441 (C.D. & Y.S.); Fax: +86-21-54081818 (C.D. & Y.S.)
| | - Yingjie Sun
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute. Chinese Academy of Agricultural Science, Shanghai 200241, China;
- Correspondence: (C.D.); (Y.S.); Tel.: +86-21-34293441 (C.D. & Y.S.); Fax: +86-21-54081818 (C.D. & Y.S.)
| |
Collapse
|